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Abstract. The TagSNP problem is a specific form of compression prob-
lem arising in genetics. Given a very large set of SNP (genomic positions
where polymorphism is observed in a given population), the aim is to
select a smallest subset of SNPs which represents the complete set of
tagSNP reliably. This is possible because strong correlations existing be-
tween neighboring SNPs. Typically, besides minimizing the tagSNP set
size (mostly for economical reasons), one also seek a maximally informa-
tive subset for the given size, generating different secondary criteria.
This problem, which is also closely related to a set covering problem, can
be simply described as a weighted CSP. We report here our experiments
with human tag SNP data using a recently designed WCSP algorithm
combining the “Russian Doll Search” algorithm with local consistency
for cost functions and an active exploitation of the problem structure,
through a tree decomposition of the problem.

Introduction

In bioinformatics, uncertainty and variability are usually ubiquitous and combi-
natorial problems modelling biological objects or phenomenon usually involve a
combination of a large number of local uncertainties or correlations which must
be incorporated in a global criteria. It is therefore not surprising to see that
graphical models (HMM, Bayesian nets, (conditional) Markov random fields. . . )
are massively used in bioinformatics.

The constraint satisfaction problem and its implementation as constraint pro-
gramming languages represent a deterministic variant of graphical models which
allows to represent combinatorial problems on discrete variables. Optimization
(if any) is often considered as a second order target that can be reached by
explicitly modeling a cost variable which is then iteratively bounded until an
optimum is reached. This however requires the use of global constraints that
cover all variables, thereby hindering all the problem structure.

In this paper, we consider the TagSNP problem, a specific form of lossy
compression problem arising in genetics. Given a very large set of SNP (genomic
positions where polymorphism is observed in a given population), the aim is to
select a smallest subset of SNPs which represents the complete set of tagSNP
reliably. This problem can be naturally defined as a variant of the set covering
problem. By modeling the problem as a weighted CSP (or cost function network),
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Fig. 1. The graph of a WCSP and its tree decomposition.

we get a model which still offers opportunities to exploit the problem structure
described through a tree-decomposition of its graph.

Specifically, this enables the fruitful application of a recent algorithm [11]
called “Russian Doll Search with Tree Decomposition” that exploits problem
structure for solving cost function networks. As the BTD algorithm [12], this al-
gorithm is based on the identification of conditionally independent subproblems,
which are solved independently, using a lower bound based on local consistency,
and whose optimum is cached during Branch and Bound search. The time com-
plexity of the algorithm obtained is only exponential in the largest subproblem
size instead of the global problem size. These conditionally independent subprob-
lems are called clusters ad form a tree. The intersection between two clusters,
if not empty, is called the separator between these two clusters (see Fig. 1 for
an illustration). Such a decomposition can be obtained by computing a so-called
tree-decomposition of the problem. The main novelty of our algorithm lies in the
incorporation of a “Russian Doll Search” like approach enabling the computa-
tion of stronger initial local bounds by inductively solving a relaxation of each
subproblem identified in the tree-decomposition.

The algorithm obtained, BTD-RDS, generalizes both RDS and other tree-
decomposition based algorithms such as BTD or AND-OR Branch and Bound.
As BTD, it uses a restricted dynamic variable ordering which must be compatible
with the tree decomposition exploited : a variable from a cluster cannot be
instantiated before variables from its parent cluster.

This algorithm has been applied to radio link frequency assignment problem
instances defined in the CELAR benchmark [2], closing a very hard frequency
assignment instance which has been open for more than 10 years. It has also
been used to tackle a problem from bioinformatics, defining a new benchmark
for constraint-based approaches : the tagSNP selection problem.



In this paper, we will present this problem with associated instances defining
benchmarks and the main results obtained in our experiments.

1 Modeling the TagSNP problem

TagSNP selection occurs in genetics and polymorphism analysis. Single nu-
cleotide polymorphisms, or SNPs, are DNA sequence variations that occur when
a single nucleotide (A,T,C,or G) in the genome sequence of an individual is altered.
For example a SNP might change the DNA sequence AAGGCTAA to ATGGCTAA. For
a variation to be considered as a SNP, it must occur in at least 1% of the popu-
lation. There are several millions SNPs in the 3 billions nucleotides long human
genome, explaining up to 90% of all human genetic variation. SNPs may explain
a portion of the heritable risk of common diseases and can affect response to
pathogens, chemicals, drugs, vaccines, and other agents. The TagSNP problem
is a sort of lossy compression problem which consists in selecting a small subset
of SNPs such that the selected SNPs, called tag SNPs, will capture most of the
genetic information. The goal is to capture a maximally informative subset of
SNPs to make screening of large populations feasible [6]. From the combinato-
rial point of view the TagSNP problem is equivalent to a set covering problem
(NP-hard) with additional quadratic criteria.

By sampling a first relatively small population, it is possible to compute a link
(correlation) measure r? between each pair of SNPs. A tag SNP is considered
as representative of another SNP if the two SNPs are sufficiently linked. The
simplest TagSNP problem is to select a minimum number of SNPs (primary
criteria) such that all SNPs are represented. This is captured by the fact that
the 72 measure between the two SNPs is larger than a threshold 6 (often set
to 6 = 0.8 [3]). We therefore consider a graph where each vertex is a SNP and
where edges are labelled by the 2 measure between pairs of nodes. Edges are
filtered if their label is lower than the threshold 8. The graph obtained may have
different connected components. The TagSNP problem then reduces to a set
covering problem on these components. This simplest variant has been studied
in [1] where it is solved using the d-DNNF compiler c2d with good results.

In practice the number of optimal solutions may still be extremely large and
secondary criteria are considered by state-of-the-art tools such as FESTA [9]. Be-
tween tag SNPs, a low 72 is preferred, to maximize tag SNP dispersion. Between
a non tag SNP and its representative tag SNP, a high 72 is preferred to maxi-
mize the representativity. To optimize these criteria, FESTA uses two incomplete
algorithms, the simplest is called FESTA-greedy, and it uses a simple reedy ap-
proach. The second, called FESTA-hybrid combined the greedy approach with
a limited exhaustive approach.

For a given connected graph G = (V, E), we build a binary weighted CSP
with integer costs capturing the TagSNP problem with the above secondary
criteria. For each SNP i, two variables i, and i, are used. i, is a boolean variable
that indicates if the SNP is selected as a tag SNP or not. The domain of i, is
the set of neighbors of i together with 4 itself. It indicates the representative



tag SNP which covers i. For a SNP i, hard binary cost functions (with 0 or
infinite costs) enforces the fact that iy = (i, = ). Similar hard cost functions
enforce (i, = j) = js with neighbor SNPs j in G. A unary cost function on every
variable i5 generates an elementary cost U if the variable is true. The resulting
weighted CSP captures the set covering problem defined by TagSNP.

To account for the representativity, a unary cost function is associated with
every variable i, that generates cost when 4, # 4. In this case, the cost generated

1=r3 i,

is [100. _179 |. For dispersion between SNPs ¢ and j, a binary cost function

2
between the boolean i, and j, is created which generates a cost of LlOO.ri’; _;J
when iy = js = true The resulting WCSP captures both dispersion and rep-
resentativity. In order to keep these criteria as secondary, we just use a large
enough value for U (the elementary cost used for tag selection).

This problem is similar to a set covering problem with additional binary costs.
Such secondary criteria are ignored by [1]. Here, c2d yields a compact compiled
representation of the set of solutions of the pure set covering problem, but the
number of solutions is so huge (typically more than billions) that applying the
second criteria on solutions generated by c2d would be too expensive. A direct
compilation of the criteria in the d-DNNF does not seem straightforward and
would probably necessitate a Max-SAT formulation as the authors acknowledge
in their conclusion.

2 Experiments

The algorithms tested (BTD and RDS-BTD) have been implemented in toulbar2
C++ solver!. Note than when the tree decomposition used reduced to a single
cluster, BTD is equivalent to a Depth First Branch and Bound algorithm.

The min domain / maz degree dynamic variable ordering, breaking ties with
maximum unary cost, is used inside clusters (BTD and RDS-BTD) and by
DFBB. The dynamic variable ordering heuristic is modified by a conflict back-
jumping heuristic as suggested in [8]. EDAC local consistency is enforced [5]
during search. Tree decompositions are built using the Maximum Cardinality
Search (MCS [10]) heuristic, with the largest cluster used as root. A variable
ordering compatible with the rooted tree decomposition used is used for DAC
enforcing [4].

All the solving methods exploit a binary branching scheme. If d > 10, the
ordered domain is split in two parts (around the middle value), else the variable
is assigned to its EDAC fully supported value or this value is removed from the
domain. In both cases, it selects the branch which contains the fully supported
value first, except if a previous solution is available (the corresponding value is
used in this case). Reported CPU times correspond to finding the optimum and
proving its optimality.

The instances we considered have been derived from human chromosome 1
data provided by courtesy of Steve Qin [9]. Two values, # = 0.8 and 0.5 have

! http://mulcyber.toulouse.inra.fr /projects/toulbar2, version 0.8.
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Fig. 2. CPU-time and number of solved instances for different values of the maximum
separator threshold (Smax)-

been tried. For § = 0.8, a usual value in tag SNP selection, 43,251 connected
components are identified among which we selected the 82 largest ones. These
problems, with 33 to 464 SNPs, define WCSP with domain sizes ranging from 15
to 224 and are relatively easy. Solving them to optimality selects 359 tag SNPs
in 2h37 instead of 487 in 3’ for FESTA-greedy (21% improvement) or 370 in
39h17’ for FESTA-hybrid (3% improvement, 15-fold speedup).

To get more challenging problems, we lowered 6 to 0.5. This defined 19, 750
connected components, among which 516 are not solved to optimality by FESTA.
We selected the 25 largest one. These problems, with 171 to 777 SNPs have
graph densities between 6% and 37%. They define WCSP with max domain size
ranging from 30 to 266 and include between 8000 to 250,000 cost functions. The
decomposability of these problems, estimated by the ratio between the treewidth
of the original MCS tree-decomposition (without any cluster merging, i.e. with
Smaxz = +00) and the number of variables varies from 14% to 23%.

In theory, algorithms exploiting tree-decompositions are only exponential in
the maximum cluster size and the ideal tree-decomposition that should be used
is therefore a tree decomposition minimizing the size of the largest cluster (also
called the treewidth or induced width of the problem). In practice however,
when a Branch and Bound like approach such as BTD is used, small separators
are also attractive because the worst-case space complexity of the algorithm
is exponential in the separator size. Even if this space complexity is usually
far from being reached because of the pruning induced by lower bounds, small
separators are also attractive because the removal of large separators creates
larger clusters that gives more freedom to dynamic variable ordering. There is
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Fig. 3. Evolution of treewidth normalized by variable number for different maximum
separator size threshold s;qz-

therefore a compromise to reach : small clusters are desirable but large separators
should be avoided. Starting from an original tree-decomposition, it is always
possible to reach a decomposition with a maximum separator size below a given
threshold sya.x by just merging any pair of clusters which has a separator of size
above Smax [7]-

All the problems have been tackled with an initial upper bound found by
FESTA-greedy on 2.8 Hz CPU with 32 GB RAM. To better show the importance
of bounded separator size (using Spaqz), we considered values ranging from 0
(DFBB), 4, 8, 12, 24, 32 to oo for both BTD and RDS-BTD. We report both
the number of problems solved within a 2-hour limit per instance and the total
amount of CPU time used (an unsolved instance contributes for 2 hours).

Using Spaz = 4, our implementation improves the compression ratio of
FESTA-greedy by 15% (selecting 2952 tag SNPs instead of 3477 for the 516 — 13
solved instances). Note that the differences in CPU time between BTD and
RDS-BTD would increase if a larger time limit had been used. From a practi-
cal viewpoint, the criterion of the TagSNP problem could be further refined to
include : sequence annotation information (e.g. preferring tag SNPs occurring
in genes), and measures between triplets of markers as proposed in [1] (SNPs
covered by a pair of tag SNPs). The good performances of RDS-BTD may allow
to tackle this more complex problem with realistic § = 0.8.

Figure 3 presents the evolution of the ratio between the tree width and the
problem size for different values of s,,4,. All instances (6 = 0.5) solved at least
once during the experimentation are shown in this graph.



Problems which are successfully solved (with an optimality proof) are ma-
terialized as continuous line,while dashed lines represent failures. The instance
17034, which could be solved only for sy .x = 4 is represented by a gray square.

The Figure 3 allows to materialize the 12 instances which could be solved for
Smaxz = {4,8}. This underlines the fact that the nature of each solved instance
may be different depending of the s,,4. value. For example, instance 17034 is
only solved for s,,q,; = 4, which is balanced by the resolution of instance 14359,
solved only on the interval 8 - 12 of sy,ax.. Overall, on the whole range of variation
of Smax, 13 instances are solved but only 12 can be solved for an optimal choice of
Smaz = 4, 8. This may plead for an adaptive choice of the parameter s,,q,, = 4, 8.
Moreover, a significant decrease of the normalized treewidth is often correlated
with the occurrence of a successful resolution.

Indeed, for most of the tested instances, reflecting the structure of the prob-
lems, the curves show an important decrease for $,,q, € {0,8}, which is very
likely one of the significant events explaining the high number of successful res-
olution in this range. The decrease of the treewidth is then lower. It gradually
reaches (Smaz > 12), a plateau with a gentle slope, asymptotically reaching
the ratio corresponding to a full decomposition of the problem (without cluster
merging). In the experimentation, this area is often associated to failure.

This behavior is also reflected in the resolution speedup. Considering for
example instance 15757, an optimal solution is found for s;.. = {4,8,12,24}
with respective cpu-time of of 514, 7, 299 and 3810 seconds. Simultaneously,
the tree width ratio varies from 0.63 for s,,q. = 4 to 0.30 for s;,.. = {8,12}
and then to about 0.2 for s,,.; = 24. The optimal resolution time occurs for
Smaz = 8. Several instances follow a similar behavior. Most of solved instances
are optimally resolved for a specific s;,,4, value . This behavior follows very likely
from the compromise between the gains provided by the decomposition and the
losses related to a decrease in the freedom of choice during search in dynamic
variables ordering in smaller clusters.

3 Conclusion

In this paper , we specifically addressed the tagSNP selection problem, a variant
of the covering problem coming from bioinformatics. Our WCSP model allows
to take into account additional criteria such as dispersion and representativity.
The data used in our experimentation is likely the largest data set available
in the public domain. With a usual threshold (§ = 0.8), our model provides
good results. But the situation quickly become more challenging if less stringent
(more artificial) filtering conditions such as § = 0.5 are used. In the near future,
we intend to extend our study to include an integer linear programming model
solved using CPLEX.

Beside this, from the methodological point of view, this work underlines the
fact that the practical exploitation of tree decompositions to solve structured
combinatorial optimization problems is not straightforward. Our experiments
show that, even on problems that have a nice visible structure, it is often very



profitable and sometimes crucial to restrict the maximum size of the separators
of the decomposition used. Theory says that separator size influences the space
complexity of structure-based algorithms such as BTD and RDS-BTD but in
practice, the improvement in efficiency is mostly explainable by the added free-
dom in variable ordering allowed by cluster merging, an observation consistent
with jegou et al. conclusions [7].

Our current algorithm still leaves areas for improvements. A attractive di-
rection would be to try to design a dedicated heuristic allowing for dynamic
adaptation of the maximum separator size of the decomposition. This could be
based on the specific structure of the input instance and could be achieved,
for a given decomposition, by analyzing treewidth variations as a function of
Smaz- Another more challenging direction would be to provide decomposition
algorithms aimed at producing small separators in the graph decomposition.
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