

The impact of soil micro-organisms on the diurnal $\delta 180$ signals of soil CO2 exchange

Lisa Wingate, Jérôme Ogée, Régis R. Burlett

▶ To cite this version:

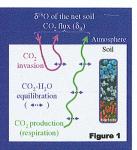
Lisa Wingate, Jérôme Ogée, Régis R. Burlett. The impact of soil micro-organisms on the diurnal $\delta 180$ signals of soil CO2 exchange. Workshop on Application of stable isotopes for studying and modelling soil respiration and soil organic matter cycling, Sep 2009, Innsbruck, Austria. n.p., 2009. hal-02814141

HAL Id: hal-02814141 https://hal.inrae.fr/hal-02814141v1

Submitted on 6 Jun 2020

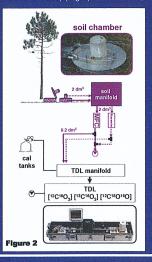
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The impact of soil micro-organisms on the diurnal $\delta^{18}\text{O}$ signals of soil CO_2 exchange


Lisa Wingate 1,2 Jérôme Ogée 2 & Régis Burlett2

¹University of Edinburgh, School of GeoSciences, Edinburgh – ²EPHYSE, INRA, Centre de Bordeaux, France Corresponding authors - *Lwingate@ed.ac.uk and ogee@pierroton.inra.fr*

Why study the δ^{18} O signal of soil CO₂ fluxes ($\delta_{\rm R}$)?

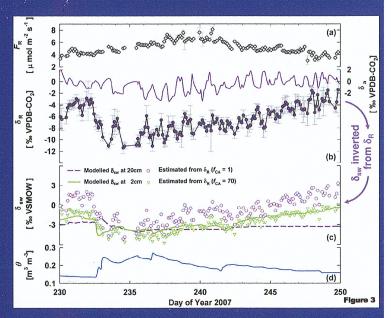

Currently, the precise response of terrestrial CO₂ sources and sinks to changes in climate remains uncertain and its understanding requires the ability to quantify the amount of CO₂ taken up during photosynthesis **separately** from the amount released by respiration. Because photosynthesis and respiration produce different ¹⁸O signals, the δ ¹⁸O of CO₂ in the atmosphere (δ _a) is a tracer of photosynthetic and respiratory CO₂ exchange.

The net soil-atmosphere CO_2 exchange (F_R) is composed of CO_2 molecules moving from the atmosphere into the soil and back to the atmosphere (invasion) and further CO_2 molecules produced during soil respiration (Fig 1). During CO_2 hydration, an isotopic exchange occurs, causing both invasion and respiration to reset the oxygen isotope composition of soil CO_2 to that equilibrated with soil water (δ_{sw}) and modify δ_a . Recent studies have indicated that the rate of this isotopic exchange is much faster than theory predicts $(f_{CA}>>1)$ and could result from the enzymatic activity of soil micro-organisms.

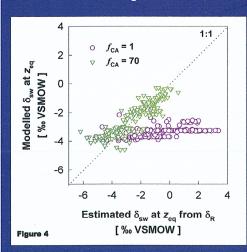
Field set-up

We set out to investigate the oxygen isotope signal of the net soil CO_2 flux (δ_R) using open soil chambers coupled to a tunable diode laser spectrometer deployed in a Maritime pine forest in France (Le Bray, FLUXNET site) (Fig 2).

Results


Diurnal and synoptic variability in both the CO₂ flux rate $(F_{\rm R})$ (Fig 3a) and the oxygen isotope signal of the net soil CO₂ flux $(\delta_{\rm R})$ (Fig 3b) were observed during our study.

The diurnal variability in δ_R was driven by changes in temperature, flux rate and the difference in isotope composition between CO_2 equilibrated with soil water and that of the atmosphere (δ_a) .


The synoptic variability was characterised by a gradual depletion of soil water content (θ) punctuated by a few distinct rain events (Fig 3d).

The first rain event had a large depleting effect on $\delta_{\rm R}$ because the soil water isotope signal $(\delta_{\rm sw})$ was reset to that of incoming rain around -5% VSMOW (Fig 3b).

In the dry periods between rain events δ_R become more enriched as a result of evaporation enrichment of soil water δ . (Fig.3b and 3c)

Do soil micro-organisms increase the rate of CO₂ hydration in soils?

Because the δ_R signal depends on the isotopic composition of soil water $\langle \delta_{sw} \rangle$ it is possible to investigate the rate of CO_2 hydration in soils.

First we inverted δ_{sw} from δ_{R} observations and compared these to estimates of δ_{sw} obtained from a multi-layer coupled heat, water and stable isotope transport model (Fig 3c).

When CO₂ hydration was assumed to follow existing theory (i.e. no enzyme activity) we found that the modelled δ_{sw} remained fairly constant at ~-3%c at the theoretical depth of full equilibration between CO₂-H₂O (z_{eq}) at ~20cm depth. The inverted δ_{sw} estimates displayed unnatural levels of diurnal variability that were very different from the modelled δ_{sw} .

When the rate of CO $_2$ hydration was made 70 times faster than the uncatalysed rate we found very good agreement between the estimates of $\delta_{\rm sw}$ inverted from $\delta_{\rm R}$ and those predicted by the model at a depth of 2cm (Fig 3c and 4).

Conclusion

We provide evidence in this study for rates of CO₂ hydration roughly 70 times faster than those predicted by theory.

Faster CO₂ hydration can occur in the presence of carbonic anhydrase an enzyme produced in many soil dwelling microorganisms

This study adds to the growing evidence for CO₂ hydration rates 20-400 times faster in the soils of many different ecosystems.

This process must be accounted for if we want to use the $^{18}\mathrm{O}$ of atmospheric CO_2 as a tracer for gross CO_2 fluxes.

Next steps

More experimental work is now needed to establish the mechanistic basis underpinning the observed differences in CO₂ hydration in different ecosystems.

Acknowledgements – This work was supported with salary for LW through a CarboEurope-IP grant awarded to Professor John Grace (University of Edinburgh), an ANR grant (MIST) awarded to JO and a Marie Curie Intra-European Fellowship (LATIS) awarded to LW. Additional funding support for the experiment was provided by the Region Aquitaine in the grant "Durabilité" held by Céline Meredieu, the Ore-F-ore-T grant awarded to Denis Loustau and an INRA-EFPA Projet Innovant (2006) grant awarded to JO. We thank Michel Sartore, Cathy Lambrot, Marion Devaux and Andy Cross for their field assistance and Luis Araguas Araguas (IAEA) for the GNIP data. We also thank Martina Schmidt (LSCE), Willi Brand, Armin Jordan and Michel Rothe (Max Planck Institute for Biogeochemistry), along with the IMECC structure for calibration assistance. We also thank Mark Bakker (INRA TCEM) for fine root data used in the soil water transport model and Dave Bowling for helpful discussions on TDL calibration procedures.