

Carbon sequestration in terrestrial ecosystems: facts and methods

Denis Loustau

▶ To cite this version:

Denis Loustau. Carbon sequestration in terrestrial ecosystems: facts and methods. CLIMA euro-asian research and training in climate change management, Nov 2007, Paris, France. 67 pl. hal-02812337

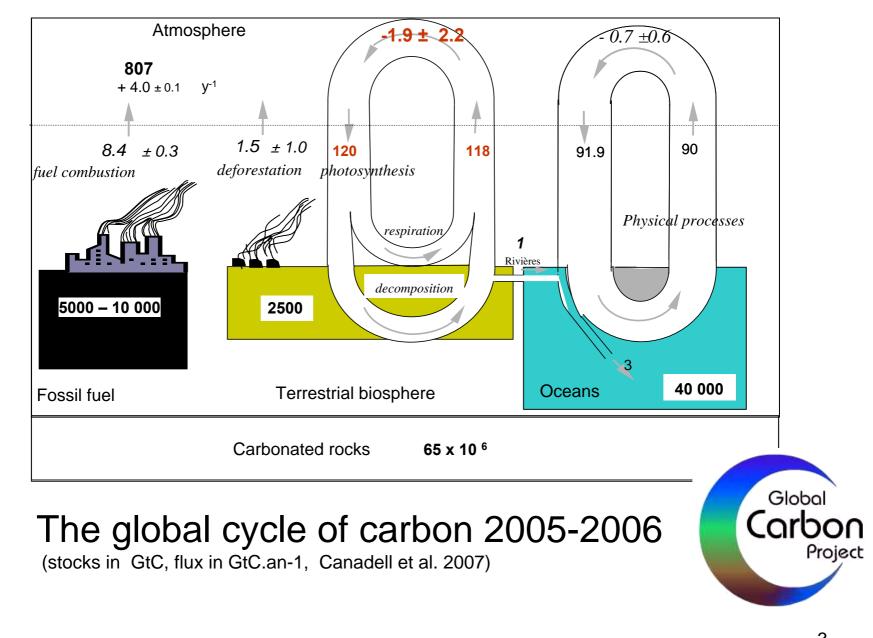
HAL Id: hal-02812337 https://hal.inrae.fr/hal-02812337v1

Submitted on 6 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Carbon Sequestration in terrestrial ecosystems: facts and methods

D. Loustau INRA, Functional Ecology and Environmental Physics (EPHYSE), Bordeaux



www.inra.fr/ephyse

• The carbon cycle updated 2007, natural and human-disturbed.

• Its terrestrial component

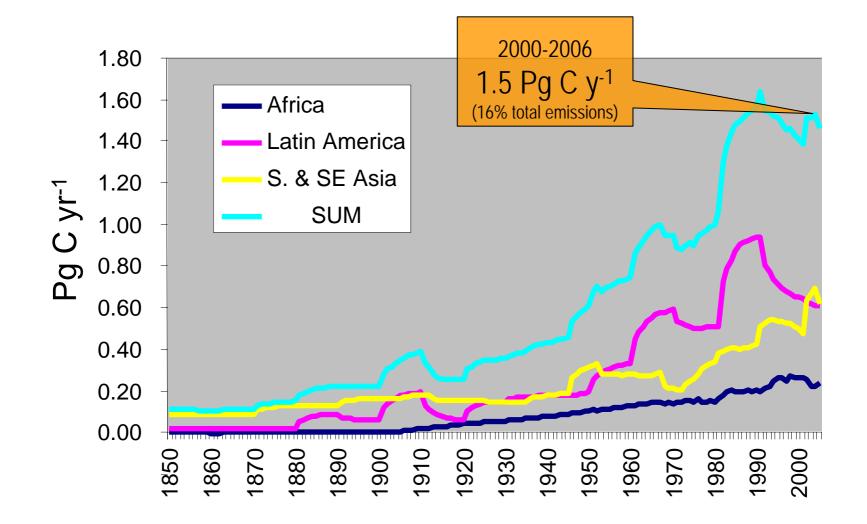
- Generic scheme and important definitions
- Land use types
- Geographical distribution
- Managing carbon in "natural" ecosystems
 - Land use changes
 - Forest operations
 - Forest scenario alternatives
- Beyond carbon, managing the climate impacts
 - Carbon free greenhouse gases (N_2O, O_3)
 - Energy Balance: heat flux, evaporation
 - Global warming potential
- Diversity
- Conclusion

www.globalcarbonproject.org

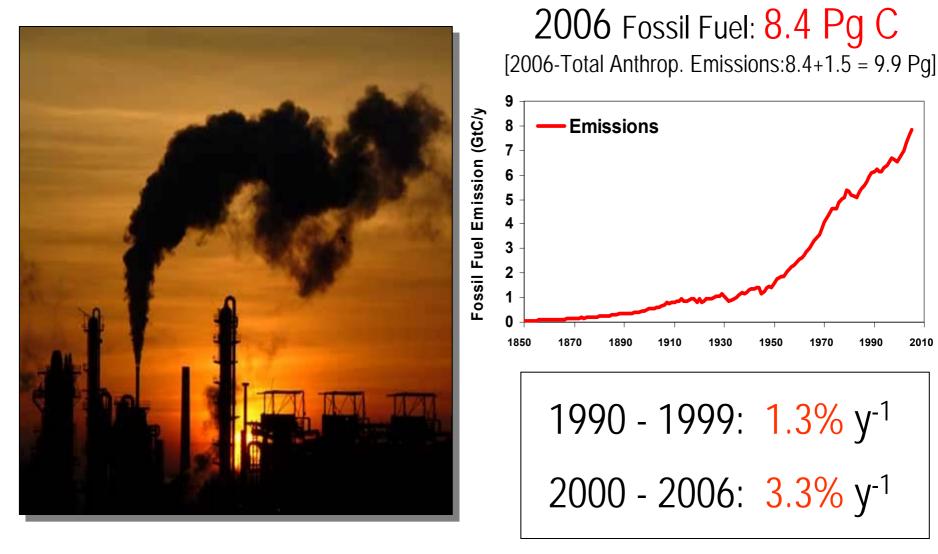
info@globalcarbonproject.org

Sources: anthropogenic C Emissions: Land Use Change

Tropical deforestation

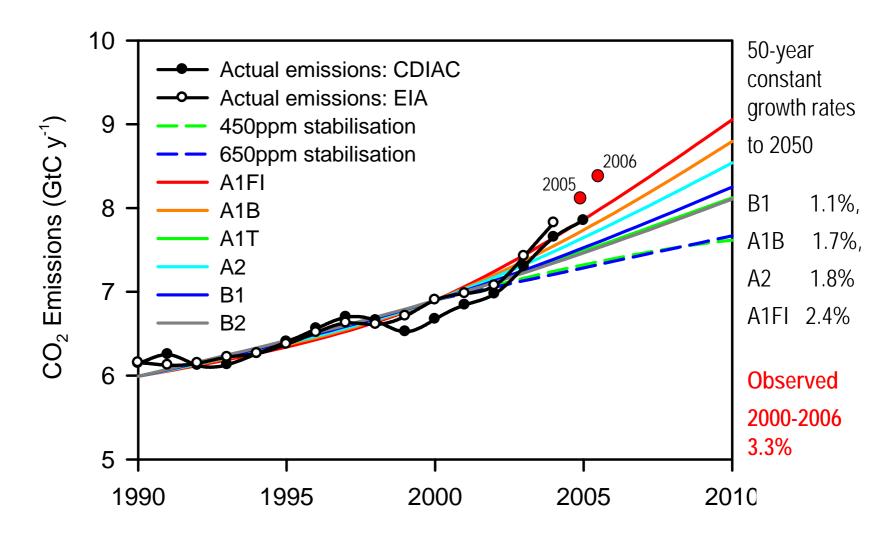

13 Million hectares each year

2000-2005

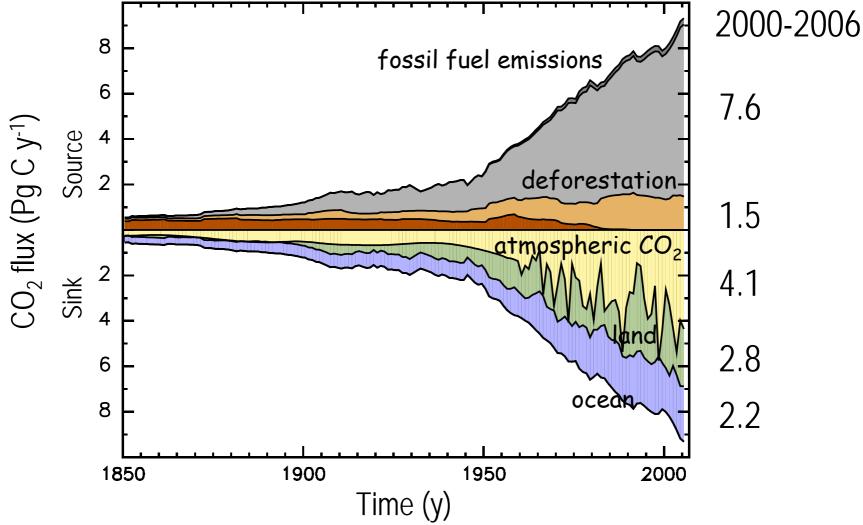


Fropical Americas	0.6 Pg C y ⁻¹
Fropical Asia	0.6 Pg C y ⁻¹
Fropical Africa	0.3 Pg C y ⁻¹
	1.5 Pg C y ⁻¹

Anthropogenic C Emissions: Tropical Deforestation



Sources: anthropogenic C Emissions, fossil fuel



2010

Trajectory of Global Fossil Fuel Emissions

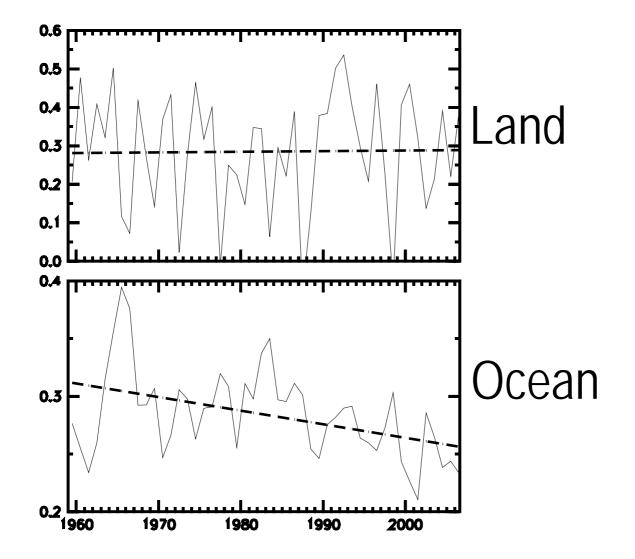
Anthropogenic perturbation of global carbon budget (1850-2006)

Le Quéré, unpublished; Canadell et al. 2007, PNAS

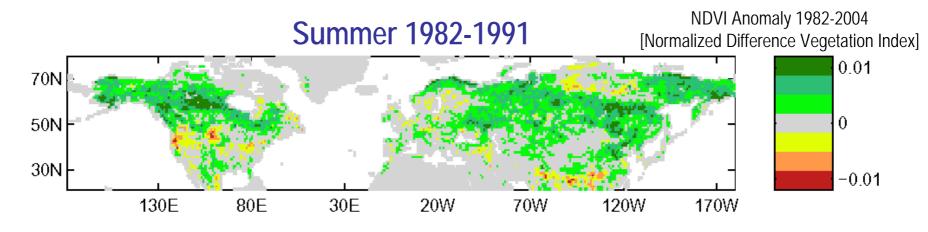
Sink: partition of anthropogenic carbon emissions [2000-2006]

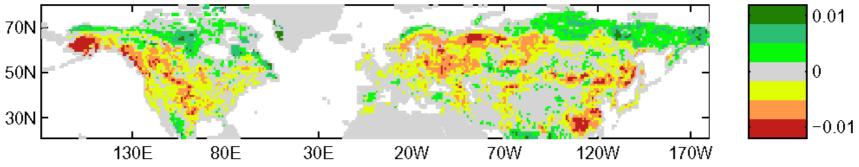
45% of all CO₂ emissions accumulated in the atmosphere

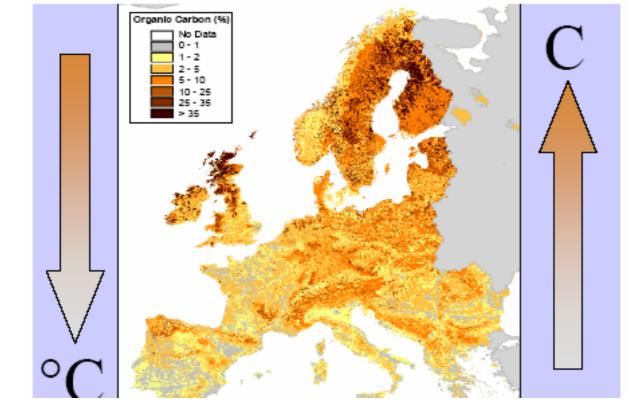
Atmosphere The Airborne Fraction


The fraction of the annual anthropogenic emissions that remains in the atmosphere

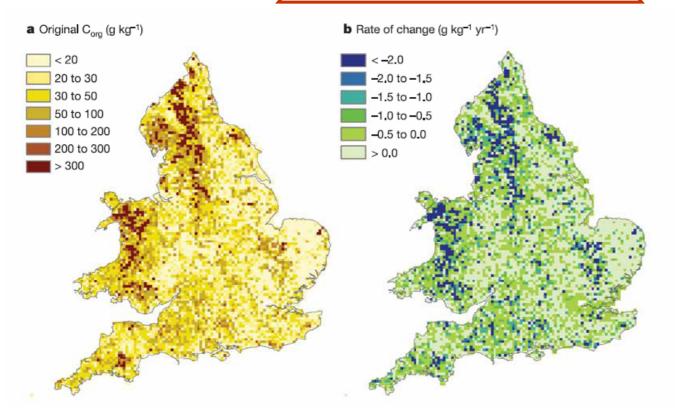
55% were removed by natural sinks Ocean removes _ 24% Land removes _ 30%




The Efficiency of Natural Sinks: Land and Ocean Fractions



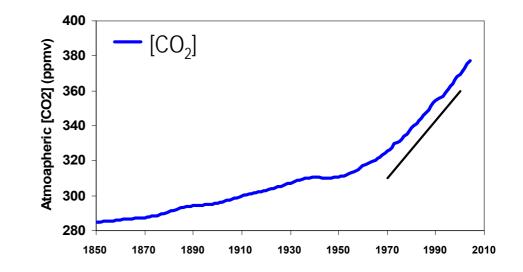
A number of major droughts in mid-latitudes have contributed to the weakening of the growth rate of terrestrial carbon sinks in mid latitude regions.


Summer 1994-2002/04

- Large carbon stocks in soil are found in cold and wet climate on acidic soils where microbial activity is constrained by lack of O_2 , N, Heat, liquid water.
- These conditions are changing rapidly: soils are getting warmer and drier, and N enriched through acidic deposition $\rightarrow \dots/\dots$

C storage in soil is not given on long term

Figure 1 | Changes in soil organic carbon contents across England and Wales between 1978 and 2003.

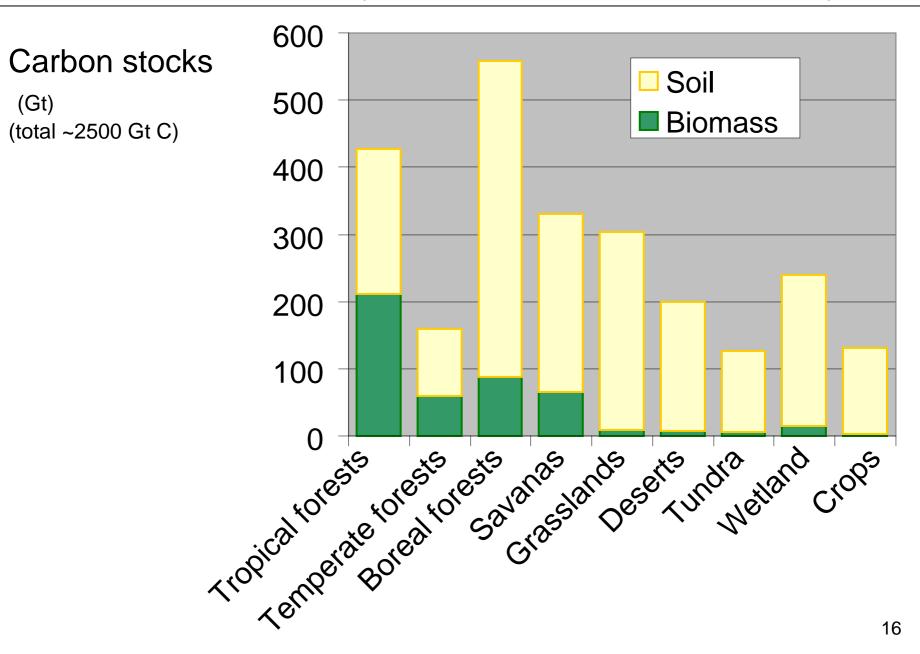

a, Carbon contents in the original samplings, and **b**, rates of change calculated from the changes over the different sampling intervals. Values at sites that were not resampled were calculated from their original organic carbon contents using equation (1). The changes were negative in all but 8% of the sites.

Bellamy et al., *Nature* 2006

Ex. :Soil have released from 0 to 100-150 gC m⁻².an⁻¹ in UK between 1978 and $^{3}2003$

Disequilibrium in net atmospheric balance :

Year 2006 Atmospheric CO₂ concentration: 381 ppm 35% above pre-industrial



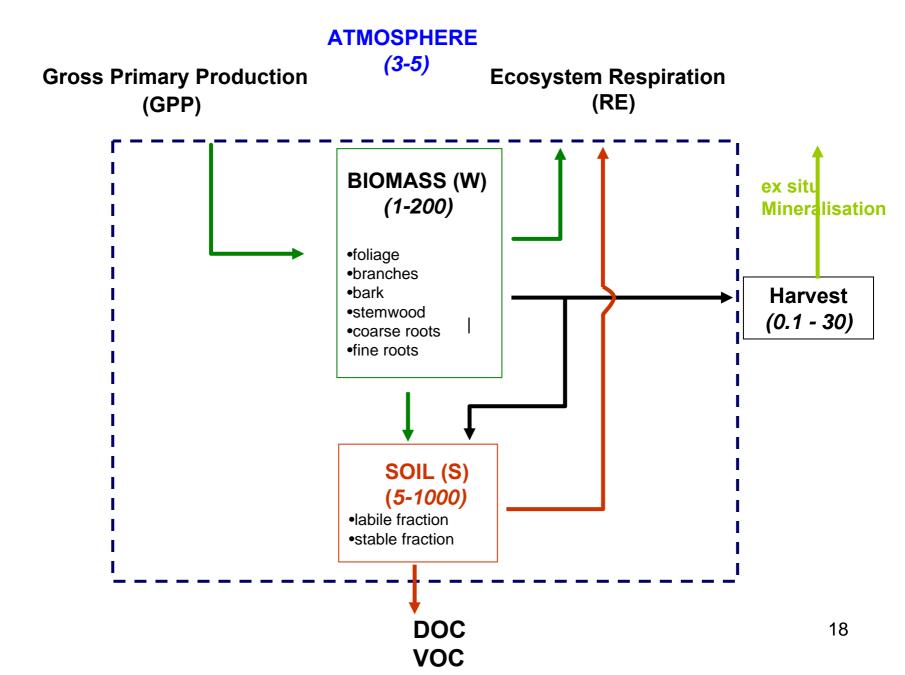
1970 – 1979: 1.3 ppm y⁻¹ 1980 – 1989: 1.6 ppm y¹ 1990 – 1999: 1.5 ppm y⁻¹ 2000 - 2006: **1.9 ppm y**⁻¹ • The carbon cycle updated 2007, natural and human-disturbed.

• Its terrestrial component

- Generic scheme and important definitions
- Land use types
- Geographical distribution
- Managing carbon in "natural" ecosystems
 - Land use changes
 - Forest operations
 - Forest scenario alternatives
- Beyond carbon, managing the climate impacts
 - Carbon free greenhouse gases (N_2O, O_3)
 - Energy Balance: heat flux, evaporation
 - Global warming potential
- Diversity
- Conclusion

Terrestrial ecosystems and the carbon cycle

TABLE 3A.1.2


ABOVEGROUND BIOMASS STOCK IN NATURALLY REGENERATED FORESTS BY BROAD CATEGORY (tonnes dry matter/ha)

(To be used for Bw in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in Cropland section and for $L_{conversion}$ in Equation 3.4.13. in Grassland section, etc. Not to be applied for C_{t_1} or C_{t_1} in Forest section Equation 3.2.3)

		Tr	opical Forests ¹			
	Wet	Moist with Short Dry Season	Moist with Long Dry Season	Dry	Montane Moist	Montane Dry
Africa	310 (131 - 513)	260 (159 - 433)	123 72 (120 - 130) (16 -		191	40
Asia & Oceania:						
Continental	275 182 (123 - 683) (10 - 562)		127 (100 - 155)	60	222 (81 - 310) 50	
Insular	348 (280 - 520)	290			362 (330 - 505)	50
America	347 (118 - 860)	217 (212 - 278)	212 (202- 406)	78 (45 - 90)	234 (48 - 348)	60
	•	Tei	nperate Forests	•		
Age Class	Conife	ous	Broadleat	f	Mixed Broadleaf-Coniferou	
Eurasia & Ocean	ia					
≤20 years	100 (17 - 183)		17		40	
>20 years	134 (20 - 600)		122 (18 -320)		128 (20-330)	
America	·					
≤20 years	52 (17-106)		58 (7-126)		49 (19-89)	
>20 years	126 (41-275)		132 (53-205)		140 (68-218)	
	-	E	Boreal Forests			
Age Class	Mixed Broadleaf-Coniferous		Coniferous		Forest-Tundra	
Eurasia						
≤ 20 years	12		10		4	
>20 years	50		60 (12.3-131)		20 (21- 81)	
America						
≤20 years	15	15		7		
>20 years	40		46		15	

Carbon and biomass stocks In world's forests are well documented by FAO and IPCC

Table A1.From IPCC Report on Good Practice Guidance for Land Use, Land-Use Change and Forestry

Carbon sequestration in forest ecosystems: important definitions

Gross Primary Production

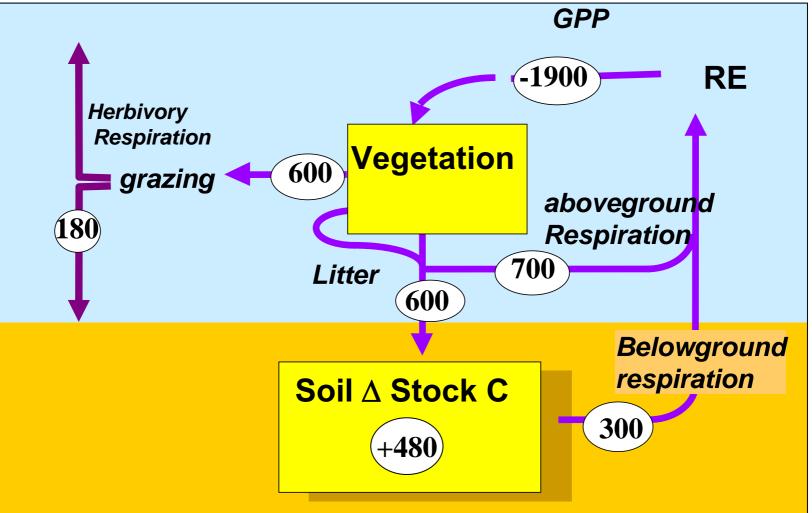
 $\mathsf{GPP} = A - R_d$

Net Primary Production

NPP = $GPP - R_a - VOC$

Net Ecosystem Exchange

NEE = $GPP - R_a - VOC - R_h$


Net Ecosystem production

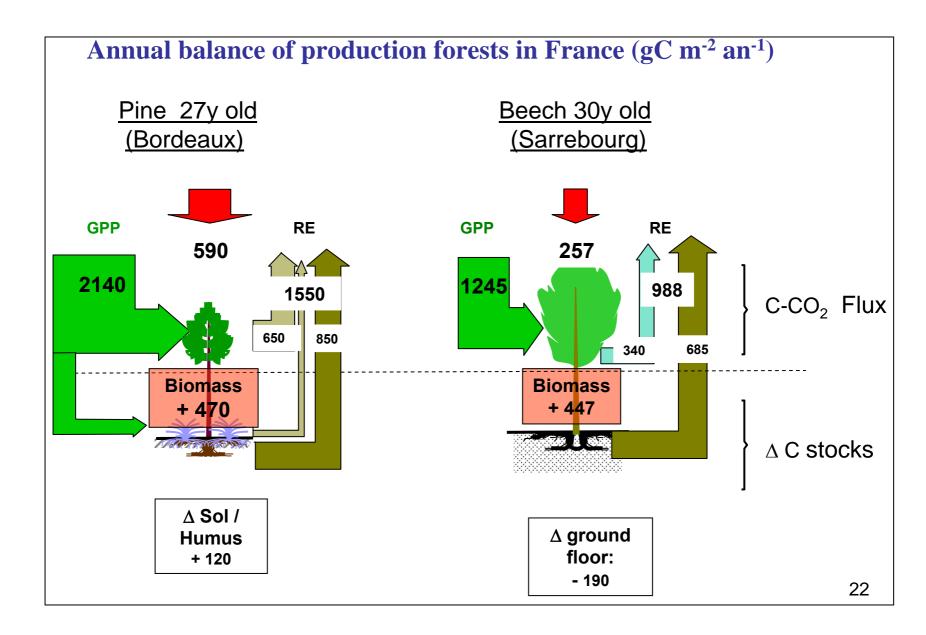
 $NEP = GPP - R_a - VOC - R_h - DOC - DIC$

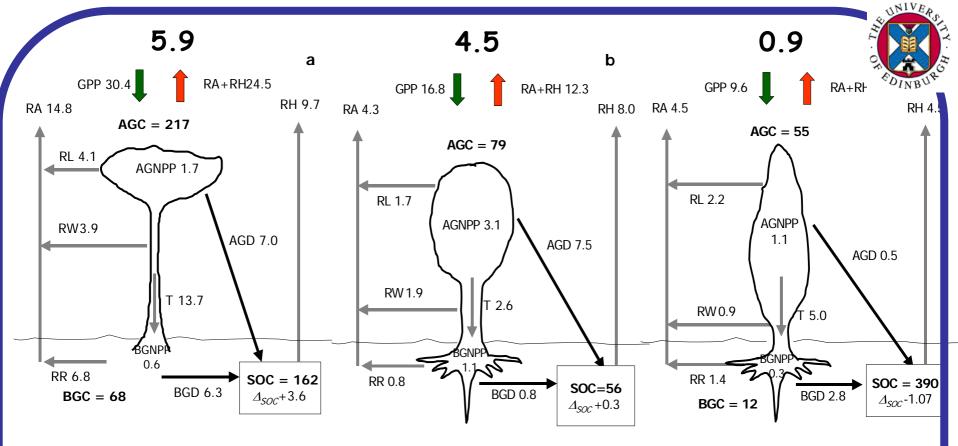
- A Net Assimilation
- *Rd* Day mitochondrial leaf respiration
- *Ra* Autotrophic Respiration
- *R*h Heterotrophic Respiration

VOCVolatile Organic CarbonDOCDissolved Organic CarbonDICDissolved Inorganic Carbon

Annual balance of carbon (gC m-2 an-1)

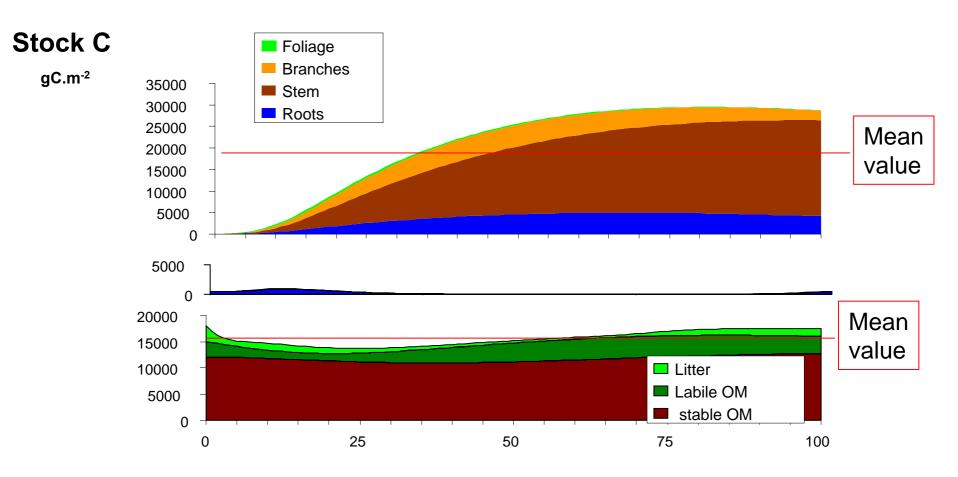
Carbon balance of forest ecosystems. Synthesis from a database including 513 forest sites.


Table 3 Mean carbon fluxes, NPP components, sum of closure terms $[\Sigma(\delta Flux) = |\delta GPP| + |\delta R_e| + |\delta R_a| + |\delta R_h|]$ and their standard deviation for the different biomes. The SD refer to the variability surrounding the mean values


	Boreal humid	Boreal semiarid		Temperate humid		Temperate semiarid	Mediterranean warm	Tropical humid
Evergreen	Evergreen	Deciduous	Evergreen	Deciduous	Evergreen	Evergreen	Evergreen	
GPP	973 ± 83	773 ± 35	1201 ± 23	1762 ± 56	1375 ± 56	1228 ± 286	1478 ± 136	3551 ± 160
NPP	271 ± 17	334 ± 55	539 ± 73	783 ± 45	738 ± 55	354 ± 33	$801 \pm NA$	864 ± 96
fNPP	73 ± 9	47 ± 5	109 ± 11	159 ± 19	235 ± 13	56 ± 11	$134 \pm NA$	316 ± 32
wNPP	205 ± 28	110 ± 20	304 ± 36	280 ± 29	329 ± 47	117 ± 20	$389 \pm NA$	212 ± 52
rNPP	69 ± 9	157 ± 31	112 ± 22	235 ± 14	207 ± 20	172 ± 19	$278 \pm NA$	324 ± 56
NEP	131 ± 79	40 ± 30	$178 \pm NA$	398 ± 42	311 ± 38	133 ± 47	380 ± 73	403 ± 102
R_{e}	824 ± 112	734 ± 37	$1029 \pm NA$	1336 ± 57	1048 ± 64	1104 ± 260	1112 ± 100	3061 ± 162
R_{a}	489 ± 83	541 ± 35	755 ± 31	951 ± 114	673 ± 87	498 ± 58	$615 \pm NA$	2323 ± 144
$R_{\rm h}$	381 ± 40	247 ± 26	275 ± 31	420 ± 31	387 ± 26	298 ± 16	574 ± 98	877 ± 96
$\Sigma(\delta Flux)$	439 ± 122	176 ± 81	163 ± 90	216 ± 102	206 ± 95	713 ± 314	359 ± 131	774 ± 225
$R_{\rm e}/{\rm GPP}$	0.88 ± 0.09	0.97 ± 0.04	0.86 ± 0.01	0.77 ± 0.03	0.77 ± 0.04	0.87 ± 0.22	0.76 ± 0.07	0.88 ± 0.04
$R_{\rm e}/{\rm GPP}$	0.85 ± 0.14	0.95 ± 0.06	0.86 ± 0.02	0.76 ± 0.04	0.76 ± 0.06	0.96 ± 0.38	0.76 ± 0.10	0.86 ± 0.06

The R_e /GPP ratio was calculated for each bootstrap before and after balance closure.

NPP, net primary production; NEP, net ecosystem production; GPP, gross primary production.


Luyssaert et al . Global Change biology, 2007

Estimated annual total carbon stocks and flows for three representative forest stands in the tropical, temperate, and boreal regions. Stocks in bold italics are in tons of carbon per hectare (t C ha⁻¹). Flows are in t C ha⁻¹ yr⁻¹. (a) Tropical rain forest near Manaus, Amazonia, Brazil; (b) temperate deciduous oak-hickory forest, near Oak Ridge, Tennessee, USA; and (c) boreal evergreen black spruce forest, near Prince Albert, Saskatchewan, Canada.

Temporal changes along the lifetime of an ecosystem

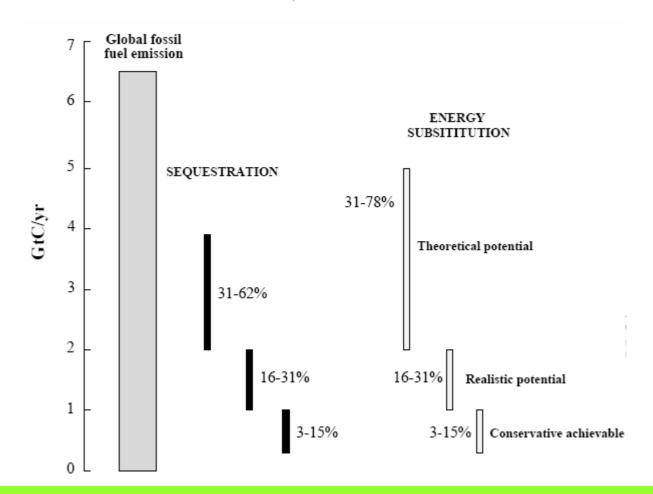
Biomass and labile organic matter stocks are changing from zero to their maximum along the lifecycle.

- The carbon cycle updated 2007, natural and human-disturbed.
- Its terrestrial component
 - Generic scheme and important definitions
 - Land use types
 - Carbon cycle in grasslands and forests
- Managing carbon in "natural" ecosystems
 - Land use changes
 - Forest operations
 - Forest scenario alternatives
- Beyond carbon, managing the climate impacts
 - Carbon free greenhouse gases (N_2O, O_3)
 - Energy Balance: heat flux, evaporation
 - Global warming potential
- Diversity
- Conclusion

How much carbon can we sequester in forest and natural ecosystems ?

Carbon removed by forestry practices: global estimates

Tableau 2. Estimations mondiales de la quantité potentielle de C stockée et conservée grâce aux pratiques de gestion forestière entre 1995 et 2050 (tiré de Brown *et al.* 1996).


Latitudes	Pratique	Superficie (Mha)	C stocké et conservé (Pg)	
Hautes	Afforestation	95,2 ¹	2,4	
Moyennes	Afforestation	113	11,8	
	Agroforestry	6,5	0,7	
Basses	Afforestation	66,9	16,4	
	Agroforestry	63,2	6,3	
	Reforestation	217	11,5-28,7	
	Avoided deforestation	138	10,8-20,8	
	Total	700	60-87	

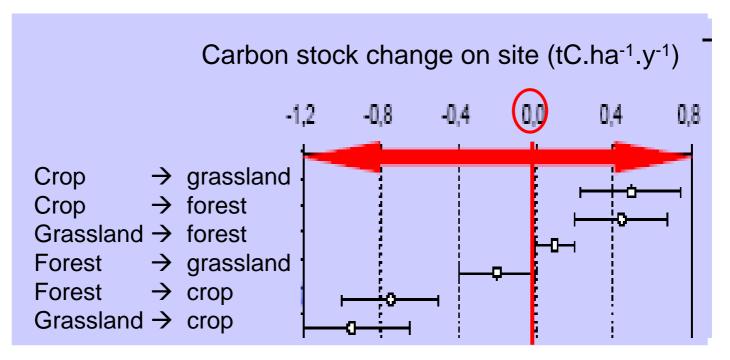
¹ Comprend les forêt insuffisamment reboisées du Canada

² Comprend 25% additionnels de C dans la biomasse aérienne pour tenir compte de la biomasse souterraine (racines, litière et sol) (d'après les données de Nilsson et Schopfhauser, 1995 et Brown *et al.*,1993b); la fourchette des valeurs est le résultat de l'emploi d'estimations faibles et élevées de la densité de carbone dans la biomasse dû à l'incertitude des estimations.

~Approximately 12% of fossil fuel emissions

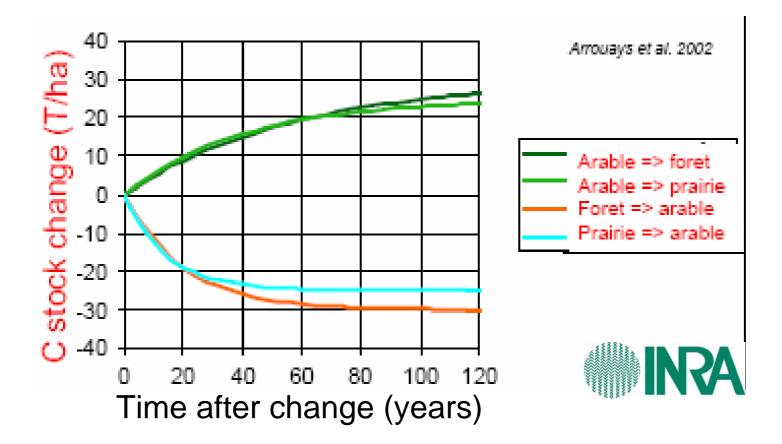
Carbon removal potential of continental ecosystems

Energy production and carbon sequestration by continental ecosystems can offset 30-60% of the global emissions (derived from Cannell, 2003).


How to proceed ?

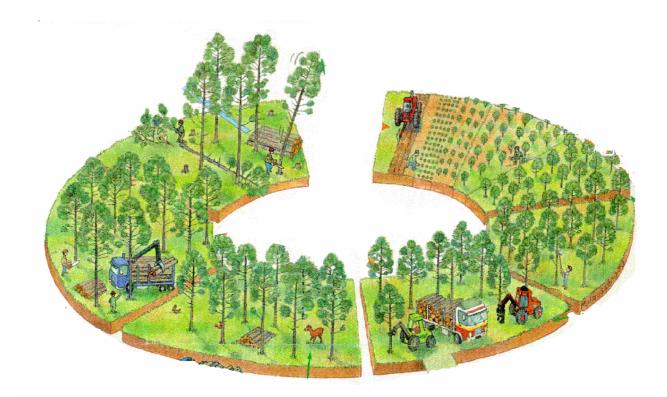
 \rightarrow land use changes

→forest management for carbon sequestration

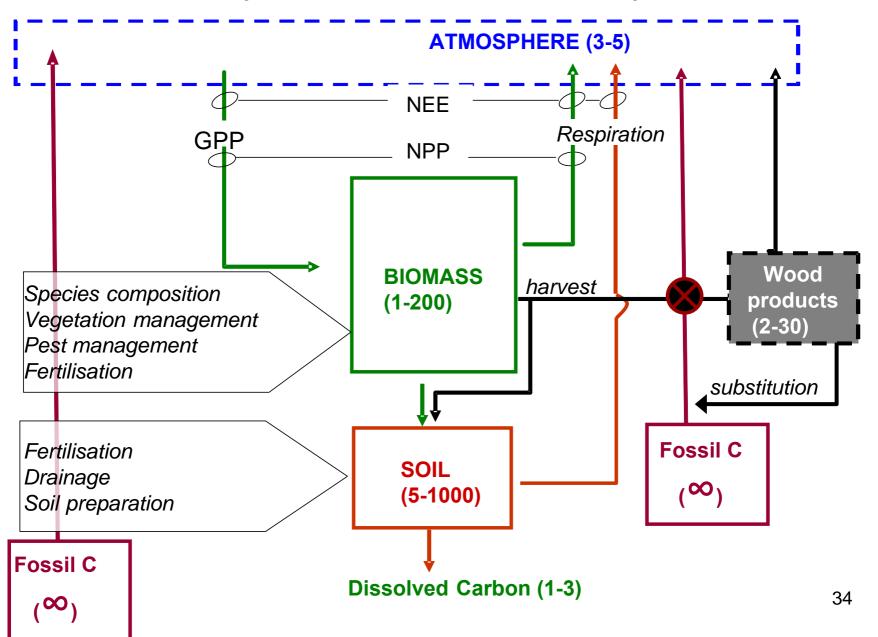

Conversion of crops, abandoned lands, ...into forests

(Values averaged over 20 years. Arrouays et al. INRA)

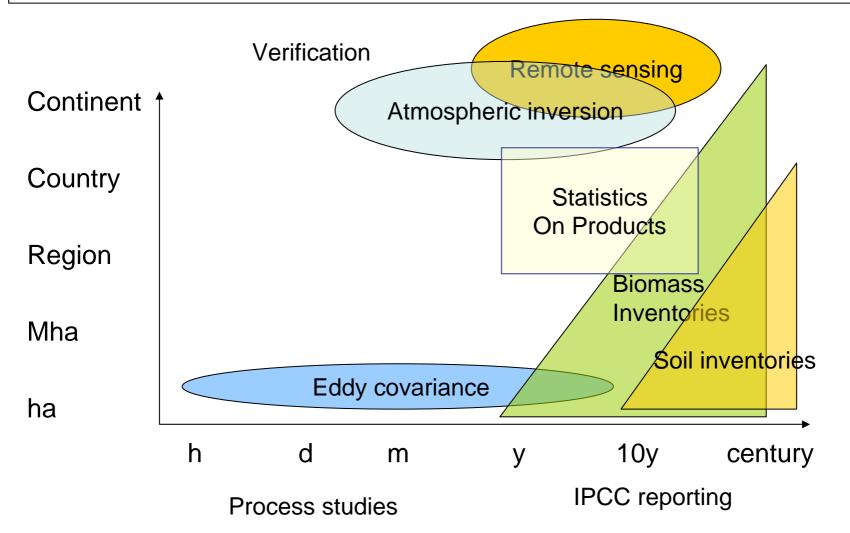
ASIAIÎNK


Land use change: effects on carbon stocks.

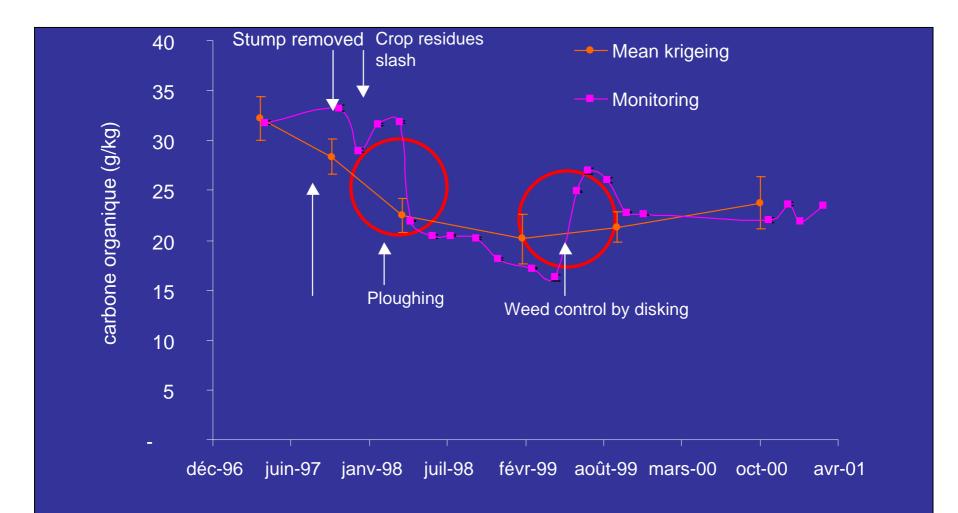
- hysteresis: carbon is lost faster than it is gained
- slow: steady values take a century to be reached
- Reforesting renders many <u>additional services</u>: soil protection, water quality, air quality, local climate


A S I A - I -Î N k

Assessment of impacts of forest management on carbon cycle: tentative framework


- <u>Time scale</u>: the entire life cycle including harvest
- <u>Reference state</u>: definition of a reference state: b.a.u., "nature", state at a reference date (1990 for the Kyoto protocol)...
- Assessment of the only relative impact, i.e. stock change
- <u>Completeness</u>: Include additional carbon costs of forest operation, seedling, logging, drainage, transportation, transformation, product use and products replaced (concrete, steel, fossil fuel, others...)
- <u>Consistent basis</u> for calculation: unit land area (ha), unit production (ton biomass, cubic meter of roundwood,...)

Default simplified method: Good Practice Guidance for Land Use and-Use Change and Forestry, IPCC 2003.


System boundary

Accounting and verifying: space and time resolution of C flux measurement methods

Forest operations example: soil carbon stock is primarily affected by mechanical disturbances (ploughing).

INRA Orléans, (Arrouays et Jolivet)

Forest operation impacts: qualitative assessment (Hyvonen et al. 2007 New Phytol.)

Table 2 Qualitative effects on average carbon stocks of management operation in managed forests over a rotation period compared with the rotation period prior to management (modified from Freeman *et al.*, 2005)

Management measure	Soil C stock	Biomass C stock	Ecosystem C stock
Stand initiation phase			
Prescribed burning*	Decreasing	Decreasing, neutral or increasing	Decreasing, neutral or increasing
Drainage of peatlands†	Decreasing	Increasing	Decreasing, neutral or increasing
Site preparation method‡			
Low-intensive	Neutral	Increasing	Increasing
Intensive	Decreasing	Increasing	Decreasing, neutral or increasing
Tree species change§			
To conifers from broadleaves	Increasing	Increasing	Increasing
To broadleaves from conifers	Decreasing	Decreasing	Decreasing
To mixed conifers and broadleaves from mono-specific coniferous	Neutral or decreasing	Neutral or decreasing	Neutral or decreasing
Stem exclusion phase			
Thinning method¶	Neutral or decreasing	Decreasing	Decreasing
Fertilization**	Increasing	Increasing	Increasing
Increased rotation length††	Decreasing, neutral or increasing	Increasing	Increasing
Harvesting method‡‡	Decreasing, neutral or increasing	Decreasing, neutral or increasing	Decreasing, neutral or increasing

The carbon cost of forest operations :E.

Sonne 2006, J of Environm. Quality

- Life cycle analysis
- CO₂, CH₄, N₂O accounted
- "Upstream" and on site costs accounted
- 408 management alternatives analysed
- Douglas fir, Washington and Oregon.
- "Downstream" costs not accounted
- Units: land are (ha) and wood volume (m3), time frame 50yr, units a CO₂ eq.

Estimate of carbon cost of management operations

Table 8. Contribution of each unit process to greenhouse gas (GHG) emissions.

	GHG emissions	Percent contribution†
	Mg CO ₂ e‡ ha ⁻¹ , except where specified	%
P + 1§	0.022	<1
1+1	0.027	<1
Large plug	0.01	<1
Pile and burn	4.0	(32)
Chemical site preparation	0.12	\checkmark
Transportation: 1 + 1,	0.05	<1
$\mathbf{P} + 1$		
Transportation: large plug	0.15	1
Fertilization	1.9	(15)
Herbicide treatment	0.15	$\mathbf{\lambda}$
Harvesting (including CT and PCT)¶	5.9	(51)

 \dagger Based on P + 1, pile and burn, fertilization, herbicide, and harvesting 747 m³ timber.

‡ Carbon dioxide equivalents.

§ Seedling emissions are based on 1236 seedlings ha⁻¹. ¶ Emissions are based on 700 m³ harvested timber. CT, commercial $_{39}$ thinning; PCT, pre-commercial thinning.

Estimate of carbon cost of scenario alternatives

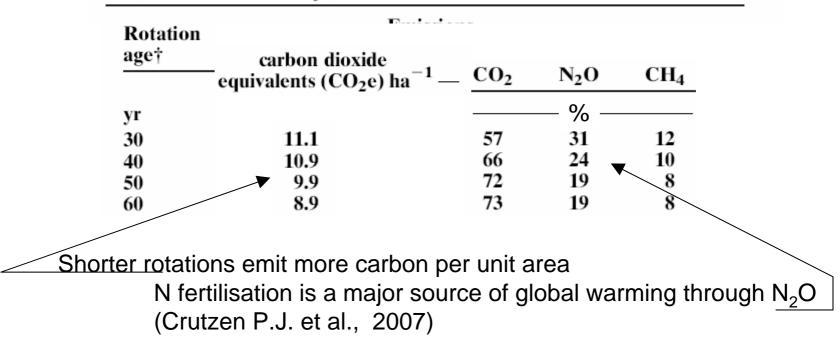


Table 6. Direct emissions contribution to global warming impact
(normalized to 50 yr). And distribution among main GHG

Scenario	Rotation age (yr)			
Occilano	30	40	50	60
	Mg CO ₂ e† 100 m ⁻³			3
865_CT‡_fert	2.47	1.59	1.59	1.34
865_NA§	1.59	1.24	1.31	1.24
865_PCT¶_CT_fert	2.58	1.59	1.59	1.34
865_PCT_CT_herb_fert	2.54	1.59	1.55	1.38
1235_CT_fert	2.08	1.52	1.48	1.31
1235_CT_herb_fert	2.05	1.52	1.48	1.31
1235_NA	1.45	1.24	1.27	1.24
1235_PCT_CT_fert	2.61	1.55	1.59	1.38
1235_PCT_CT_herb_fert	2.68	1.59	1.59	1.38
1235_PCT_CT	1.94	1.27	1.34	1.16
1235_PCT	1.87	1.27	1.38	1.24
1729_CT_fert	1.91	1.45	1.45	1.27
1729_CT_herb_fert	1.87	1.45	1.45	1.27
1729_PCT_CT_fert	2.72	1.55	1.62	1.41
1729_PCT_CT_herb_fert	2.75	1.55	1.62	1.41
1729_PCT_CT	1.98	1.27	1.34	1.20
1729_PCT	1.91	1.27	1.38	1.27
Average of management intensities	2.19	1.45	1.48	1.31

Table 9. Greenhouse gas (GHG) emissions per 100 m³ harvested timber by rotation age.

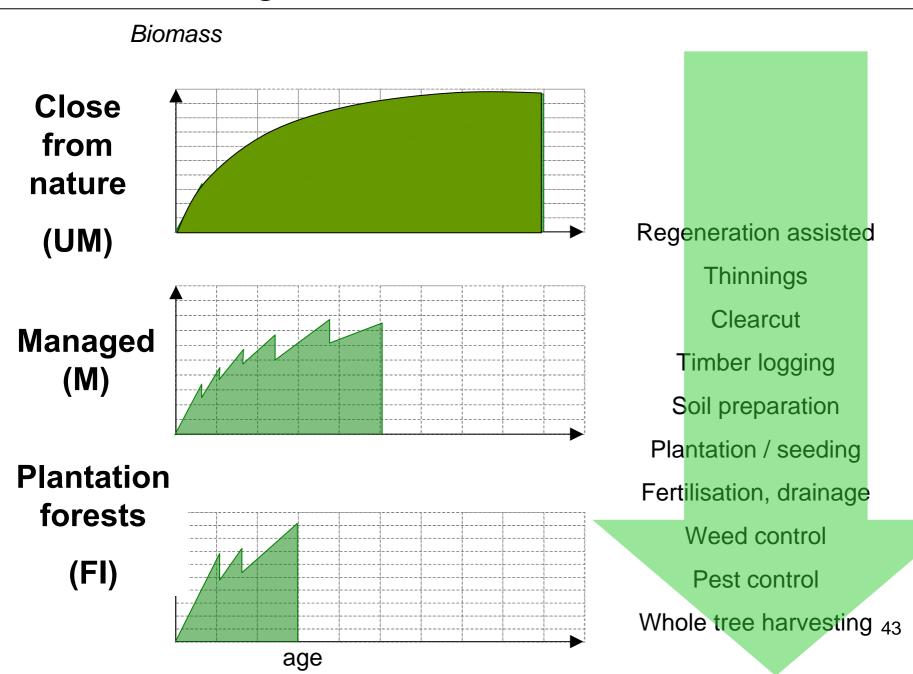
† Carbon dioxide equivalents.

‡ Commercial thinning.

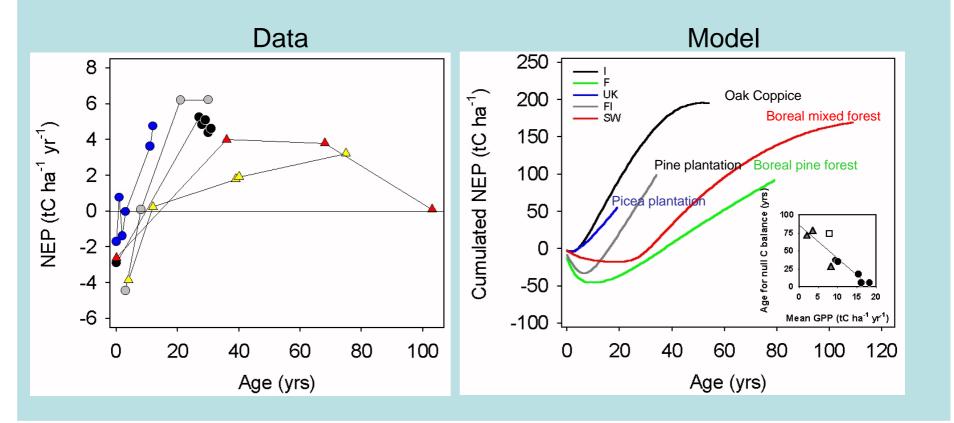
§ No treatment.

¶ Pre-commercial thinning.

Estimate of carbon cost of forest operations


Table 12. Percent of greenhouse gas (GHG) emissions to average carbon storage by rotation age (normalized to a 50-yr rotation).

Rotation age†	GHG emissions as percent of average carbon storage	GHG emissions with transportation as percent average carbon storage	
yr		_ %	
30	6.8	12.5	
40 50	4.7	10.6	
50	3.8	8.6	
60	2.5	6.0	

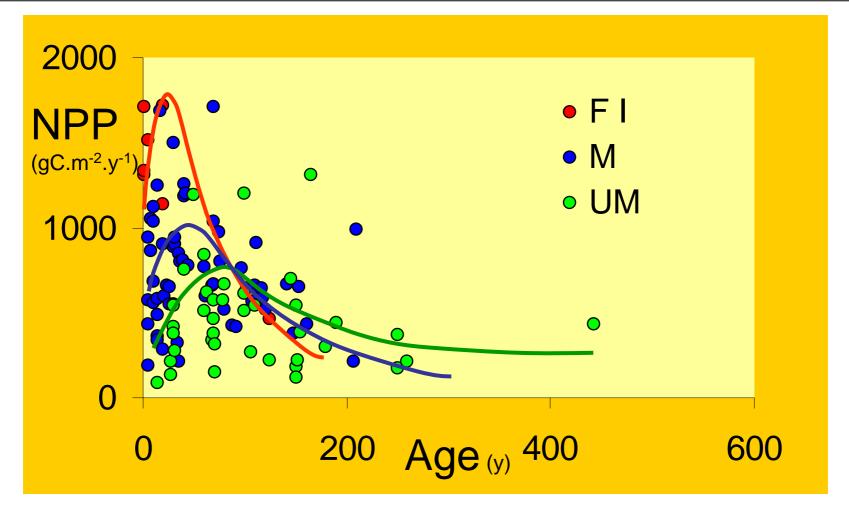

† Average of all 102 management intensities in the 30-, 40-, 50-, and 60-yr rotations, respectively.

The cost of forest operations (upstream and on site) is 6.0 to 12.5% of the average carbon storage.

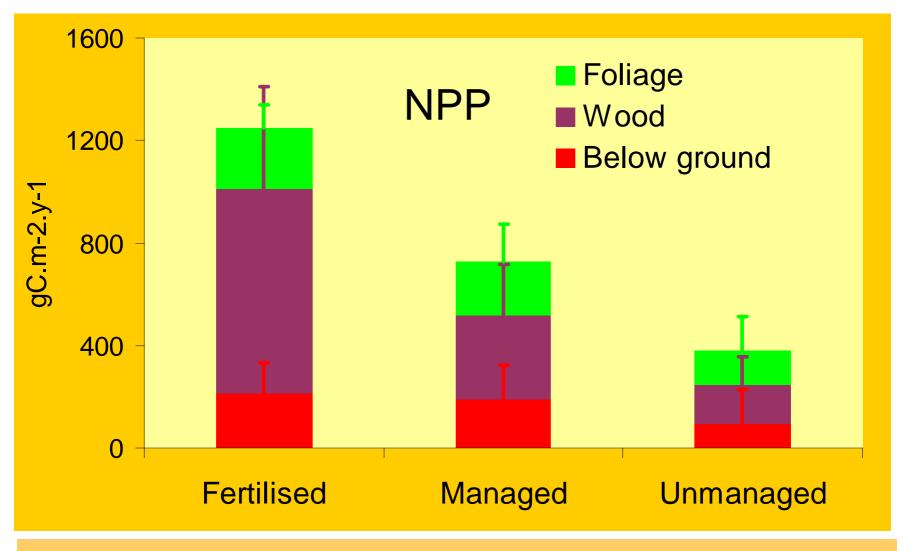
Forest management alternatives

Age effect on forest carbon balance

Disturbance \rightarrow Forest = C Source Earlier recovery in intensive management alternative

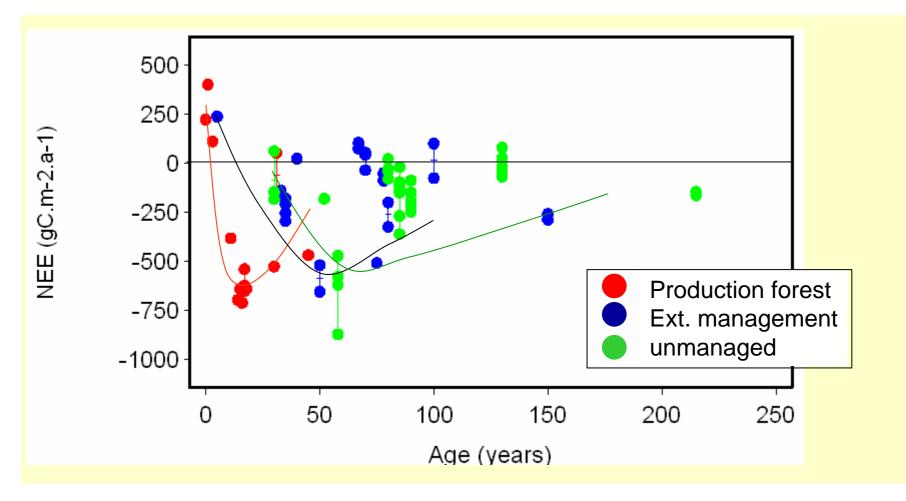

Magnani et al., *Nature*, (2007). ⁴⁴

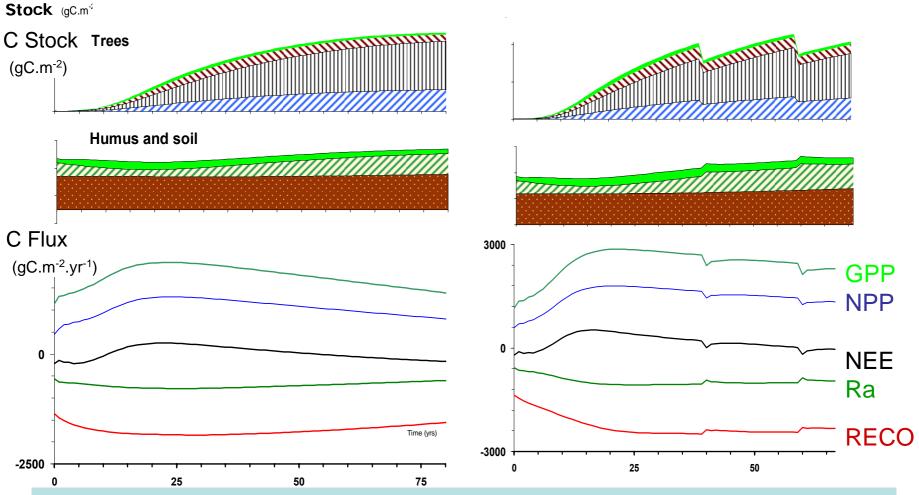
C stocks (e.g. temperate coniferous)


	C stock in situ (tC.ha-1)		Mean annual	fossil C substitut	
	Bior	nass	_	production	ed
OPTIONS	trees	others	soil	(m ³ .ha ⁻¹ .an ⁻¹)	(tC.ha ⁻¹ .an ⁻¹)
UM	57.5	7.5	100	6	1.3
М	27.7	5.0	80	12	2.6
FI	14.2	0	40	18	3.9

Faster growth and shorter rotation = smaller carbon stock on site

C flux (database from Luyssaert et al. 2007)




Callocation (database from Luyssaert et al. 2007)

Management increases the NPP share to the wood

C balance over the rotation

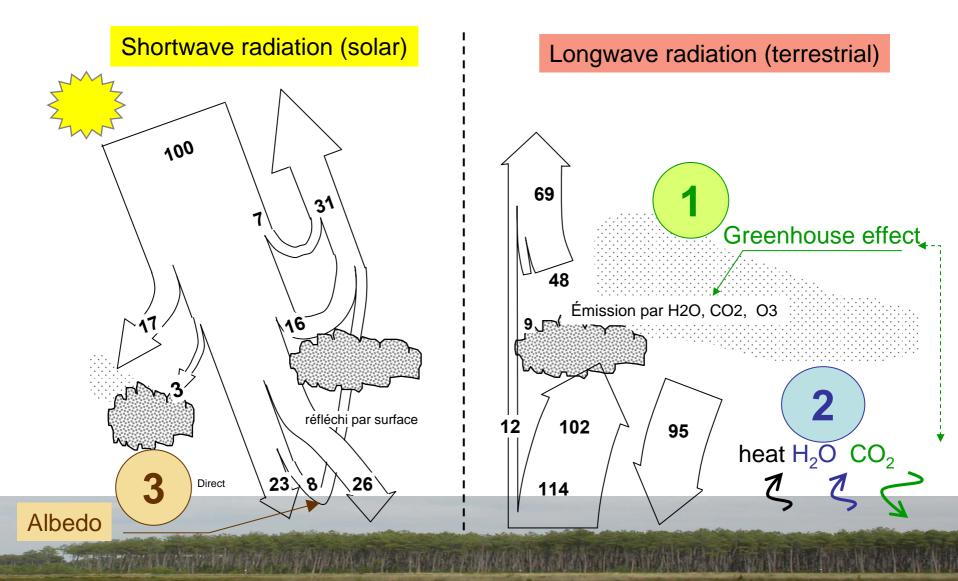
- shortens life cycle
- amplifies NEP and NPP
- increase the fraction of harvest biomass (timber)
- but depletes carbon stock in soil and biomass

euro-asian research and training in climate change management

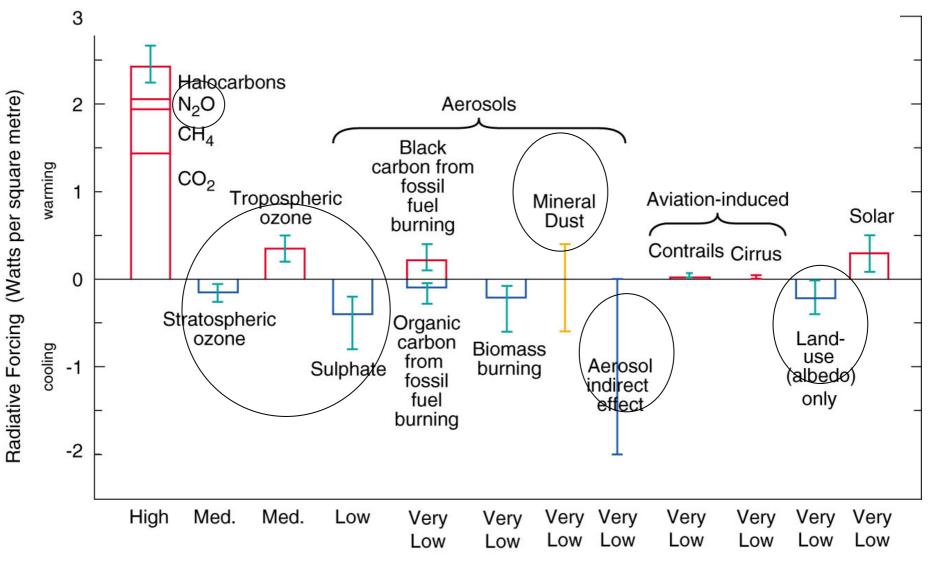
Summary: management keeps forest younger

- shortens life cycle
- amplifies NEP and NPP
- increase the fraction of harvest biomass (timber)
- but depletes carbon stock in soil and biomass
- has a higher cost in carbon for forest operation (up to 12.5%)

(Pine plantation, SW Fance)



(Rimu Forest SW NZ)


Should we produce.....or store carbon?

- The carbon cycle updated 2007, natural and human-disturbed.
- Its terrestrial component
 - Generic scheme and important definitions
 - Land use types
 - Geographical distribution
- Managing carbon in "natural" ecosystems
 - Land use changes
 - Forest operations
 - Forest scenario alternatives
- Beyond carbon, managing the overall climate impacts
 - Carbon free greenhouse gases (N_2O, O_3)
 - Energy Balance: heat flux, evaporation
 - Global warming potential
- Diversity
- Conclusion

Accounting for all atmospheric impacts: GHG, energy balance,

Carbon is only a (large) part of the story :

Level of Scientific Understanding

GLOBAL WARMING POTENTIAL

- A measure of how the energy balance of the earth-atmosphere system is influenced when factors such as GHG concentration, surface albedo or heat flux emitted by vegetation are altered.
- Unit W.m⁻²
- Allows to compare different alternatives and should be used for estimating climate impacts of terrestrial ecosystems

Other greenhouse gases involved in forestry

	Estimated lifetime in the atmosphere	Global Warming potential relative to CO ₂		
	(years)	integration time (years)		
		20	100	500
CO ₂		1	1	1
CH_4	10	63	21	9
N ₂ O	150	270	290	190

Accounting for GHG and energy balance (albedo only !) Change in the global warming index as compared with standard management scenario (M)

	total C. stock	Fossil C. saved	Albedo	Total
20 y				
FI	0.24	-0.11	-0.01	+0.12
UM	-0.22	0.11	0.01	-0.10
50 y				
FI	0.24	-0.27	-0.01	-0.04
UM	-0.22	0.27	0.01	+0.06

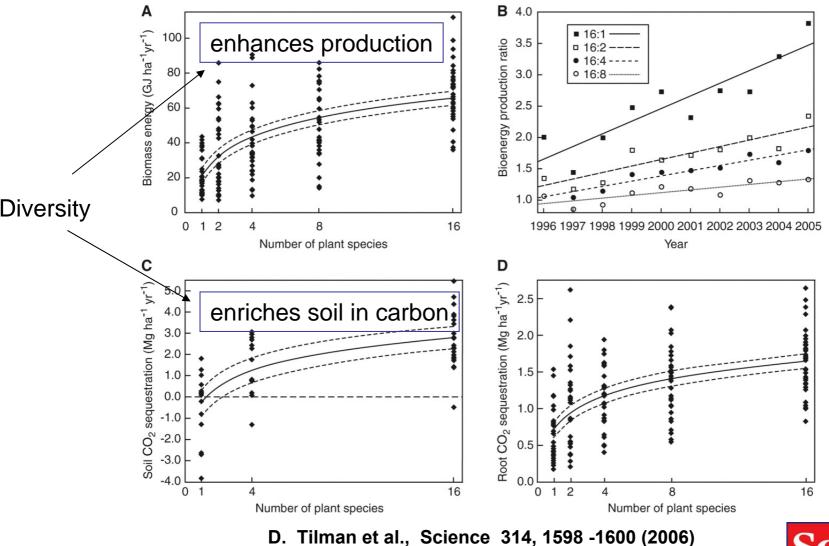
- Importance of the time scale
- « ghg » effect > albedo
- Production is better in fertile sites

- The carbon cycle updated 2007, natural and human-disturbed.
- Its terrestrial component
 - Generic scheme and important definitions
 - Land use types
 - Geographical distribution
- Managing carbon in "natural" ecosystems
 - Land use changes
 - Forest operations
 - Forest scenario alternatives
- Beyond carbon, managing the overall climate impacts
 - Carbon free greenhouse gases (N_2O, O_3)
 - Energy Balance: heat flux, evaporation
 - Global warming potential

• Diversity

Conclusion

Species composition: single or multiple species stands ?

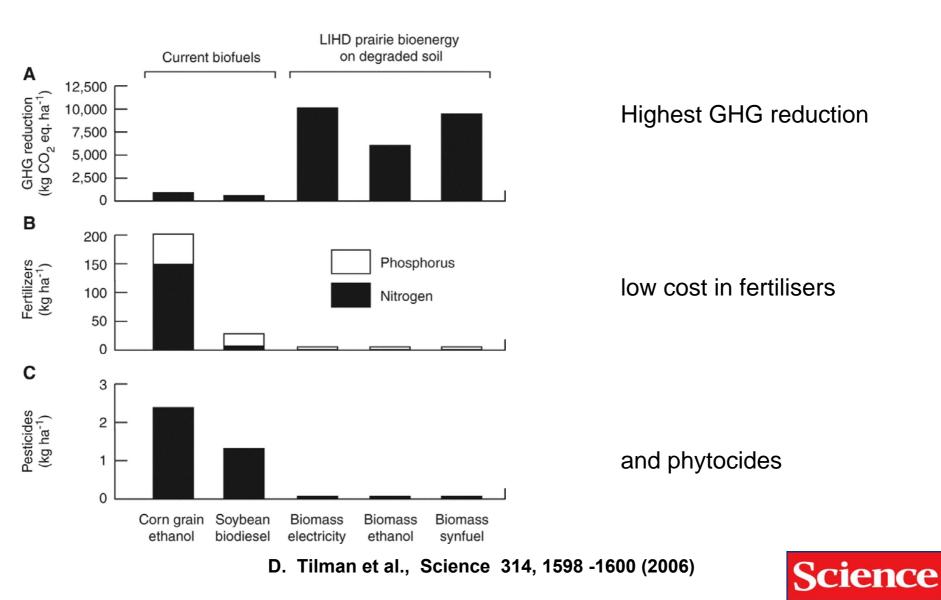

Not so much literature on forest

→Answers from grasslands

D. Tilman et al., Science 314, 1598 -1600 (2006)


Species composition: single or multiple species stands ?

Effects of plant diversity on biomass energy yield and CO2 sequestration for low-input perennial grasslands


Species composition: single or multiple species stands ? Net Energy Balance for two food-based biofuels (current biofuels) grown on fertile soils and for LIHD biofuels from agriculturally degraded soil

The net energy balance of "natural" biodiverse grasslands overtakes the maïze and soybean crops.

Environmental effects of bioenergy sources

AAAS

Published by AAAS

Tilman's study puts forward the hypothesis that, from the atmospheric point of view, low input high diversity alternatives may overcompete monospecific crops wih high input

The question is <u>open and Tilman's work</u> has been discussed.

Using natural ecosystem functions for increasing resource capture (N, light, CO2, water) at the expense of fossil carbon expensive fertilisers and phytocide <u>must be considered.</u>

Diversity may also enhance <u>ecosystem resilience and adaptative capacity</u>, a major issue for forest managers in a rapidly changing world.

D. Tilman et al., Science 314, 1598 -1600 (2006)

- The carbon cycle updated 2007, natural and human-disturbed.
- Its terrestrial component
 - Generic scheme and important definitions
 - Land use types
 - Geographical distribution
- Managing carbon in "natural" ecosystems
 - Land use changes
 - Forest operations
 - Forest scenario alternatives
- Beyond carbon, managing the climate impacts
 - Carbon free greenhouse gases (N₂O, O₃)
 - Energy Balance: heat flux, evaporation
 - Global warming potential
- Diversity

• Summary

Summary : a forest ideotype for climate

<u>1. Site</u>

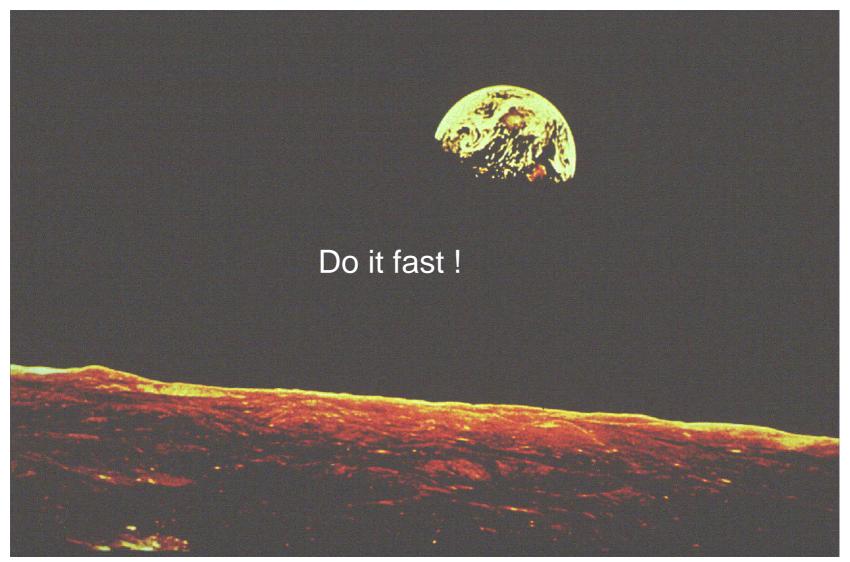
- No tillage, minimize soil work
- Increase productivity (NPP): site remediation, soil improvement

2. Stand

- permanent cover (albedo)
- uneven aged stands
- Mitigate climate impacts: LAI control, understorey control,
- target the adaptative potential to changing climate , 2 options:
 - intra- and inter-species diversity, multi-aged canopy
 - short rotation

3. Regional management

•Mitigate the impact of climate change: ex. continuous forest cover, increases species diversity, ..


•Allocate forest functions according to site conditions:

rich and deep soils \rightarrow high production with low inputpoor soil ... \rightarrow conservation / protection andcarbon storage *in situ*. \rightarrow

•Lengthen the residence time of carbon : promote long lived wood products (house, furniture, ...)

•Maximise fossil fuel substitution

Conclusions

