

# Long terme response of two models of soils organic carbon dynamics over a wide range of agro-pedo-climatic conditions

Manuel Pascal Martin, Jorge J. Sierra, David Delannoy, Dominique Ripoche, Dominique D. Arrouays, Nadine N. Brisson

#### ▶ To cite this version:

Manuel Pascal Martin, Jorge J. Sierra, David Delannoy, Dominique Ripoche, Dominique D. Arrouays, et al.. Long terme response of two models of soils organic carbon dynamics over a wide range of agropedo-climatic conditions. International Symposium on Soil Organic Matter 2011. Organic matter dynamics - from soils to eceans, Jul 2011, Leuven, Belgium. 22 p. hal-02812123

HAL Id: hal-02812123 https://hal.inrae.fr/hal-02812123

Submitted on 6 Jun 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Long term response of two models of soil organic carbon dynamics over a wide range of agro-pedo-climatic conditions

M. Martin<sup>1</sup>, J. Sierra<sup>2</sup>, D. Delannoy<sup>3</sup>, D. Ripoche<sup>3</sup>, D. Arrouays<sup>1</sup> and N. Brisson<sup>3</sup>

<sup>1</sup>INRA Orléans, InfoSol Unit, US 1106, CS 40001, Ardon, 45075, Orléans cedex 2, France <sup>2</sup>INRA, UR1231 Agrosystèmes Tropicaux, Petit-Bourg F-97170, France <sup>3</sup>INRA, US1116 Agroclim, Avignon F-84914, France

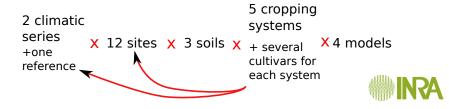
International Symposium on Soil Organic Matter 2011 Organic matter dynamics – from soils to oceans

**July 2011** 



# The Climator Project

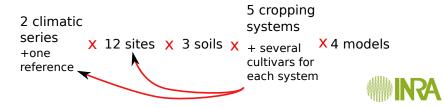
Analysis of the sources of uncertainty and variability


- Provide methods and results on the impact of climate change on various cropping systems, at the field scale for contrasted French climates.
- A simulation prospective exercise under future climate hypothesis:
  - accounting for current crops
  - accounting for uncertainties by ensemble modeling
- Translate the future climate hypothesis in quantitative impacts to distinguish positive effects, negative effects and non-significant effects on agriculture and forest



# SOC trends in cropping systems by 2100

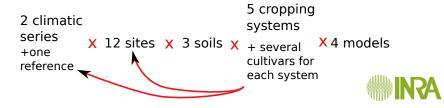
#### Questions


- Expected behavior of five selected cropping systems in France by 2100
  - ▶ SOC changes vs. carbon input changes.
- Uncertainty regarding this expectation
  - Soil properties.
  - Agronomical constraints.
  - Climate.
- 3. Are these assertions model dependent?



#### SOC trends in cropping systems by 2100

#### Questions


- Expected behavior of five selected cropping systems in France by 2100
  - ▶ SOC changes vs. carbon input changes.
- 2. Uncertainty regarding this expectation
  - Soil properties.
  - Agronomical constraints.
  - Climate.
- 3. Are these assertions model dependent?



# SOC trends in cropping systems by 2100

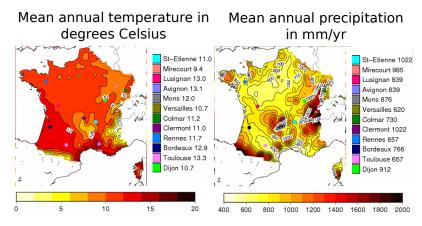
#### Questions

- Expected behavior of five selected cropping systems in France by 2100
  - SOC changes vs. carbon input changes.
- 2. Uncertainty regarding this expectation
  - Soil properties.
  - Agronomical constraints.
  - Climate.
- 3. Are these assertions model dependent?



#### Climates

- Continuous 1950 ⇒ 2100 temperature, precipitation and PET series
- One SRES scenario (A1B)
- One GCM (Arpege)
- Two downscaling methods (QQ and WT)


+

one constant climate (repeated 1970-1999 years sampled randomly)



#### Multi-sites approach

The spatial approach relies on 12 sites standing for French climate variability



# Soils, cropping systems & cultivars

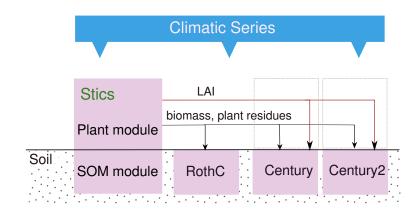
| Soil            | Soil 1             | Soil2        | Soil3   |
|-----------------|--------------------|--------------|---------|
| clay content(%) | 12.6               | 19.6         | 24.4    |
| Classification  | Brown, sligthly    | leached      | leached |
|                 | leached, truncated | hydromorphic | modal   |
| AWR (mm)        | 226                | 104          | 317     |
| OM(%)           | 1.8                | 1.4          | 2.3     |

#### 5 systems

1. MWRW: Maize, Soft wheat, Rapeseed, Durum wheat

2. SWSgW: Sunflower, Soft wheat, Sorghum, Durum wheat

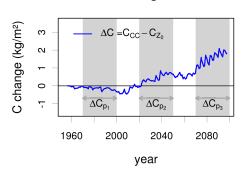
3. W: Durum wheat


4. S: Sunflower

5. IM: Irrigated Maize

two cultivars for each specie




# Models indirect coupling





# Simulation and data analysis protocol

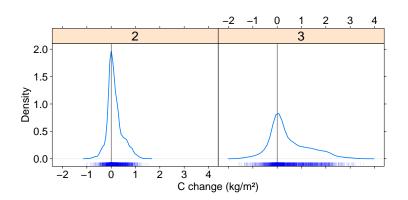
#### **SWSgW**



#### Initialization

- Observed SOC (stocks for the 0-30cm layer)

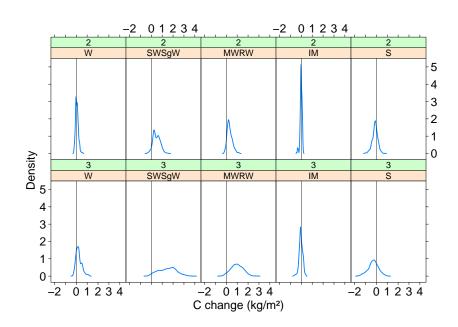
#### Further analysis


- near future:

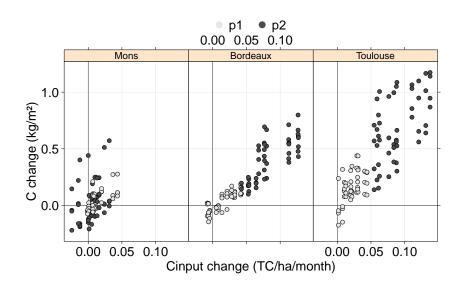
$$\Delta C_{p_2} = \overline{\Delta C_{p_2}} - \overline{\Delta C_{p_1}}$$

- distant future :

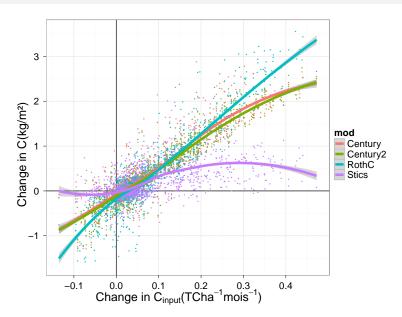
$$\Delta C_{p_3} = \overline{\Delta C_{p_3}} - \overline{\Delta C_{p_1}}$$


# SOC changes

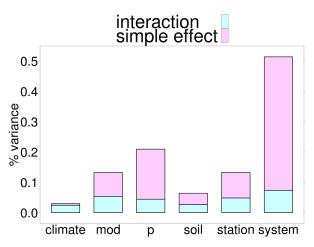



- ▶ The range of SOC change is  $[-1.6, +3.5]kg/m^2$ .
- ▶ 1st and 3rd quintiles : -0.06 and 0.963  $kg/m^2$ .




# System Effect




# Climatic variability (Station Effect - W)



# model dependency



# Interactions vs. simple effects





#### **Discussion & Conclusions**

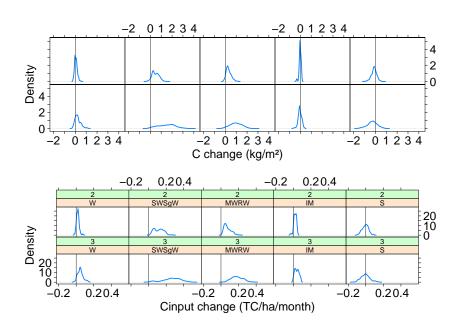
- Most SOC stocks remained stable (median value of 0.2kg/m²).
  - ▶ The range of SOC change is  $[-1.6, +3.5]kg/m^2$ .
  - ▶ 1st and 3rd quintiles : -0.06 and 0.963  $kg/m^2$ .
- ► The main driver is the nature of the cropping system: The gradation observed in the storage capacity of rotations is largely explained by the different quantity of residues applied (straw and roots for SWSgW), and the behavior of crops facing climate change.
- Climate locally had a great influence.
- Downscaling methods yielded the same results.
- Considered soil variability had a relatively low impact.
- Some conclusions may change depending on the model.



#### Perspectives

- Filter out the cultivars according to their respective feasibility.
- work out the interpretation of models differences.
- increase to range of studied soils.
- Other systems such as grasslands and forest.

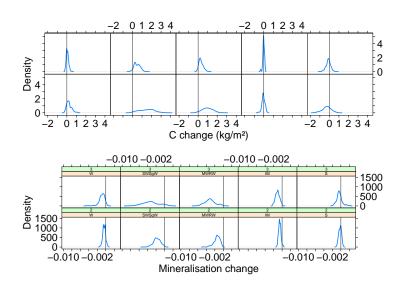



# Green book of the climator project

```
http:
```

//www.international.inra.fr/research/green\_book\_of\_the\_climator\_project

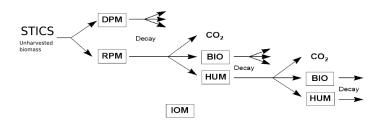



# More about the system Effects



- Uncertainty: which cannot be determined by our current knowledge with confidence Unpredictable: greenhouse gases concentration scenarios Lacking knowledge: climate models, downscaling methods, crop models
- Variability: which is neither uncertain nor constant
  Endured: climatic inter-annual variability
  Chosen: management practices, genotype choice
  Endured or chosen (depending on the decision scale): locations and soil




#### Carbon input vs. SOM mineralisation



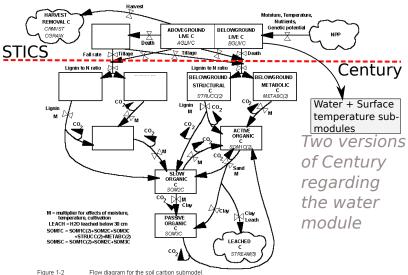
Mineralisation rate is estimated as  $\frac{\Delta C^{t+1} - C_{in}^t}{C^t}$ 

#### Stics to RothC

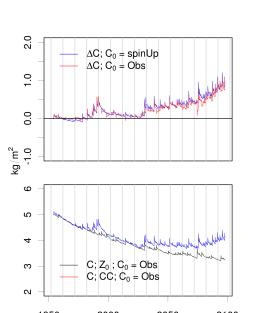
Figure 1 - Structure of the Rothamsted Carbon Model



**RPM: Resistant Plant Material** 


DPM : Decomposable Plant Material

**BIO: Microbial Biomass** 


HUM: Humified OM IOM: Inert Organic Matter



# Stics to Century



# Simulation and data analysis protocol



#### **Usual Approach**

Intial state = steady state

#### Initialization

- Observed SOC (stocks for the 0-30cm layer)

#### Climator approach

- Compute  $\Delta C$  for a *stable* climate ( $Z_0$ )
- Estimate  $\triangle C$  caused by climate change relatively to the  $Z_0$  series

#### Further analysis

- distant future :

- near future :  $\Delta C_{p_2} = \overline{\Delta C_{p_2}} - \overline{\Delta C_{p_1}}$