

#### An introduction to valued constraint satisfaction Thomas Schiex

#### ▶ To cite this version:

Thomas Schiex. An introduction to valued constraint satisfaction. Workshop on Optimization in Markov Random Fields, Sep 2010, Koncha-Zaspa, Ukraine. 78 p. hal-02812930

#### HAL Id: hal-02812930 https://hal.inrae.fr/hal-02812930

Submitted on 6 Jun2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

### An introduction to Valued Constraint Satisfaction

#### **Thomas Schiex**

INRA, Toulouse, France

with contributed slides by P. Jeavons (Univ. Oxford), M. Cooper (Univ. Toulouse) Javier Larrosa (UPC, Spain), S. de Givry, D. Allouche & A. Favier (INRA, France), R. Dechter (UCI, USA), R. Marinescu (4C, Ireland)

### Valued Constraint Satisfaction



### Chapter 1. What is it?

Motivation, Definitions, Some general theorems



Variables • = Talks to be scheduled at conference Transmitters to be assigned frequencies Amino acids to be located in space Circuit components to be placed on a chip

# A unifying abstraction



Constraints  $\bigcirc$  = All invited talks on different days No interference between near transmitters x + y + z > 0Foundations dug before walls built

## A unifying abstraction



A solution is an assignment of values to variables that satisfies all the constraints Constraint programming (OR, llog Solver...)

#### But what if...

There are lots of solutions, but some are better than others? There are no solutions, but some assignments satisfy more constraints than others? We don't know the exact constraints, only probabilities, or fuzzy membership functions? We're willing to violate some constraints if we can get a better overall solution that way?

#### Fragmentation/Heterogeneity

Fuzzy CSP (easier to solve, Rosenfeld 76)
 Max, Weighted, Partial CSP (Shapiro 81, Freuder 91)
 Weighted Max-SAT
 Constraint Optimization Problems
 Lexicographic CSP
 Hierarchical Constraint Logic Programming (Borning et al)

Pseudo-Boolean Optimisation
 Bayesian Networks
 Random Markov Fields
 Factor Graphs
 Integer Programming
 2D grammars...

# A unifying abstraction



"Constraints" () associate costs with each assignment

A solution is an assignment of values to variables that minimises the combined costs

# Definition of a VCSP instance

#### a set of n variables X<sub>i</sub> with domains d<sub>i</sub>

a set of e cost functions, each having a
scope (list of variables)

cost functions map assignments to costs

It only remains to specify what the possible costs are, and how to combine them

#### Definition of a valuation structure

a set S of costs ♦ a total order <</p> minimum and maximum elements: we denote these by 0 and  $\infty$  $\bullet$  an aggregation operator  $\oplus$  which is commutative, associative, monotonic, and such that  $\forall \alpha, \alpha \oplus 0 = \alpha$ 

#### Examples of valuation structures

- ♦ If  $S = \{0, \infty\}$ , then VCSP = CSP
- ♦ If S =  $\{0, 1, 2, ..., \infty\}$ , and  $\oplus$  is addition, then VCSP generalizes MAX-CSP

• If S = [0,1], and  $\oplus$  is max, then VCSP = Fuzzy CSP

• If S = {0, 1, ..., k}, and  $\oplus$  is bounded addition +<sub>k</sub> where  $\alpha +_k \beta = \min\{k, \alpha + \beta\}$ , then VCSP = Weighted CSP

#### Families of valuation structures

A valuation structure is idempotent if  $\forall \alpha, \alpha \oplus \alpha = \alpha$ 

All idempotent valuation structures are equivalent to Fuzzy CSP

(as in CSP redundancy of information is fine)

#### Families of valuation structures

A valuation structure is strictly monotonic if  $\forall \alpha < \beta, \forall \gamma < \infty, \ \alpha \oplus \gamma < \beta \oplus \gamma$ A valuation structure is fair if aggregation has a partial inverse, that is,  $\forall \alpha \ge \beta, \exists \gamma \text{ such that } \beta \oplus \gamma = \alpha$ 

All strictly monotonic valuation structures can be embedded in a fair valuation structure

#### Families of valuation structures

A valuation structure is discrete if between any pair of finite costs there are finitely many other costs

All discrete and fair valuation structures can be decomposed into a contiguous sequence of valuation structures with aggregation operator +<sub>k</sub>

(interacting as fuzzy CSP)

#### General frameworks and cost structures



### Bibliography

For general background on VCSP and other formalisms for soft constraints, see the chapter on "Soft Constraints" by Meseguer, Rossi and Schiex, in the Handbook of Constraint Programming, Elsevier, 2006.

For classification results on valuation structures see "Arc Consistency for Soft Constraints", Cooper & Schiex, AIJ, 2004.

#### Chapter 2. Efficiency

Structural restrictions, Valued constraint languages

#### **General question**

Having a unified formulation allows us to ask *general* questions about efficiency:

When is the VCSP tractable?

# **Problem features**



This picture illustrates the constraint scopes
 The set of scopes is sometimes called the constraint hypergraph, or the scheme
 Restricting the scheme can lead to tractability, as in the standard CSP

#### Structural tractability

# Tree-structured binary VCSPs are tractable



Time complexity O(e d<sup>2</sup>) Space complexity O(n d)

*n: number of variables d: maximum domain size e: number of cost functions* 

Proceed from the leaf nodes to a chosen root node Project out leaf nodes by minimising over possible assignments

#### Tree decomposition

# Bounded treewidth VCSPs are tractable



Time complexity O(e d<sup>w+1</sup>) Space complexity O(n d<sup>s</sup>)

w: bounded treewidth = max |Ei| - 1

s: max { $|E_i \cap E_j|$ : i $\neq$ j}

Finding a tree decomposition with minimum w\* is NP-hard!

 $E_4$ 

#### Radio Link Frequency Assignment Problem (Cabon et al., Constraints 1999) (Koster et al., 40R 2003)



Given a telecommunication network ...find the best frequency for each communication link, avoiding interferences

Best can be:

Minimize the maximum frequency, no interference (max operator)
 Minimize the global interference (sum operator)
 Generalizes graph coloring problems: |f<sub>i</sub> − f<sub>i</sub>| ≥ a

**CELAR** problem size: n=100-458 ; d=44 ; e=1,000-5,000

#### Tree decomposition example



#### **Problem features**

We have seen that structural features of a problem can lead to tractability

This is very similar to the standard CSP

What about other kinds of restrictions to the VCSP?

#### More problem features



#### Valued constraint languages



VCSP(Γ) represents the set of VCSP instances whose cost functions belong to the valued constraint language Γ

For some choices of  $\Gamma$ , VCSP( $\Gamma$ ) is tractable

We will consider some examples where the valuation structure contains non-negative real values and infinity, and aggregation is standard addition

#### Submodular functions

A class of functions that has been widely studied in OR is the submodular functions...

A cost function c is submodular if  $\forall s,t$ c(min(s,t)) + c(max(s,t))  $\leq$  c(s) + c(t)

where min and max are applied component-wise, i.e.

 $min(\langle s_1,...,s_k\rangle,\langle t_1,...,t_k\rangle) = \langle min(s_1,t_1),...,min(s_k,t_k)\rangle$ 

VCSP( $\Gamma_{submodular}$ ) is tractable

#### Examples of submodular functions



Maximum

#### Examples of submodular functions

 $\forall$ s,t Cost(Min(s,t)) + Cost(Max(s,t))  $\leq$  Cost(s) + Cost(t)



#### Examples of submodular functions



#### **Binary submodular functions**

*Binary* submodular functions over any finite domain can be expressed as a sum of "Generalized Interval" functions

(they correspond to Monge matrices)

Binary VCSP( $\Gamma_{submodular}$ ) is O(n<sup>3</sup>d<sup>3</sup>)

See Cohen et al "A maximal tractable class of soft constraints", JAIR 2004

# **Beyond submodularity**

Ζ

()

()

()

()

00

3

00

()

()

()

()

Χ

( )

()

()

()

 $\forall$ s,t Cost(Min(s,t)) + Cost(Max(s,t))  $\leq$  Cost(s) + Cost(t)

The cost function has the *multimorphism* (Min,Max)

By choosing *other* functions, we can obtain other tractable valued constraint languages...

#### Known tractable cases

If the cost functions all have one of these eight multimorphisms, then the problem is tractable:

- 1) (Min,Max)
- 2) (Max,Max)
- 3) (Min,Min)
- 4) (Majority, Majority, Majority)
- 5) (Minority, Minority, Minority)
- 6) (Majority, Majority, Minority)
- 7) (Constant 0)
- 8) (Constant 1)

See Cohen et al "The complexity of soft constraint satisfaction", AIJ 2006

#### A dichotomy theorem

If the cost functions all have one of these eight multimorphisms, then the problem is tractable:

- 1) (Min,Max)
- 2) (Max,Max)
- 3) (Min,Min)
- 4) (Majority, Majority, Majority)
- 5) (Minority, Minority, Minority)
- 6) (Majority, Majority, Minority)
- 7) (Constant 0)
- 8) (Constant 1)

For Boolean cost functions...

in all other cases the cost functions have **no** significant common multimorphisms and the VCSP problem is **NP-hard**.

See Cohen et al "The complexity of soft constraint satisfaction", AIJ 2006
### Benefits of a general approach

The dichotomy theorem immediately implies earlier results for SAT, MAX-SAT, Weighted Min-Ones and Weighted Max-Ones

### Bibliography

For general background on tractable structures, see the chapter on "Tractable Structures" by Dechter, in the Handbook of Constraint Programming, Elsevier, 2006.

 For tractable valued constraint languages see "The complexity of soft constraint satisfaction", Cohen, Cooper, Jeavons & Krokhin, AIJ 2006. Chapter 3. Search using problem transformations Branch and Bound, Equivalence-preserving operations, Local consistency (node, arc, directional, virtual, optimal), Global cost functions.

### Depth-First Branch and Bound (DFBB)

Each node is a VCSP subproblem (defined by current conditioning)

(LB) Lower Bound =  $C_{\emptyset}$ Other Bound =  $C_{\emptyset}$ 

```
If k \ge k then prune
```

(UB) Upper Bound = best solution found so far = k

### Local consistency

A property that says that the network is "explicit" enough at a local level

Filtering algorithm: transforms a network in an equivalent network that satisfies the property (closure)

CSP: pol. time, confluent, incremental

Equivalence-preserving transformations (EPT)

 An EPT transforms VCSP instance P1 into another VCSP instance P2 with the same objective function.

- Examples of EPTs:
  - Propagation of inconsistencies (∞ costs)
  - UnaryProject
  - Project/Extendementality!

# UnaryProject(i, $\alpha$ )

### *Precondition*: $0 \le \alpha \le \min\{c_i(a) : a \in d_i\}$

for all  $a \in d_i$  do  $c_i(a) := c_i(a) - \alpha$ ;

 $C_0 := C_0 + \alpha;$ 

Increases the lower bound  $c_0$  if all unary costs  $c_i(a)$  are non-zero.

# Project(M,i,a, $\alpha$ )

 $\begin{array}{l} \textit{Precondition: } i \in M, \ a \in d_i, \ -c_i(a) \leq \alpha \leq \min\{c_M(x): x[i]=a\} \\ \textbf{c}_i(a) := \textbf{c}_i(a) + \alpha ; \\ \textbf{for all } x \in labelings(M) \ s.t. \ x[i]=a \ \textbf{do} \\ \textbf{c}_M(x) := \textbf{c}_M(x) - \alpha ; \end{array}$ 

If  $\alpha > 0$ , this projects costs from  $c_M$  to  $c_i$ If  $\alpha < 0$ , this extends costs from  $c_i$  to  $c_M$ 

### Node and soft arc consistency

Node consistent (NC) if ∀i no UnaryProject(i,α) is possible for α>0 and no propagation of ∞ costs possible between c<sub>i</sub> and c<sub>0</sub> (forbidden values removed if c<sub>i</sub>+c<sub>0</sub> ≥ k)

• Soft arc consistent (SAC) if  $\forall M, i, a$ no Project(M, i, a,  $\alpha$ ) is possible for  $\alpha > 0$ 

### The SAC closure is not unique

Finding the best order of integer EPT application is NP-hard (Cooper, Schiex 2004)

OR

## Different soft AC notions:

- ◆ Directional: send costs from X<sub>j</sub> to X<sub>i</sub> if i<j (in the hope that this will increase c<sub>0</sub>)
  ◆ Existential: ∀i, send costs to X<sub>i</sub> simultaneously from its neighbor variables if this increases c<sub>0</sub>
- Virtual: no sequence of Projects/Extends increases c<sub>0</sub>
- Optimal: no simultaneous set of Projects/Extends increases c<sub>0</sub>

### **Directional Arc Consistency**

♦ for all i<j,  $\forall a \in d_i \exists b \in d_i$  such that  $c_{ii}(a,b) = c_i(b) = 0.$ Solves tree-structured VCSPs FDAC (Full Directional AC) = Directional AC + Soft AC FDAC can be established in O(end<sup>3</sup>) time (or in O(ed<sup>2</sup>) time if  $+_{k}$  is +)

(Cooper, Fuzzy Sets and Systems 2003)

48

## Directional AC (DAC\*)



### **Existential Arc Consistency**

node consistent and ∀i, ∃a∈d<sub>i</sub> such that c<sub>i</sub>(a) = 0 and for all cost functions c<sub>ij</sub>, ∃b ∈ d<sub>j</sub> such that c<sub>ij</sub>(a, b) = c<sub>j</sub>(b) =0
 EDAC = Existential AC + FDAC
 EDAC can be established in O(ed<sup>2</sup> max{nd,k}) time

# Virtual Arc Consistency (VAC)

(Cooper et al, 2008)

If P is a VCSP instance then Bool(P) is the CSP instance whose allowed tuples are the zero-cost tuples in P-c<sub>0</sub>

If Bool(P) has a solution, then P has a solution of cost c<sub>0</sub> (but usually Bool(P) has no solution)



### **Approximating VAC**

(similar to Augmenting DAG, Schlesinger et al, 30 years before)

 If a sequence of AC operations in Bool(P) leads to a domain wipe-out, then a similar sequence of SAC operations in P increases c<sub>0</sub>

Sut, in this sequence, costs may need to be sent in more than one direction from the same  $c_M \Rightarrow$  Introduction of *fractional* weights

VACE algorithm may converge to a local minimum (and more, an instance P' which is not VAC)

VACε can be established in O(ed<sup>2</sup> k/ε) time

# **Enforcing VAC**

AC, DAC, FDAC, EDAC



### **Optimal Soft Arc Consistency**

(Cooper et al. 2007), similar to (Schlesinger, 30 years before)

We can overcome this problem of convergence by solving a LP to find the set of simultaneous UnaryProject and Project operations which maximises c<sub>0</sub>.

The resulting VCSP instance is OSAC (Optimal Soft Arc Consistent).
 OSAC is strictly stronger than VAC.
 Unfortunately, the LP has O(edr+n) variables and O(ed<sup>r</sup>+nd) constraints(pre-processing).



# Virtual Arc Consistency solves (locally-defined) submodular VCSP

If  $P \in VCSP(\Gamma_{sub})$  and P is VAC, then Bool(P) is arc consistent, max-closed. Hence, Bool(P) has a solution. This solution has cost  $c_0$  in P and is thus necessarily optimal.

Thus OSAC solves SFM since Project and UnaryProject preserve submodularity. Also permutated submodular (some technicalities)



### **Beyond Arc Consistency**

Ø

X

#### Path inverse consistency (Debryune & Bessière)

(x,a) can be pruned because there are two other variables y,z such that (x,a) cannot be extended to any of their values.

### **Beyond Arc Consistency**

#### Soft Path inverse consistency



| y T Z |   | /⊕ I <sub>×</sub> | z 🕀 🖌 |  |
|-------|---|-------------------|-------|--|
| x     | У | z                 |       |  |
| а     | а | а                 | 0     |  |
| а     | а | b                 | 3     |  |
| а     | b | а                 | 0     |  |
| а     | b | b                 | 1     |  |
| b     | а | а                 | 0     |  |
| b     | а | b                 | 0     |  |
| b     | b | а                 | 2     |  |
| b     | b | b                 | 0     |  |

 $\mathbf{F} \frown \mathbf{F} \frown \mathbf{F} \frown \mathbf{F} \frown \mathbf{F} \frown \mathbf{F}$ 

| <b>(f</b> | ,⊕ <b>f</b> | ,⊕ <sup>`</sup> | <b>f</b> _v€ | Ð <b>f</b> , | ,⊕f | ,<br>v7) | [X] |  |
|-----------|-------------|-----------------|--------------|--------------|-----|----------|-----|--|
| - )       |             | 2               | ~)           | ~~~          | _   | 12       |     |  |

2

Π

ā



### Some practical observations

For very hard-to-solve instances, maintaining VAC provides a significant speed-up (closed RLFAP graph11/13).

 For many problems, maintaining a simpler form of soft arc consistency (e.g. EDAC) is faster.

Unary costs c<sub>i</sub>(a) and EAC value inform value and variable ordering heuristics

### Variable heuristic

Last-conflict (Lecoutre et al, ECAI 2006)

Basic form of Conflict Back-Jumping



Used in combination with domain size / weighted degree (Lecoutre et al, AIJ 2009), breaking ties with max unary cost

#### RLFAP: CELAR 6 results since 1993 n. of vars: n=100, domain size: d=44, n. of cost functions: e=1222

| Time of optimality proof                      | Method(s) used                                                              | Publication                                         |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| 26 days<br>(SUN UltraSparc 167 MHz)           | Ad-hoc problem decomposition<br>& Russian Doll Search <i>(22 vars only)</i> | (de Givry, Verfaillie, Schiex,<br>CP 1997)          |  |  |
| 3 days<br>(SUN Sparc 2)                       | Ad-hoc problem decomposition & PFC-<br>MRDAC (22 vars only)                 | (Larrosa, Meseguer, Schiex, AIJ 1998)               |  |  |
| 8 hours<br>(DEC Alpha 500MP)                  | Preprocessing rules & BbB Elimination                                       | (Koster PhD thesis, 1999)                           |  |  |
| 3 hours<br>(PC 2.4 GHz)                       | B&B with EDAC & tree decomposition (BTD)                                    | (de Givry, Schiex, Verfaillie, AAAI 2006)           |  |  |
| 1' 26'' 25000x<br>(PC 2.5 GHz) 25000x<br>16 x | BTD-RDS & variable ordering<br>heuristics & dichotomic<br>branching         | (Sanchez, Allouche, de<br>Givry,Schiex, IJCAI 2009) |  |  |
| CELAR 7 (n=2                                  | 200) solved in 4.5 da                                                       | I <b>YS</b> (Sanchez et al,                         |  |  |
|                                               | IJCAI 2009)                                                                 |                                                     |  |  |
| <b>CELAR 8 (n=4</b> !                         | 58) solved in < 2 days                                                      | s (127 days)                                        |  |  |

### 2010 Approximate Inference Evaluation (results given at UAI'10)

### Networks – by domain (1 hour)

| Network                     | PR | MAR | MPE |
|-----------------------------|----|-----|-----|
| CSP                         | 8  | 8   | 55  |
| Grids                       | 20 | 20  | 40  |
| Image Alignment             |    |     | 10  |
| Medical Diagnosis           | 26 | 26  |     |
| Object Detection            | 96 | 96  | 92  |
| Pedigree                    | 4  | 4   |     |
| Protein Folding             |    |     | 21  |
| Protein-Protein Interaction |    |     | 8   |
| Segmentation                | 50 | 50  | 50  |

# Summary of the results

| Seconds | PR       | MAR      | MPE          |  |
|---------|----------|----------|--------------|--|
|         | Arthur   | Arthur   | Joris        |  |
| 20      | Choi     | Choi     | Mooij        |  |
|         | (UCLA)   | (UCLA)   | (Max Planck) |  |
|         | Vibhav   | Vibhav   | Thomas       |  |
| 1200    | Gogate   | Gogate   | Schiex       |  |
|         | (UW+UCI) | (UW+UCI) | (INRA)       |  |
|         | Vibhav   | Vibhav   | Joris        |  |
| 3600    | Gogate   | Gogate   | Mooij        |  |
|         | (UW+UCI) | (UW+UCI) | (Max Planck) |  |

toulbar2 was also first at UAI'08 Evaluation, MaxCSP'06,'08 Competition

### Winning Teams

- (MAR) IJGP by Vibahv Gogate (UW), Andrew Gefland, Natasha Flerova and Rina Dechter (UCI): Anytime iterative GBP based algorithm
- (PR) Vgogate by Vibahv Gogate, Pedro Domingos (UW),, Andrew Gefland and Rina Dechter (UCI): Formula based importance sampling
- (PR+MAR) EDBP by Arthur Choi, Adnan Darwiche, with support from Glen Lenker and Knot Pipatsrisawat (UCLA): Anytime BP based anytime thickening of structure
- (MAP) libDAI by Joris Mooij (Max Planck): junction tree, LBP/MP, double-loop GBP, Gibbs, decimation -

(MAP) toulbar2 by Thomas Schiex et al (INRA) 73% instances Anytime branch and bound weighted CSP solver solved exactly

## AC for global cost functions

Global constraints: specific family of constraints on an unbounded number of variables with efficient local consistency filtering.

Example: AllDifferent (max matching)

Same for global cost functions

- Example: # of variables with the same value
  - (van Hoeve et al, J. Heur. 2006) (Lee & Leung, IJCAI'09)

#### RNA gene finding (Zytnicki et al, 2008)



Given a sequence and an RNA gene descriptor ...find all the occurrences of the descriptor with at most *k* mismatches

NP-complete for *k*=0 (Vialette, 2004)

Sort solutions by their number of mismatches

**RNA** problem sizes: n=20 ; d>100 million! ; e(4)=10

Cork, May 2008

### Bound arc consistency

- Goal: space complexity independent of the domains
- ◆ BAC<sup>∅</sup> (Zytnicki et al, *JAIR, 2010*)
  - Avoid EPTs, except those shifting cost to
  - Prune extremity domain values only
  - Complexity
    - Time  $O(n^2 r^2 d^{r+1})$  and space O(n+er)
    - with maximum constraint arity r
  - BAC<sup>Ø</sup> is confluent
  - Can be specialized for semi convex cost functions (d to d<sup>2</sup> speedup on binary CF)

# **RNA** gene finding

| Domain size       | 10k          | 50k     | 100k  | 500k | $1\mathrm{M}$ | $4.9 \mathrm{M}$ |
|-------------------|--------------|---------|-------|------|---------------|------------------|
| Nb. of solutions  | 32           | 33      | 33    | 33   | 41            | 274              |
| AC*               |              |         |       |      |               |                  |
| Time              | 1hour 25min. | 44hours | -     | -    | -             | -                |
| Nb. of backtracks | 93           | 101     | -     | -    | -             | -                |
| BAC               |              |         |       |      |               |                  |
| Time (sec.)       | 0.016        | 0.036   | 0.064 | 0.25 | 0.50          | 2.58             |
| Nb. of backtracks | 93           | 101     | 102   | 137  | 223           | 1159             |

Fig. 6. Searching all the solutions of a tRNA motif in *Escherichia coli* genome.

Darn! solver (Zytnicki et al, Constraints 2008)

Cork, May 2008

### Network representing "min number of variables with same value"

(Beldiceanu & Petit, CPAIOR'04)



All edge capacities are equal to 1

All edge costs are 0 if not indicated

Flow shown is a min-cost max-flow with  $x_1 = a$ .

We can project 1 from  $c_M$  to  $c_1(a)$  by reducing the cost of the light blue edge from 0 to -1.

70

### Latin Square N x N with costs

Example of solution for N = 5: 21354 All variables take a different value in each row and each column 42135 15423 53241 A unary cost function for each cell 34512  $f^{i,j}(x_{i,j}) : D \rightarrow [0, MaxCost[$ **Objective: 49** Objective =  $\sum_{i} \sum_{j} f^{i,j}(x_{i,j})$
#### GCC\_Cost (Régin, *Constraints* 2002) EDGAC (Lee & Leung, *AAAI* 2010)

## Latin Square with costs



choco v2.1.1, toulbar2 v0.9.3, sicstus v4.1.2 on linux PC 2.66 Ghz 64GB

## Bibliography

For an overview of soft local consistencies, see "Soft arc consistency revisited", Cooper, de Givry, Sanchez, Schiex, Zytnicki & Werner, AIJ 2010.

For soft global constraints (FDGAC), see "Towards Efficient Consistency Enforcement for Global Constraints in Weighted Constraint Satisfaction", Lee & Leung, IJCAI 2009.

### Chapter 4. Open problems

Concerning problem definition, search, transformations, tractable classes

### Possible extensions to VCSP

Partial order instead of total order 2 arbitrary binary operators (e.g. calculating the sum of products instead of the min of the sum subsumes #CSP) Objective function not constructible using a binary aggregation operator (e.g. the median of the set of costs)

#### Tractability

Can we characterize/unify all tractable classes of VCSP over non-Boolean domains? Are there interesting tractable classes apart from submodular functions? Are there more efficient algorithms for submodular function minimisation?

#### New problem transformations

Global cost functions Decomposition into several problems whose sum is equal to the original **VCSP** Transformations which preserve at least one solution (if it exists) but do not necessarily all costs (substituability). • Applying rules involving  $\geq 2$  constraints

#### Conclusion

#### VCSP combines CSP and optimisation in a unified way

# Technology is usable and useful, and still maturing

Something different: Structure estimation in Gene Networks