Farmer’s protection strategies in peach orchards: aphid communities in S-E France as a case study
Servane Penvern, Joel Fauriel, Stephane Bellon, Benoit B. Sauphanor

To cite this version:
Servane Penvern, Joel Fauriel, Stephane Bellon, Benoit B. Sauphanor. Farmer’s protection strategies in peach orchards: aphid communities in S-E France as a case study. 7. Conference on Integrated Fruit Production; IFP/PFI 2008, Oct 2008, Avignon, France. 11 p. hal-02813914

HAL Id: hal-02813914
https://hal.inrae.fr/hal-02813914
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Farmers’ protection strategies in peach orchards: aphid communities in S-E France as a case study

Penvern S., Fauriel J., Bellon S., Sauphanor B.
INRA Avignon
• 16 000 ha (2% in OF), and 84% in the S-E of France;

• Aphids are major pests due to several species and different symptoms;

• Management control based on chemicals, but resistance and effects on non-target species;
Identification of farmer’s practices
⇒ on-farm semi-open interviews
⇒ Spray programs

Characterisation of protection strategies
⇒ selection of criteria / IOBC recommendations
⇒ Analysis of farmers’ interviews

Evaluation of protection strategies
⇒ impact on aphids’ population
⇒ impact on beneficials

Approach and outline of the presentation

1. Identification of farmer’s practices
2. Characterisation of protection strategies
3. Evaluation of protection strategies
4. Interpretation

20 orchards OF (8)/CF (12)
1/ Identification of protection practices

Management Indicators
- Level of monitoring (1/2/3)
- Previous infestation (0/1)
- Guidelines (0/1)
- Antagonists (0/1)
- Tolerance threshold (1)
- Aphid biology (0/1)

Cultural methods
- Nb foliar fertilisation
- Vigour management (0/1)
- Fertilisation management (N unit)
- Nearby environment management (0/1)
- Weed strips: shearing intensity (0 = high, 1 = low)

Alternative methods
- Mating disruption (0/1/2)
- Infested branch manual prune out (0/1)
- Nb autumn kaolin applications
- Nest box installation (0/1)

Direct control
- Total Nb of treatments
- Nb of treatments against aphids
- Product's efficacy (Peff)
- Application before blooming (Pos)
- Product's toxicity (Tox)
2/ Characterisation of protection strategies

Observations (axes F1 et F2 : 72,07 %)

-3 -2 -1 0 1 2 3 4 5

F1 (47,95 %) F2 (24,12 %)

Efficiency

Integrated

Preventive

Chemical

Potential

Toxicity

Biological

Cultural

Methods

Management

indicators

Alternative

Methods

Before blooming

Nbr Tm/season

Efficacy

OF CF

Nbre Tm/Aphids

Nbr Tm/Aphids

Efficacy

OF CF

Nbr Tm/Aphids
3/ Evaluation of the strategies (1/3)

Aphid communities

Myzus persicae (Sulzer)

Brachycaudus schwartzi (Börner)

Brachycaudus persicae (Passerini)

Hyalopterus amygdalii (Blanchard)

Myzus varians Davidson

Chrysopidae

Coccinellidae

Syrphidae

Forficulidae
3/ Evaluation of the strategies (2/3)
Impact on aphids

Kruskal-Wallis:
Df=3, P=0,000

IF/species/plot

Impact on aphids

M. persicae
B. schwartzi
B. persicae
M. varians
H. amygdali

Protection strategy
CF OF

C E P I

Kruskal-Wallis:
Df=3, P=0,000
3/ Evaluation of the strategies (3/3)
Impact on beneficials

Kruskal-Wallis:
R : Df=3, P=0.006
H : Df=3, P=0.008

<table>
<thead>
<tr>
<th>Insect Family</th>
<th>B. schwartzi</th>
<th>B. persicae</th>
<th>H. amygdali</th>
<th>M. varians</th>
<th>IFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccinellidae</td>
<td>0.58</td>
<td></td>
<td>0.533</td>
<td>0.702</td>
<td></td>
</tr>
<tr>
<td>Syrphidae</td>
<td>0.473</td>
<td>0.481</td>
<td>0.639</td>
<td>0.606</td>
<td></td>
</tr>
</tbody>
</table>

Abundance (N)
4/ Interpretation (1/2)

<table>
<thead>
<tr>
<th>Management Indicators</th>
<th>M. persicae</th>
<th>B. schwartzi</th>
<th>B. persicae</th>
<th>H. amygdali</th>
<th>M. varians</th>
<th>IF</th>
<th>N</th>
<th>R</th>
<th>H</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.479</td>
<td>0.558</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous infestation consideration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.459</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidelines consideration</td>
<td></td>
</tr>
<tr>
<td>Antagonists consideration</td>
<td>0.455</td>
<td>0.45</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.464</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphids' biological knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.506</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative methods</td>
<td>-0.574</td>
<td>0.564</td>
<td></td>
<td></td>
<td>0.72</td>
<td>0.732</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mating disruption use</td>
<td>-0.454</td>
<td>0.495</td>
<td>0.542</td>
<td>0.565</td>
<td>0.543</td>
<td>0.707</td>
<td>0.613</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infested branch manual prune out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.519</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number autumn kaolin application</td>
<td></td>
<td></td>
<td></td>
<td>0.658</td>
<td>0.526</td>
<td>0.519</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nest box installation</td>
<td>0.658</td>
<td>0.526</td>
<td></td>
<td></td>
<td></td>
<td>0.733</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural methods</td>
<td>0.539</td>
<td>0.546</td>
<td>0.525</td>
<td>0.546</td>
<td></td>
<td>0.6</td>
<td>0.733</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of foliar fertilisation</td>
<td></td>
</tr>
<tr>
<td>Vigour management</td>
<td></td>
<td></td>
<td>0.525</td>
<td>0.546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilisation management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.679</td>
<td>0.574</td>
<td>0.596</td>
<td>0.499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nearby environment management</td>
<td></td>
</tr>
<tr>
<td>Weed strips : shearing intensity</td>
<td>0.555</td>
<td>0.551</td>
<td>0.649</td>
<td>0.547</td>
<td></td>
<td>0.768</td>
<td>0.698</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direct control

Total Number of treatment	0.562				
Number of treatment toward aphids					
Product's efficacy	0.495				
Application before blooming	0.576				
Product's toxicity	0.490	0.510	0.482	0.635	0.486
Direct control methods with efficient and toxic products are correlated with low IF (the number of treatment being independent).

No correlation between IF and management indicators, cultural and alternative methods.

However, such methods promote diversity in aphid communities.
Discussion

Can protection strategies be both efficient and ecologic?

- Efficiency and Ecology appear as incompatible,
- Adequacy with farmer’s objectives and production strategy.

⇒ Need for new methods (peach tree resistance, environment management, eligible alternative products, etc.).

Relevance of protection strategies and steps towards integration:

- Internal variability within organic and conventional management systems,
- Organic as a prototype for integration? « Integrated Organic » strategy appears as a more advanced stage…
- Trajectories from chemical to integrated?