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 What is it and why do we need it?
 Can it be done efficiently?
 Search
 Problem transformations
 Open problems

Valued Constraint Satisfaction



Chapter 1. What is it?

Motivation, 
Definitions,
Some general theorems



Constraint Satisfaction Problem
A unifying abstraction

= Talks to be scheduled at conference
Transmitters to be assigned frequencies
Amino acids to be located in space             

Circuit components to be placed on a chip

Variables



A unifying abstraction

= All invited talks on different days
No interference between near transmitters
x + y + z > 0             

Foundations dug before walls built

Constraints



A unifying abstraction

A solution is an assignment of values to variables that
satisfies all the constraints

Constraint programming (OR, Ilog Solver...)
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But what if…

There are lots of solutions, but some are better 
than others?
There are no solutions, but some assignments 
satisfy more constraints than others?
We don’t know the exact constraints, only 
probabilities, or fuzzy membership functions?
We’re willing to violate some constraints if we 
can get a better overall solution that way?
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Fragmentation/Heterogeneity
Fuzzy CSP (easier to solve, Rosenfeld 76)
Max, Weighted, Partial CSP (Shapiro 81, Freuder 91)
Weighted Max-SAT
Constraint Optimization Problems
Lexicographic CSP 
Hierarchical Constraint Logic Programming (Borning et al)

Pseudo-Boolean Optimisation
Bayesian Networks
Random Markov Fields
Factor Graphs
Integer Programming
2D grammars...



A solution is an assignment of values to variables that
satisfies all the constraints

A unifying abstraction

associate costs with each assignment“Constraints”

A solution is an assignment of values to variables that
minimises the combined costs 
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Definition of a VCSP instance 
(IJCAI 1995)

a set of n variables Xi with domains di

a set of e cost functions, each having a
 scope (list of variables)

cost functions map assignments to costs

It only remains to specify what the possible costs are, 
and how to combine them
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Definition of a valuation structure

 a set S of costs
 a total order <
 minimum and maximum elements:

  we denote these by 0 and ∞ 
 an aggregation operator ⊕ which is 
commutative, associative, monotonic, 
and such that ∀α, α⊕0=α
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Examples of valuation structures

If S = {0, ∞},  then VCSP ≡ CSP

If S = {0, 1, 2, …, ∞}, and ⊕ is addition, 
    then VCSP generalizes MAX-CSP

If S = [0,1],  and ⊕ is max, then VCSP ≡ Fuzzy CSP

If S = {0, 1, …., k}, and ⊕ is bounded addition +k  
where α +k β = min{k, α+β}, 

then VCSP ≡ Weighted CSP
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Families of valuation structures

A valuation structure is idempotent if      
∀α, α⊕α=α

All idempotent valuation structures 
are equivalent to Fuzzy CSP

(as in CSP redundancy of information is fine)
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Families of valuation structures

A valuation structure is strictly monotonic if 
∀α<β, ∀γ<∞,  α⊕γ < β⊕γ

All strictly monotonic valuation structures 
can be embedded in a fair valuation structure

A valuation structure is fair if 
   aggregation has a partial inverse, that is, 
      ∀α≥β, ∃γ  such that β⊕γ=α
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Families of valuation structures

A valuation structure is discrete if between any 
pair of finite costs there are finitely many 
other costs

All discrete and fair valuation structures 
can be decomposed into 

a contiguous sequence of valuation structures 
with aggregation operator +k

(interacting as fuzzy CSP)
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General frameworks and cost structures

 CSP
{0,∞}

totally
ordered

Semiring CSP
(Bistarelli et al. JACM 
1997)

Valued CSPidempotent

fair

multi
criteria

lattice
ordered

m
ul

tip
le
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Chapter 2. Efficiency

Structural restrictions,
Valued constraint languages



General question

Having a unified formulation allows us to 
ask general  questions about efficiency:

When is the VCSP 
tractable?



Problem features

This picture illustrates the constraint scopes
The set of scopes is sometimes called the 
constraint hypergraph, or the scheme
Restricting the scheme can lead to 
tractability, as in the standard CSP
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Structural tractability

Tree-structured binary VCSPs are 
tractable

x1

x2 x3

x4
x5 x6 x7

Project out leaf nodes by minimising over possible assignments

Proceed from the leaf nodes to a chosen root node

Time complexity O(e d2)
Space complexity O(n d)

n: number of variables
d: maximum domain size
e: number of cost functions



E1

E2

E3 E4

Bounded treewidth VCSPs are 
tractable

Tree decomposition

E1

E2

E3

E4

Time complexity O(e dw+1)
Space complexity O(n ds)

w: bounded treewidth
        = max |Ei| - 1

s: max {|Ei ∩ Ej|: i≠j}

Finding a tree decomposition with minimum w* is NP-hard!
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Radio Link Frequency Assignment Problem 
(Cabon et al., Constraints 1999) (Koster et al., 4OR 2003)

 Given a telecommunication network
 …find the best frequency for each 

communication link, avoiding 
interferences

 Best can be:
 Minimize the maximum frequency, no interference (max operator)
 Minimize the global interference (sum operator)

 Generalizes graph coloring problems: |fi – fj| ≥ a

CELAR problem size: n=100—458 ; d=44 ; e=1,000—5,000
23



Tree decomposition example

24

CELAR scen06r
n = 82
d = 44
e = 327

w = 26
s = 3

Benchmark problem
assigning frequencies
to transmitters
to minimise total interference



Problem features

 We have seen that structural features of a  problem 
can lead to tractability
 This is very similar to the standard CSP
 What about other kinds of restrictions to the VCSP?



More problem features

 The picture now emphasises the cost functions
 Restricting the cost functions we allow can also 

lead to tractability

C1

C2
C3 C4



27

Valued constraint languages

 A set of cost functions is called a valued constraint 
language 

 VCSP(Γ) represents the set of VCSP instances whose 
cost functions belong to the valued constraint 
language Γ

 For some choices of  Γ, VCSP(Γ) is tractable

We will consider some examples where the valuation 
structure contains non-negative real values and 
infinity, and aggregation is standard addition
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Submodular functions

 where min and max are applied component-wise, i.e. 
   min(<s1,…,sk>,<t1,…,tk>)  = <min(s1,t1),…,min(sk,tk)>

VCSP(Γsubmodular) is tractable

A cost function c is submodular if ∀s,t
   c(min(s,t)) + c(max(s,t)) ≤ c(s) + c(t)

A class of functions that has been widely studied in OR is
the submodular functions…



x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

0 0 1 1

1 0 1  Maximum

1 0 0 ∞

Examples of submodular functions



x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

0 0 1 1

1 0 0 ∞

1 0 1 3 Maximum

0 0 0 0 Minimum
+        = 3

+        = ∞

∀s,t  Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t) 
Examples of submodular functions

s

t
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Examples of submodular functions

 all unary functions
 all linear functions (of any arity)

 the binary function φcut

  where φcut(a,b)=1 if (a,b)=(0,1)  (0 otherwise)

 the rank function of a matroid
 the Euclidean distance function between two 

points (x1, x2), (x3, x4) in the plane
 φ(x,y)=(x-y)r if x ≥ y (∞ otherwise) for r ≥ 1 
(compare “Simple Temporal CSPs with strictly monotone preferences” 

     Khatib et al, IJCAI 2001)



  Binary submodular functions

x1

x2

32

Binary VCSP(Γsubmodular) is O(n3d3)

See Cohen et al “A maximal tractable class of soft constraints”, JAIR 2004

Binary submodular functions 
over any finite domain 
can be expressed as a sum of
”Generalized Interval” functions

(they correspond to Monge matrices)



x y z
0 0 0 0
0 0 1 1
0 1 0 7
0 1 1 1
1 0 0 ∞
1 0 1 3
1 1 0 ∞
1 1 1 0

∀s,t  Cost(Min(s,t)) + Cost(Max(s,t)) ≤ Cost(s) + Cost(t) 

By choosing other functions, 
we can obtain other tractable 
valued constraint languages…

The cost function has 
the multimorphism (Min,Max)

Beyond submodularity



Known tractable cases

1) (Min,Max)
2) (Max,Max)
3) (Min,Min)
4) (Majority,Majority,Majority)
5) (Minority,Minority,Minority)
6) (Majority,Majority,Minority)
7) (Constant 0)
8) (Constant 1)

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:

See Cohen et al “The complexity of soft constraint satisfaction”, AIJ 2006



A dichotomy theorem

1) (Min,Max)
2) (Max,Max)
3) (Min,Min)
4) (Majority,Majority,Majority)
5) (Minority,Minority,Minority)
6) (Majority,Majority,Minority)
7) (Constant 0)
8) (Constant 1)

If the cost functions all have 
one of these eight 
multimorphisms, then the 
problem is tractable:

See Cohen et al “The complexity of soft constraint satisfaction”, AIJ 2006

For Boolean cost 
functions…

In all other cases the 
cost functions have 
no significant 
common 
multimorphisms and 
the VCSP problem is 
NP-hard.
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Benefits of a general approach

The dichotomy theorem immediately implies 
earlier results for SAT, MAX-SAT, Weighted 
Min-Ones and Weighted Max-Ones
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Chapter 3. Search
using problem transformations
Branch and Bound,
Equivalence-preserving operations, 
Local consistency (node, arc, directional, 
virtual, optimal),
Global cost functions.



Depth­First Branch and Bound (DFBB)

(LB) Lower Bound 

(UB) Upper Bound

If       ≥ UB then pruneVa
ria

bl
es

 (d
yn

am
ic

 o
rd

er
in

g)

under estimation of the 
best solution

in the sub-tree

= best solution found so far

Each node is a VCSP subproblem
(defined by current conditioning)

LBcc∅∅

= cc∅∅

= kk

kk

Obtained by enforcing local consistency

39
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Local consistency
A property that says that the network is 

“explicit” enough at a local level

Filtering algorithm: transforms a 
network in an equivalent network that 
satisfies the property (closure)

CSP: pol. time, confluent, incremental
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Equivalence-preserving 
transformations (EPT)

 An EPT transforms VCSP instance P1 
into another VCSP instance P2 with the 
same objective function.
 Examples of EPTs:

 - Propagation of inconsistencies (∞ 
costs)

 - UnaryProject
 - Project/ExtendINCREMENTALITY!
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UnaryProject(i,α)

Precondition: 0 ≤ α ≤ min{ci(a) : a ∈ di} 

 c0 := c0 + α ;

 for all a ∈ di  do

      ci(a) := ci(a) - α ;

Increases the lower bound c0 if all unary 

costs ci(a) are non-zero.
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Project(M,i,a,α)

Precondition: i∈M, a∈di, -ci(a) ≤ α ≤ min{cM(x): x[i]=a} 
 ci(a) := ci(a) + α ;

 for all x ∈ labelings(M) s.t. x[i]=a do
      cM(x) := cM(x) - α ;

If α>0, this projects costs from cM to ci

If α<0, this extends costs from ci to cM
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Node and soft arc consistency

 Node consistent (NC) if ∀i 
   no UnaryProject(i,α) is possible for α>0 and 

no propagation of ∞ costs possible between ci 
and c0 (forbidden values removed if ci+c0 ≥ k)

 Soft arc consistent (SAC) if ∀M,i,a  
   no Project(M,i,a,α) is possible for α>0
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The SAC closure is not unique
 

1

1

1

1

1

1

••

•

•

•

•

•

•

•

••

•

OR

Finding the best order of integer EPT application is NP-hard (Cooper, Schiex 2004)
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Different soft AC notions:

 Directional: send costs from Xj to Xi if i<j (in 
the hope that this will increase c0)
 Existential: ∀i, send costs to Xi 
simultaneously from its neighbor variables if 
this increases c0

 Virtual: no sequence of Projects/Extends 
increases c0

 Optimal: no simultaneous set of 
Projects/Extends increases c0
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Directional Arc Consistency 

 for all i<j, ∀a ∈ di ∃b ∈ dj such that

   cij(a,b) = cj(b) = 0.

 Solves tree-structured VCSPs
 FDAC (Full Directional AC) = 

      Directional AC + Soft AC
 FDAC can be established in O(end3) 
time (or in O(ed2) time if +k is +)



1

1

Directional AC (DAC*)

 NC*

 For all fAB  (A<B)
∀a ∃ b 

fAB(a,b) + fB(b) = 0

 b is a full-support
 complexity:

O(ed 2)

w

v

v

v
w

w

f∅ =k=4

2
2

2

1

1

1

0

0

0

0

A

B

C

A<B<C

0

1

1

12

(Cooper, Fuzzy Sets and Systems 2003)

Shift(fBC,(C,v),-1) Shift(fBC,(B,v),1) Shift(fBC,(B,w),1) Shift(fB, ∅,1)
Shift(fA,∅, -2) Shift(fA,∅, 2) 48



49

Existential Arc Consistency

 node consistent and ∀i, ∃a∈di such 
that ci(a) = 0 and for all cost functions 
cij , ∃b ∈ dj such that cij(a, b) = cj(b) =0

 EDAC = Existential AC + FDAC
 EDAC can be established in 

       O(ed2 max{nd,k}) time
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Virtual Arc Consistency (VAC)
(Cooper et al, 2008)

 If P is a VCSP instance then Bool(P) is 
the CSP instance whose allowed tuples 
are the zero-cost tuples in P-c0

 If Bool(P) has a solution, then P has a 
solution of cost c0 (but usually Bool(P) 
has no solution)

 Definition: P is VAC if Bool(P) is AC.
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Approximating VAC 
(similar to Augmenting DAG, Schlesinger et al, 30 years before)

 If a sequence of AC operations in Bool(P) 
leads to a domain wipe-out, then a similar 
sequence of SAC operations in P increases c0

 But, in this sequence, costs may need to be 
sent in more than one direction from the 
same cM ⇒ Introduction of fractional weights
 VACε algorithm may converge to a local 
minimum (and more, an instance P’ which is 
not  VAC)
VACε can be established in O(ed2 k/ε) time



Enforcing VAC
AC,DAC,FDAC,EDAC

52
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Optimal Soft Arc Consistency
(Cooper et al. 2007), similar to (Schlesinger, 30 years before)

 We can overcome this problem of 
convergence by solving a LP to find the set of 
simultaneous UnaryProject and Project 
operations which maximises c0.

 The resulting VCSP instance is OSAC (Optimal 
Soft Arc Consistent).
 OSAC is strictly stronger than VAC.
 Unfortunately, the LP has O(edr+n) variables 
and O(edr+nd) constraints(pre-processing).



      Example
-1

1

1

1

1

1

1

c0 = 1

a

bb

c

a c

c

ca

a

X1

X2

X3

X4

AC,DAC,FDAC,EDAC,VAC

54
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Virtual Arc Consistency solves 
(locally-defined) submodular VCSP

If P ∈ VCSP(Γsub) and P is VAC, 
   then Bool(P) is arc consistent, max-closed.
Hence, Bool(P) has a solution.
This solution has cost c0 in P and is thus 

necessarily optimal.

Thus OSAC solves SFM since Project and 
UnaryProject preserve submodularity.

Also permutated submodular (some technicalities)



Hierarchy
NC*

AC* DAC*

FDAC*

AC

NC

DAC

Special case: CSP (k=1)

EDAC*

VAC

OSAC

Solve tree-like
primal graphs

Solve submodular
cost functions

ε

56
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Beyond Arc Consistency

Path inverse consistency (Debryune & Bessière)

x y

z

(x,a) can be pruned because there 
are two other variables y,z such that 
(x,a) cannot be extended to any of 
their values.

a
b
c

a
b

c

a
b

c
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Beyond Arc Consistency
Soft Path inverse 
consistency

2

2

3

x y z

a a a 2

a a b 5

a b a 2

a b b 3

b a a 0

b a b 0

b b a 2

b b b 0

x

a 2

b 0

fy⊕ fz⊕ fxy⊕ fxz⊕ fyz

(fy⊕fz⊕fxy⊕fxz⊕fyz)[x]x y

z

a
b

a
b

a
b

x y z

a a a 0

a a b 3

a b a 0

a b b 1

b a a 0

b a b 0

b b a 2

b b b 0

1

22
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BT

MNC

MAC/MDAC

MFDAC

MEDAC

MVAC



Some practical observations

For very hard-to-solve instances, 
maintaining VAC provides a significant 
speed-up (closed RLFAP graph11/13).

For many problems, maintaining a 
simpler form of soft arc consistency 
(e.g. EDAC) is faster.

Unary costs ci(a) and EAC value inform 
value and variable ordering heuristics

60



Variable heuristic 
Last-conflict (Lecoutre et al, ECAI 2006)

Basic form of Conflict Back-Jumping

Used in combination with domain size / weighted degree 
(Lecoutre et al, AIJ 2009), breaking ties with max unary cost



RLFAP: CELAR 6 results since 1993
n. of vars: n=100, domain size: d=44, n. of cost functions: e=1222

Time of optimality proof Method(s) used Publication

26 days
(SUN UltraSparc 167 MHz)

Ad-hoc problem decomposition 
& Russian Doll Search (22 vars 
only)

(de Givry, Verfaillie, Schiex, 
CP 1997)

3 days
(SUN Sparc 2)

Ad-hoc problem decomposition & PFC-
MRDAC (22 vars only) 

(Larrosa, Meseguer, Schiex, AIJ 1998)

8 hours
(DEC Alpha 500MP)

Preprocessing rules & BbB Elimination (Koster PhD thesis, 1999)

3 hours
(PC 2.4 GHz)

B&B with EDAC & tree decomposition (BTD) (de Givry, Schiex, Verfaillie, AAAI 2006)

1’ 26’’
(PC 2.5 GHz)

BTD-RDS & variable ordering 
heuristics & dichotomic 
branching

(Sanchez, Allouche, de 
Givry,Schiex, IJCAI 2009)

25000x
16 x

CELAR 7 (n=200) solved in  4.5 days (Sanchez et al, 
IJCAI 2009)

CELAR 8 (n=458) solved in < 2 days (127 days)



2010 Approximate Inference 
Evaluation (results given at UAI’10)
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Summary of the results 

64toulbar2 was also first at UAI’08 Evaluation, MaxCSP’06,’08 Competition
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73% instances
solved exactly
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AC for global cost functions

 Global constraints: specific family of 
constraints on an unbounded number of 
variables with efficient local consistency 
filtering. 
 Example: AllDifferent   (max matching)

Same for global cost functions
 Example: # of variables with the same value 

(van Hoeve et al, J. Heur. 2006) (Lee & Leung, IJCAI’09)
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RNA gene finding (Zytnicki et al, 2008)

 Given a sequence and an RNA 
gene descriptor

 …find all the occurrences of the 
descriptor with at most k 
mismatches

 NP-complete for k=0 (Vialette, 2004)
 Sort solutions by their number of mismatches

RNA problem sizes: n=20 ; d>100 million! ; e(4)=10
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Bound arc consistency
Goal: space complexity independent of the domains
BAC∅ (Zytnicki et al, JAIR, 2010)
 Avoid EPTs, except those shifting  cost to
 Prune extremity domain values only
 Complexity

 Time O(n 2r 2d r+1) and space O(n+er)
with maximum constraint arity r

 BAC∅ is confluent
 Can be specialized for semi convex cost functions (d to d2 

speedup on binary CF)
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RNA gene finding

Darn! solver (Zytnicki et al, Constraints 2008)

Domain size
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Network representing “min number 
of variables with same value”

 (Beldiceanu & Petit, CPAIOR’04)

1

1
2

2
a

b

c

d

x1

x2

x3

x4

All edge capacities
are equal to 1

All edge costs are 0
if not indicated

We can project 1 from cM to c1(a) by reducing the 
cost of the light blue edge from 0 to –1.

Flow shown is a min-cost max-flow with x1=a.



Latin Square N x N with costs

Example of solution for N = 5:
 2 1 3 5 4
 4 2 1 3 5
 1 5 4 2 3
 5 3 2 4 1
 3 4 5 1 2
Objective: 49

71

All variables take a different value
in each row and each column

A unary cost function for each cell
fi,j(xi,j) : D  [0,MaxCost[

Objective = ∑i ∑j fi,j(xi,j)



Latin Square with costs

72choco  v2.1.1, toulbar2 v0.9.3, sicstus v4.1.2 on linux PC 2.66 Ghz 64GB

GCC_Cost (Régin, Constraints 2002)
EDGAC (Lee & Leung, AAAI 2010)
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Chapter 4. Open problems

Concerning problem definition, 
search, transformations, tractable 
classes
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Possible extensions to VCSP

 Partial order instead of total order
 2 arbitrary binary operators (e.g. 
calculating the sum of products instead 
of the min of the sum subsumes #CSP)
 Objective function not constructible 
using a binary aggregation operator 
(e.g. the median of the set of costs)
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Tractability

 Can we characterize/unify all tractable 
classes of VCSP over non-Boolean 
domains?
 Are there interesting tractable classes 
apart from submodular functions?
 Are there more efficient algorithms for 
submodular function minimisation?
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New problem transformations

 Global cost functions
Decomposition into several problems 
whose sum is equal to the original 
VCSP
Transformations which preserve at 
least one solution (if it exists) but do 
not necessarily all costs (substituability).

Applying rules involving ≥2 constraints
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Conclusion

 VCSP combines CSP and optimisation  
in a unified way

Technology is usable and useful, and 
still maturing

 Something different: Structure 
estimation in Gene Networks


