

Characterization of olfactory receptors expression in BON cells

Guenhaël Sanz, Aurélie Dewaele, Edith Pajot

► To cite this version:

Guenhaël Sanz, Aurélie Dewaele, Edith Pajot. Characterization of olfactory receptors expression in BON cells. Congres of the European Chemoreception Research Organization, Sep 2009, Cagliari, Italy. 2009. hal-02812011

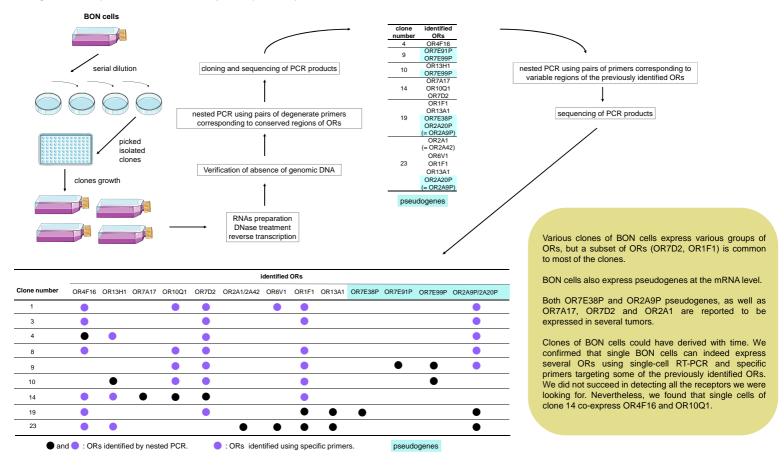
HAL Id: hal-02812011 https://hal.inrae.fr/hal-02812011

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CHARACTERIZATION OF OLFACTORY RECEPTORS EXPRESSION IN BON CELLS

Sanz Guenhaël, Legenre Elena, Dewaele Aurélie and Pajot Edith


INRA, UMR1197 Neurobiologie de l'Olfaction et de la Prise Alimentaire, Domaine de Vilvert, F-78350 Jouy-en-Josas, France, Université Paris-Sud 11, UMR 1197, F-91400 Orsay, France, IFR 144 Neuro-Sud Paris, France

BON cells are a cell line derived from human enterochromaffin cells. They were previously described to express various olfactory receptors (ORs), but it is unclear whether a single cell expresses several types of ORs, as reported for spermatogenic cells, or a single type of OR as for olfactory sensory neurons (OSNs). The goal of the present work was first to answer this question and secondly to explore whether BON cells could be used for functional studies of heterologously expressed ORs.

BON cells were kindly provided by Kirk Ives (UTMB Galveston, USA). As the cell population appears heterogeneous in terms of morphology, we first serial diluted BON cells to isolate clones. RT-PCR was then carried out on RNAs from clones. RT-PCR products were subsequently cloned and sequenced. Clonal BON cells appear to express more than one OR and some ORs identified are expressed by several clones. To confirm the expression of several olfactory receptors by a single cell, single-cell RT-PCR was also performed.

Since BON cells endogenously express ORs, we expected they could also efficiently express heterologous ORs, which is still a challenge for most ORs in mammalian cells. Thus, we tried to heterologously express two human ORs (OR1G1 and OR17-40) in BON cells. We demonstrated that BON cells efficiently expressed these olfactory receptors at the plasma membrane level. Furthermore, we conducted calcium imaging and confirmed the activation of both receptors by their known ligands. While other ORs shoud be tested for functional expression by BON cells, these first results already suggest that BON cells constitute an interesting means to carry out functional studies of heterologously expressed ORs.

Endogenous expression of olfactory receptors by BON cells

Functional heterologous expression of olfactory receptors by BON cells

BON cells were transiently transfected with mammalian expression vectors carrying the OR1G1 or OR17-40 receptor. Cells were observed 72h after transfection. OR1G1. 1-nonanol 180 (%) Ē negative control OR1G1 OR17-40 80 BON cells heterologously express human OR1G1 and OR17-40 receptors. The receptors are fused to the c-0 myc epitope at their N-terminal end. They are revealed 1 10

0.01 0.1 odorant dose (uM)

BON cells expressing OR1G1 or OR17-40 were loaded with fluo-4 and stimulated with various concentrations of cognate ligands of these ORs. They displayed a calcium response within seconds when the ligand of the expressed OR was applied, while mock-transfected BON cells did not.

Conclusion

permeabilized cells

with an anti-cmyc antibody coupled to Cy3 on non

Contrary to OSNs, BON cells were shown to endogenously co-express various functional ORs and pseudogenes at the mRNA level. While some receptors appear to be expressed by all cells, each clone of BON cells seems to express a specific panel of ORs.

In the olfactory apparatus, a combinatorial code is used to detect and discriminate odorants, involving several OSNs each expressing a single type of OR. In the case of BON cells, the variability in OR expression and the ability to co-express several ORs could be used for the detection of various odorants or other molecules brought by food intake into the gastro-intestinal tract.

Furthermore, we demonstrate that BON cells can express functional heterologous ORs. Thus, BON cells seem promising for contributing to the deorphanization of ORs and their functional study.