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Between full and non cooperation in the
extraction of a natural resource

N. Quérou* M. Tidball

Abstract

The model of resource exploitation developed in Lehvari and Mir-
man (1982) is considered and extended to account for the possibility
of strategic interactions under incomplete information. Specifically,
players are assumed to rely on simple non probabilistic beliefs on their
opponents’ behavior. Two cases are considered. In the first situation
players use a simple learning procedure, the second one results in a
dynamic game where states corresponding to the players’ beliefs must
be consistent with observed past plays. Closed form expressions of
the optimal consumption plans and state dynamics are derived, and
comparisons are made with the full information benchmark cases.

Keywords: Dynamic game; resource exploitation; non probabilistic be-
liefs.
JEL Classification: C73.

1 Introduction

The interplay between external and strategic effects is a main feature of many
economic issues. An illustrative example is the model of great fish war, as
developed by Levahri and Mirman in a seminal paper (1982). This study
highlights the main issue created by this interplay. Specifically, non coop-
erative behaviors in problem of resource management leads to an overcon-
sumption of the resource compared to a socially efficient (joint) management.
Different studies have focused on this issue of resource management (REF-
ERENCES). However, in most studies decision takers are assumed to have a
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perfect knowledge of the different characteristics of the setting, that is, the
information is assumed to be complete.

We revisit the model of Levahri and Mirman when the information is in-
complete, and decision takers do not have information on their opponents’
preferences. A learning procedure is introduced where decision takers are
assumed to form simple (non probabilistic) beliefs on their opponents’ be-
haviors. Beliefs have to be reasonable, that is, they need to be consistent
with observed policies. The procedure and feedback consistent solutions are
defined; then convergence is studied, and the resulting policy is compared to
the benchmark of complete information as developed by Levahri and Mir-
man both from an economic and environmental points of view. Closed form
expressions of the solution are obtained in the linear growth model, and sim-
ulations are developed in the general growth model. Specifically, it is proved
that there are situations where consistent solutions yield better outcomes
in terms of environmental sustainability compared to the case of complete
information Cournot Nash equilibrium.

There are different reasons for which we depart from the traditional bayesian
framework. The most important one is that we are interested in deriving
some insights regarding practical policy implications. As such we wanted to
develop a simple learning procedure that might be used as a heuristic. The
procedures developed in the present study might be quite useful because,
in each case, there is an explicit link between the initial conditions and the
resulting long run policies. As incomplete information is a usual character-
istic of resource extraction, the knowledge of an explicit link between initial
consumption and resulting long run dynamics might prove to be useful from
a practical point of view. We elaborate further on this point at the end of
section 4.

2 The model

The model developed in Lehvari and Mirman (1982) is briefly introduced.
Let x; be the stock of natural resource at time ¢. If ¢;; denotes agent 7 = 1,2
exxtraction at time ¢, then the evolution rule is given by

Ti41 = [l“t —C1t — CQ,t]aa 37(0) =9, OE (Oa 1]- (1)

We will assume that ¢; is the present consumption of country 7 and that
the utility function of country i is logarithmic, i.e, u;(¢;) = log(c;). Let
0 < B < 1 be the discount factor for both agents. When dealing with the
learning procedure we will consider the general biological rule introduced
above. However, in the second situation we need to restrict to the linear case



for analytical tractability. Let us first sum up some of the findings developed
in Levahri and Mirman (1982), as these results will constitute our benchmark
case.

3 Different types of behaviours

3.1 The cooperative case

In the case of a linear evolution rule the problem is:

o0
ity g 7 lontend loste)]
subject to
Tpy1 = Ty — Cip — Cog, To given.
Considering c¢i; = a;x¢, 1 = 1,2, we obtain

1= (1—ay —ag)zy, = (1—a; — ay)'zo.

The problem becomes:

{max} Z B'[log(ar) + log(az) + 2log(1 — a1 — as)]
ai,a2 =0
which implies:
_ _ c _ pt c 1- 6 t
am=ay=(1-0)/2, z{=pFm, cf= Tﬂ To.

3.2 The learning procedure: definition and conver-
gence results

We describe a situation of incomplete information and players are assumed to
be adaptive, i.e. they simply adjust their behavior by trial and error. Player
¢ has beliefs about the influence of its own consumption on the consumption
of its opponent. We will assume a very simple relationship that will be
described below.

At the beginning players have initial consumptions equal to ¢!, ¢2, which are
publicly observed. We assume that there is only a first order effect and we



assume that it is linear. Thus, the belief of player 7 on player j is of the
following form:

d = o +ai(c — ¢). @)

a¥ is the idea of player i regarding the nature of the strategic interaction
with its opponent j. Basically player i assumes that a variation of its own
consumption has a first order linear effect on j’s consumption. Even this form
of beliefs is very simple, the players’ behavior may be very diverse (ranging
from purely non cooperative if a = 0 to purely cooperative if « = 1). Once
the one shot game will be defined we will present the updating procedure
which introduces a dynamic perspective and makes the connection from one
period of consumption to the next one.
Taking beliefs defined by (2) into account player i determines its optimal
consumption ¢; as the solution of

max(c’, (¢ + a” (¢ = ¢)) ), (3)

C’L
where

UTILITYFUNCTIONTOBEDEFINED.

Assuming that a suitable second order condition holds, the (necessary and
sufficient) first order condition is

8H 8ql
= , 4
a% Z dq O 4)

in the present case this is equal to

Q +Zazl '_QZ +QZ)+
l#1

Z aig +1)P'(Q_; + Z (g )+ @i)ai — ci(@i) — time; ()
1#1 I#1

Given our assumptions the solution to this problem exists and is unique: it
results in a function

¢ = ri(ct, cd; (™)) (5)

The “one-shot game” has been described for each round %k of consumption.
Let us turn to the definition of the adjustment process. This process follows
strictly the one developed in Jean-Marie and Tidball (2006).
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At the end of period ¢, player i observes that the consumption of firm j is
cl. It concludes that its belief should have been (a*)" with

or

(6)

Each player needs to update its belief at the beginning of period ¢ + 1 to ac-
count for the difference between its beliefs at round ¢ and the actual behavior
of its opponent. It is assumed that each firm can estimate the consumption
of its opponent at the end of period t. Therefore, it can estimate the beliefs
that would have been actually optimal at round ¢ (as obtained in equation
(6)). It would adjust its beliefs according to this information. A weighted av-
erage of previous and optimal beliefs (using updating probability 0 < p; < 1)
is used to account for possible uncertainties (like imperfect observation of
outputs). Formally, the updating rule is:

) . d—d
a;ﬂ_l = (1 —pi)a? + p; C% — gz 3 (7)
or
3 o ri(dd s (al)g) — ¢
avy = (1 —pi)ay +p; J(—- v ( Zl)l;é]) i (®)

T (Cza d; (a’t

Remark 3.1. (7) is defined only whenr; and r_; have a value, and ifri(ct, of; (ai)12i) #
ct.

It is important to keep in mind that the procedure is iterative. In the
iterative framework all players apply the same rule simultaneously. A simul-
taneous move game takes place every period.

We will focus on the steady-state of system (7). If we assume that antici-
pation (7) converges, that is: af — a”" when t — oo, then, provided the
functions 7;(cf, ¢f; (a™),4;) are continuous with respect to (a”)..;, we obtain:

i g (g e (Y
a"L,]* — (1 _ pi)a”* D; TJ(C_., C_', ((l 'l*)lij) ? .
ri(c, s (a7 )izq) —

Since p; # 0, we obtain the fixed point equations:

it Tl 5 (@ i) — O (9)
ri(ct, s (@) ) — &



If r; is assumed to be continuous, ¢ = 7;(c’, c7; (a*"),;) is the stationary
consumption of players.

Since the utility function of each player is twice continuously differentiable,
and that the second order condition relative to (3) is fulfilled, the continuity
of r; follows from the implicit function theorem. Thus, equation (9) holds.
REGARDING THE ANALYSIS: try to write the utility function and what
you’ve sent me in the pdf file. Here is what I found regarding the state
dynamics:

Proposition 3.1. Consider the consumption plan {c{}; when players learn
according to the process defined previously, that is, for any period t:

xy— (1 —ay)c
(14 a)(1+apf)’

Now, suppose that the initial belief is such that a < 1; moreover, suppose that
the initial conditions of the problem are such that

(1+af)(1+a) —2>0. (11)

(R
Ct—

(10)

Then, for any period t, the stock of the natural resource as implied by the
above consumption plan z§ is such that x§ > 0.

Proof. We sketch the proof in the linear case for sake of simplicity, the same
reasoning applies in the general case.

By contradiction, denote by ¢ + 1 the initial time at which the stock is
exhausted, that is, we have 27 , = 0. Then, from the state dynamics and
from the expression of the consumption plan as given in (10), this implies
that we have

(1+8)(1+ ay)z; — 22+ 2(1 — a)e = 0,
[(1+3)(1+ a) — 2]z = —2(1 — ay)c. (12)

Now, since ag < 1, it can be checked that the sequence {a;}; is increasing.
Moreover, combined with assumption (11) it implies that for any period ¢,

(14 6)1+a)—2>0.
Thus (14 8)(1+a;) —2 > 0, which yields (since 27 > 0 by definition of ¢+ 1):
[(1+ 68)(1 + a;) — 2]z > 0.

But this inequality contradicts condition (12), as {a;}; is an increasing se-
quence that converges to 1 (thus (1 —a;) > 0) and ¢ > 0. By contradiction
we conclude the proof. O



3.3 The case of state-based beliefs: Nash equilibria

For agents © = 1, 2, the problem now is:

max tlog(c;
{Ci,t}tz:(;ﬂ g( ,t)

subject to
Tir1 = Xy — C1p — Co,  To glVEN.

As below, considering ¢, ; = a;x4, ¢ = 1,2 the problem becomes:

maxz,@t [log(a;) + log(1 — a1 — as)]

{a} 155
Which implies:

A T

Remark 3.2. Note that
c_ npt ﬂ t N
xy =[xy > (m) xg=1x,, Vit (13)

3.4 The case of state and strategy based beliefs
3.4.1 Feedback consistent solutions

Following with the non-cooperative case, from Jean-Marie and Tidball (2005)
[2] it is known that finding the feedback consistent solution to this problem
is equivalent to finding the solution to:

max Z ﬂtlogci,

{<} =%
subject to the following constraints:
Tpp1 = Ty — ;T — bjyr — cf;
and

_
Yt+1 = €



where initial stock xy and initial catch ¢} are common knowledge at the
beginning of the problem. For instance, for 7+ = 1, the dynamics of the
equivalent problem can be rewritten as follows:

Tpy1 — Tp = —Qo%y — boyy — C% (14)
and
Yt+1 — Yt = C% — Yt (15)

Now the principle of the maximum can be used, where the associated hamil-
tonian is (using (14) and (15)):

H = Bloge; + mi[—asw — boyy — ci] + Mlet — i)

For any period ¢ the first order conditions are:

oH B
= m 4 N=0
(96% C% 7Tt+ 1 )
OH
Ty — Tt—1 = _8—@ = Q2T
OH
)\t — /\t—l = —a—yt = bgﬂ't + /\t- (]_6)
From conditions (16) we obtain:
t
1 B o
= M= A=~y
“ T — )‘t, it (]_ — a2)t’ ! 2741

Using these expressions we can rewrite m, — A\; as

o\ = o n bamo . T l4+by—ay
T M —a)t T—a)t T (1—a)t l—ay

Thus, we obtain a final expression of the optimal consumption plan:

1—&2
mo(1 + by — ag)

¢ = [B(1—az)]’ (17)

Using this expression for ¢ = 0, we can deduce an expression of the initial

parameter my as:

1—&2
c(1+ by — az)’

o = (18)



Now we can rewrite the expression of the state dynamics. Let us denote

. b2+,6(1—a2) .
A B /6(1+b2 —a2)7T0’ (19)

now we can obtain that

1 1_
boc,_y + ¢ =

(B(1 — az))'A.

Thus, the state dynamics can be rewritten as:

T = (1 —ag)m — bacp 1 — ¢ = (1 — ag)z — [B(1 — ay)]"4;

or
t—1 {1 ﬂt
Ty = (1 - ag)txo - A(l — a,2)t—1 Zﬁl — (1 _ a2)tx0 _ A(l _ G’Q)t_lm-
- (20)

Now we can solve for the feedback consistent solutions. We consider sym-
metric solutions because we deal with a symmetric problem. Basically this
amounts to assuming ¢ = ¢2 = cp; since the problem is symmetric the so-
lution is symmetric too. This implies ¢; = ¢ = ¢ for any period ¢, hence
a1 = ag = a, and by = by = b.

Now we come back to the notion of feedback consistency. In the present
case the state vector of the dynamics defined by equations (14) and (15).
Specifically, at any period t the state of the process is given by (x4, ¢;1).
Thus, feedback consistency implies that the functional relationship that links
(x4, ¢;—1) to the belief of each country regarding the opponent’s optimal catch
at period t corresponds to the actual optimal policy of this country. Formally,
we must have:

axy + be, 1 = ¢ (21)

Thus, to obtain the feedback consistent solutions, one can rewrite condition
(21) using the expressions of ¢; and z; obtained in (17) and (20), and then
obtain the corresponding values of coefficients a and b.
Rewriting condition (21), we have:

1—-a

c = [B(1— a)]tm =



l1—a

7T()(].+b—a)'

al(1 — a)mo — A1~ a)t‘lll%g] +b[3(1 — a)]"!

Using the expression of A given by (19) and rewriting, we obtain:

_ _atl——a_ — Vaze — a b+ B(1 —a)
a=B-al gy = -l - G A T A B+ b= o)
HB(1 = o) alb+ (1 — a)] b(1 —a) )

Brel—a)1—B)(1+b—a)  Brol—a)(1+b—a)

Now feedback consistency is equivalent to looking for values of coefficients a
and b such that:

B a b+B(1—a)
O 1= ) Bro(l L b—a) (22)
and
alb+ B(1 — a)] n b(1 —a) _ l1-a
Bro(1—a)(1—B)(1+b—a) Bm(l—a)(l+b—a) 7r0(1+b—a)('23)

It is easily checked that conditions (22) and (23) yield the following solutions:

(2¢co — zo)(cof — 2¢o — o8 + Z0)
Beoxo

— 2
a=0,b=p; a:%ﬁ Tot+ co,b:
Ty

NOTICE: I think there is a mistake in the above expression of b, the first
term in the second expression must be (o — 2¢) instead of (2¢o — o).

Remark 3.3. e Note that the case a < 0 and b < 0 is not possible
(because in thi case ¢y < 0), then

1-p
Co 2> 2
NOTICE: AGAIN, DUE TO THE PREVIOUS NOTICE THERE IS
ONE CASE THAT IS NOT CONSIDERED, a < 0 and b > 0 is a
feasible case if my previous remark proves to be right. Indeed, a < 0 is
equivalent to cy < #xo, while b > 0 is equivalent to either xy > 2c
AND ¢y < %xo, OR xy < 2¢cy AND ¢y > %xo. The second case 1is

Zg-
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unfeasible, but the first case is feasible. If this is correct, then the case

where ¢y < 5= gato 1s feasible and can be analysed. If, in this case, the
optimal solution proves to correspond to
o= .Ioﬂ — Xy =+ 260 b _ (200 — .’L‘())(Coﬂ — 200 — LL'()ﬂ —+ LL'())

zof Beozo

then the corresponding consumption plan is
C
o= 5(1 — a)f'es = [1 = 22]'c
0

and the state dynamics is
260
B

In that case, provided that 1— Bxocy > 0 it can be checked that x; —; o0
0.

J{1 — Broco(1 — B°) }ao.

xt:[

e Note that a =0, b = 3 yields, fort > 1:

1-p3
= Be, =29 — 2—" ¢,
¢y = Beg1, T =T 1_ﬂ00
In order to have x; > 0 for all t we must ask for
1-p
¢ < 2 Tp.
Proposition 3.2. o If ¢ = %xo the feedback consistent solution is

given by
ﬂct 15 37{6 = f'x,.

log[l — (1 — 5)%
logs

o Lett= . Ifco > 58 the feedback consistent solution
18 given by

ﬁct 1 x{°:x0—21_ cy, 1<t

=0 zl°=0 Vit > 1.
Proof. By (17) and (18) we have that
¢ = [B(1 — a2)]'co.
15

Moreover, ¢y > ==z, implies a > 0, as utility is increasing in c; the optimal
solution is given by a = 0, b = 3. The formula for z; follows directly from
the dynamics. O
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4 Comparison

Proposition 4.1. Let ¢y = Oz, with 6 > #, then Vt

ot
x,f:ﬂtxOZ:co—Ql ﬂcozx{c

Proposition 4.2. Let ¢y = 0xy with 0 > #, then Vt

1-p B\t 1-p
.T{C:ﬁtajOZ.TO—Ql_ﬁCOZ(m)l‘o:])i\[ <:>0:T
Proposition 4.3. e Let cyg = %xo then m{c = xf. If the initial com-

sunption corresponds to that of the cooperative case then the feedback
consistent solution coincices with the cooperatif full information solu-
tion.

o Let ¢g > %xo then there exists t < t such that:

o) <z < g, t<t

IA

O<ai<alN<uaf, t<t<t

O=a{<alN <af t>t

5 Concluding remarks

We study a problem of resource management under incomplete information
when decision takers interact strategically and where each agent’s consump-
tion decision has an influence on the evolution of the size of the resource. A
learning procedure is developed where agents form simple non probabilistic
beliefs, which are updated according to available observations. The solu-
tion studied is such that beliefs must be consistent with observed behaviors.
Closed form expressions of the optimal policies are obtained and compared
to the benchmark studied by Levhari and Mirman. It is proved that there
are cases where the consistent solution yields better outcomes regarding the
resource management in the long run. This yields support to the procedure
introduced in the present study. Due to its simplicity one can think of a
potential practical application. From a practical point of view the present
procedures and game theoretical situations might be quite useful because,
in each case there is an explicit link between the initial conditions and the
resulting long run policies. In other words, the dependence of convergence

12



on the initial conditions explains which of the equilibria will prevail given
the initial conditions. As incomplete information is a usual characteristic
of resource extraction, the knowledge of an explicit link between initial con-
sumption and resulting long run dynamics might prove to be useful from
a practical point of view. Regarding potential applications, an important
point is the speed of convergence of the procedure. This is an important
issue since the growth rule might evolve as time goes by in practice. This
deserves further research.
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