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Abstract

The econometric estimation of zero censored demand system faces major difficulties. The
virtual price approach pioneered by Lee and Pitt in an econometric framework is theoretically
consistent but empirically feasible only for homothetic demand system and even may fail to
converge depending on initial conditions. In this paper we propose to expand on this approach
by relying on the generalized maximum entropy concept instead of the Maximum Likelihood
paradigm. The former is robust to the error distribution while the latter must stick with a
normality assumption. Accordingly the econometric specification of censored demand
systems with virtual prices is made easier even with non homothetic preferences defined over
several goods. Illustrative Monte Carlo sampling results show its relative performance.
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Introduction

When assessing economic issues at a very detailed level (like the effects of trade policy
instruments defined over thousands of goods), one is very likely to be confronted with huge
amount of zero values (in the trade case, see Haveman and Hummels, 2004). The simple
practice which consists of ruling out these particular values is well known to be misleading
(Romer, 1994, Wales and Woodland, 1983). However their specifications have always been
proved to be difficult for quantitative modellers. This paper deals with the econometric
challenges associated to the estimation of zero-censored demand systems. Simulation
challenges are for instance explained in Gohin and Laborde (2006).

The estimation of zero-censored demand systems faces two main difficulties. First the
estimators must take into account that the endogenous variables can not be negative and
traditional methods like the least squares (LS) or maximum likelihood (ML) don’t allow this
censorship. Second prices associated to the zero flows are not observed unless strong
assumptions (like average price of previous years or price of your neighbour) are enforced.
For a long time two general approaches have been devised to estimate such demand systems:
a) a “statistical” approach where the focus is on the random disturbances, b) an “economic”
approach where the focus is on the economic reasons (virtual prices) that justify these zero
values.

The first one is a two-step procedure of Heckman’s type: in a first step we statistically
determine whether values are positive or not. Then in a second step we estimate the positive
values taking into account the results of the first step (with the inverse Mill ratios). This
approach is widely used (Yen and Lee, 2006 for instance) because this does not require to get
prices associated to the zero values. However Arndt et al. (1999) point to the lack of
economic theory under this approach and furthermore show with Monte Carlo experiments
that the results from the first approach are as bad as those from using the simple ordinary LS
approach (which is known to be a biaised and inconsistent estimator in these instances).

On the other hand the second approach (pioneered by Lee and Pitt, 1986) is fully consistent
but empirically untractable with non homothetic demand systems. This problem was already
acknowledged by these authors. In fact we have not been able to find empirical papers using
this approach with a flexible and non homothetic functional form like the non linear translog.
Some computational works are nevertheless under way to resolve this approach through
simulated ML techniques for high dimensional integrals (Hasan et al., 2002).

More recently Golan et al. (2001) rely on the Generalised Maximum Entropy (GME)
econometric method to estimate a censored non homothetic Almost Ideal (AI) demand
system. The GME technique has several advantages: it is robust to assumptions on errors, its
asymptotic properties are similar to those of traditional estimators but Monte Carlo
experiments show better properties in small sample cases (van Akkeren et al., 2002) and
restrictions on parameters are easily introduced. Basically Golan et al. (2001) extend a former
paper of Golan et al. (1997) from a single equation to a demand system. This new method is
intermediate between the two formers in the sense that some theoretical restrictions on
demand systems (adding up and concavity on observed consumption) can be imposed during
the single-stage econometric procedure. On the other hand, the existence and role of virtual
prices as formalised by Lee and Pitt are not acknowledged.



The main contribution of our paper is to offer a new way to estimate zero-censored and non
homothetic demand system by combining the advantages of the virtual price approach and the
GME technique (instead of the maintained assumption of normality as in the ML). In order to
illustrate the relevance of our solution, we first compare the GME/ML estimations on a simple
simulated censored homothetic demand system. It appears that, when initial values are set
close to true values, both estimations return similar structural parameters. When these initial
values are set randomly, then the GME outperforms the ML estimations. Then we evaluate
our econometric solution with a simulated non homothetic censored demand systems. It
econometric performance is unchanged.

Another related contribution of this paper is to question the properties of the GME estimator
derived by Golan and his co-authors. Our doubt applies to both single equation and demand
systems cases ; in this paper we present our view on the latter. Basically it seems to us that
when deriving the properties of their estimators they are making as if their models were not
censored. In other words they define a Kuhn and Tucker constrained maximisation program
but fail to recognize inequalities when deriving it.

This paper is organised as follows. In a first section we briefly present the non linear translog
demand system that supports our analysis. In the second section we explain the virtual price
approach developed in Lee and Pitt (1986) and the computational difficulties associated with
the maximum likelihood estimation of this system when censored at zero. We turn in the third
section to the approach suggested by Golan et al with the GME techniques. Then we detail
our approach in the fourth section that combines the advantages of previous ones and report
the results of our Monte Carlo experiments in the fifth section. Section six concludes.

1. The translog demand system

Several flexible demand systems for the representation of consumer behaviour have been
proposed in the literature. In this paper we choose the translog demand system because Van
Soest et al. (1993) shows it desirable properties for dealing with zero censoring. In particular
it is possible to globally impose regularity without destroying flexibility and moreover the
existence of virtual prices dual to zero flows is ensured, even if the demand system is non
homothetic.

Let’s start with a random indirect utility function to represent the behaviour of a consumer i

choosing among different goods indexed by k& or /. This indirect utility function has the
following form:

_ P Pui | 1y Pui Pii
V(P,R.,e)= Zk:ak.ln( R J+O.5.;Zﬂk,.ln( R J.ln( R j+;ek.1n( 2 J (1)

1

with usual notations for variables. Like Lee and Pitt (1986), we adopt the following
normalisation rule (which ensures adding-up)

Zak =-1
k

and furthermore assume that
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Then from the Roy’s Identity we obtain the corresponding marhallian demand system
expressed in shares form:
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This representation of preferences is globally regular if the matrix made of the f parameters

is symmetric (symmetry condition of the slutsky matrix) and positive definite (concavity
condition of the expenditure function). By definition of the translog indirect utility function
the homogeneity condition is satisfied. This representation remains flexible in the Diewert
sense (second order flexibility) even if we impose that the sum over all these f parameters is

null:
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This restriction leads to the so called log translog model which is of particular interest in
empirical applications that use aggregate data because it is consistent with a notion of exact
aggregation of individual demand functions (Moschini, 1999).

Marshallian prices and income elasticities of these demand functions are given by (with the
household index removed) :
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From the last equation, it appears that imposing homothetic preferences requires that:
S5, =0 (6)
J

In that case the denominator in equation (2) reduces to —1 and the demand system is then
linear in structural parameters.



2. The virtual price approach with maximum likelihood

So far we still have not considered zero consumptions. Following previous papers (like Neary
and Roberts, 1980) Lee and Pitt propose to deal with this zero censoring by relying on the use
of virtual prices. They show that there exist vectors of positive virtual prices 7,, which can

exactly support these zero demands as long as the preference function (whether of the translog
type or not) is strictly quasi-concave, continuous and strictly monotonic. Assuming that
demands for the first L goods are zero while strictly positive for the others, then these virtual
prices are solution of the following system of L equations:

0=0aV(z, p,...Re)/ o, [=1,..,L (7)

It must be clear that these virtual prices are not simple calibrated parameters solving a squared
system of L equations and variables ; they do appear in the demand functions of positively
consumed goods.

For instance, let’s adopt in the rest of this section a three good translog indirect utility
function. If only good one is not purchased by consumer i then we have the system:
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The virtual price of good one not purchased by this consumer is defined by equation (8) and
then appears in both numerators and denominators of equations (9) and (10) of the two other
demands. This virtual price is by definition non observed and during the econometric
procedure must be treated like other structural parameters as a variable to be estimated.

One additional assumption made by Lee and Pitt to compute this likelihood function is that
this virtual price is lower than an “observed” market price:

T S Py (1T)



Then using the definition of the virtual price (equation 8) this allows them to restrict the
domain of variation of the first error term. They are finally able to derive the likelihood
function to be maximised under the assumption of the normality of all error terms.

a. The simplifying case of homothetic demand system

From these equations above it seems obvious that assuming homothetic preferences will ease
the econometric estimation because the denominators reduce to —1. But even in this case this
estimation is already challenging : the randomness of this virtual price and its non linear
interaction with other structural parameters greatly complicate the expression of the likelihood
function. We first detail this case in order to then show the impossibilities we are confronted
with the non homothetic case.

Let’s stay on this regime where only good one is not consumed. The ML estimation method
consists in computing the likelihood of each observation, that is the join density of the
endogenous variables, and then maximising the sum of these likelihoods over all
observations. In our case of three goods Translog demand system, the additivity constraint
allows to only take the two first goods into account. The likelihood of one observation is thus
noted /(w,,,w,,/x,), x, representing all the data we have for that observation. That likelihood

is given by:
I(wy,, wy, 1 x;) = P(Wli =0,w,, /xi) (12)
with
o ar P
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with the simplifying notation : B,, = @, + Z B ln{%J
i
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From the inequality restriction (11) on the virtual price, we then have w,, =0 <> e, > —B,..

Hence that likelihood is also given by: l(wli,WZi/xi):P(eli <-B,,w,/ xi) and can be
computed in two alternative ways, i.e. conditional on the consumption of good 2
L(wy;,wy, / xl.)=P(eh. S—Eu/wszi)P(Wz,-/xi) or conditional on the restriction on the first
error term l(wll.,wzl./xi)=P(w2i/eh.S—Ei,xi)P(eliS—Ei/xi). These two procedures
reported in annex 1 gives the same expression of the likelihood function:
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with notations explained in this annex. We can derive “similar” likelihood functions for other
regimes (depending on which goods are consumed or not) and then express the likelihood
function to be maximised. We finally note that, for the derivation of this last expression, we
use the parameters restriction given by the concavity condition.

b. The unmanageable case of non homothetic demand system
Our objective now is to show the computational difficulties to deal with this censoring and

non homothetic demand system. The denominator in the demand (shares) equation is no
longer a constant. The corresponding equations to (13) and (14) are now given by:
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with the other simplifying notation D, = -1+ ZZﬂk, ln(%]. We have still two ways to
ko1 j

1

compute the likelihood expression of this regime. Let’s start with the conditional likelihood
on good 2 consumption: /(w,,w,,/x;) = P(ell. <-B,/w,,,x, )P(WZi /x;). In that case we need
to know the distribution of w,, subject to the data. Combining (13°) and (14”) gives:
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From this expression we see that we have a ratio of two normal distributions which are not
centred, nor reduced. Accordingly we can not know the distribution of this observation ; and
hence we are able to write the likelihood function for that observation. Let’s move on the

second strategy where [(w,;,w,,/x;)= P(wzl. /e, <—B,,x, )P(ell. <-B, /x;). From expression
(16) and using appropriate notational changes, we can write:
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Now the distribution of w,, subject to the first error term and all other data is normal. We are
thus interested to get its expectation and variance. Let’s start with the expectation:
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In this expression E(e,,/e,) corresponds to the orthogonal projection of e; on eyj, i.e. to the
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with V(e,, /e;)= s,*(1-r?)

When computing the likelihood function we in fact also need the square root of this variance
(the standard deviation) which must be positive by definition. Unfortunately nothing ensures
that the first bracket term in the variance expression ( B, + f,;¢,;) is strictly positive. It can be
maintained positive by taking its absolute value but such mathematical device introduces in
fine a discontinuity in the likelihood function. In general cases solving this ML program is
likely to fail. And we ignore here the computational issues associated to the concavity of the
expenditure function and stay on a three good example !

3. The generalised maximum entropy approach with inequalities

Golan et al. (1997) on a single equation case, then Golan et al. (2001) on an Al demand
system propose another way to deal with zero-censoring. Instead of assuming normality of
error terms as in the ML approach, they develop GME estimators which are robust to the
specification of these error distributions. In a very general way, there are still a small number
of GME applications, possibly because these estimators have no closed form solutions. We
first briefly present this estimation method before turning to the development by Golan and co
authors to deal with censored demand system.

a. The Generalised Maximum Entropy approach

Let’s assume first that one want to estimate a homothetic translog demand system given by
equations (2) and (6). In a compact form, this system can be written as:

Y=XB+¢ @

In the GME literature, this relation is often refereed as the consistency condition. In order to
define an entropy objective function, structural parameters B as well as error terms & are

first expressed in term of proper probabilities (p and w, respectively). This requires the
definition of support values for these structural parameters (Z ) and error terms (V). GME
estimators are then solution of the following maximization program:



max —p.Inp-w.lnw

(22)
s/t Y=Xp+e=Xp+Vw

Solving this extremum program does not lead to closed form solution to the proper
probabilities and thus to structural parameters and error terms. However Golan et al. (1996)
show that this program can be expressed in terms of Lagrangian multipliers associated with
the consistency condition (22) only. They are thus able to compute their asymptotic properties
as with any other extremum estimators under standard assumptions. If a) error terms are
independently and identically distributed with contemporaneous variance covariance matrix
¥, b) explanatory variables are not correlated with error terms, ¢) the “square” matrix of
explanatory is non singular and d) the set of probabilities which satisfy the consistency
condition is non empty, then

p-np. (v o)) (23)

Accordingly, the assumptions a) and b) can be tested using the usual statistical tests (the
Durbin Watson test for first order autocorrelation or the Hausman test for the exogeneity of
regressors). If, for example, the Durbin Watson test does not accept the null of no first order
correlation, then the extremum program (22) can easily be expanded in order to specify a first
order autocorrelation of residuals. In the same vein, if the Hausman exogeneity test concludes
to endogeneity of regressors, then the extremum program (22) can be expanded with
instrumental variables.

b. The censoring with the Generalised Maximum Entropy approach

Proponents of the GME approach claim that the imposition of implicit/nonlinear/inequality
constraints on parameters is easily done because the GME estimators are only implicitly
defined as the solution of an optimisation program subject to constraints. This leads Golan et
al. (2001) to estimate a censored Al demand system with the two following sets of equations:

Wy =, + 7y log(p,)+ B log(R, / P)+e, when w, >0 (24)
i

Wi > 0 + Z?’kz log(p;)+ fy-log(R; / F) + e, when w, =0 (25)
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with P the translog price index.

We have two major concerns with this approach.' First the existence and role of virtual prices
are not acknowledged and we don’t really know why a consumer purchases or not one good
(equation 25). Moreover positive consumption are determined by their market prices as well
as the market prices of non consumed goods (equation 24). This procedure is efficient only if
one can observe these latter market prices and if they correspond to the true virtual prices.
This second assumption is very unlikely to hold and the econometric problem can thus be
viewed as a error of measurement issue.

Second these authors conduct statistical tests on structural parameters using traditional
formulae (23). In fact, it appears that when they derive the properties of the censored GME

" In addition to the fact that they also ignore concavity conditions which is unfortunately too common (Barnett,
2003).



estimators, in both papers inequalities are reduced to equalities (see equations A5 in Golan et
al. (1997) and the appendix in Golan et al. (2001)). This may be explained as follows.

The GME estimator is an extremum estimator where the constraints are represented by the
consistency conditions. When forming the Lagrangian of this maximisation program,
inequality constraints are premultiplied by Lagrangian multipliers and, without care, nothing
ensures that the underlying constraints are equalities or inequalities. In other words, we are
not able from the following program to know if theoretical constraints are binding or not:

L(p,w,ﬂ,;Y,X):—p.lnp—w.lnw+ﬂ,(Y—XZp—Vw) (26)

where we simplify the notation by assuming proper probabilities on parameters and error
terms. Newey and McFadden (1994) show that one necessary condition for these extremum
estimators to be consistent and asymptotically normal is that:
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This derivative is simply the consistency condition which expectation does not equal zero
when strict inequality does prevail. On the other hand, the bias is given by the expected
difference between the “binding values” and the “latent values”:

bias =Y — X, — E(¢) (28)

Our understanding thus is that “censored” GME estimators as defined by these authors are
biased. This view is consistent with the results of Monte Carlo experiments reported in Golan
et al. (1997): GME estimates always have Mean Square Error (MSE) greater than their
variances while ML estimates may be unbiased (depending on the experiments). Nevertheless,
these same Monte Carlo experiments show that GME MSE are much lower than MSE from
other estimators, implying that variance reduction obtained with the GME approach is a very
important asset.

4. Our solution: the virtual price concept with Generalised Maximum Entropy

The virtual price approach of Lee and Pitt is nice from a theoretical point of view but
empirically untractable with ML estimation technique. On the other hand, the no closed form
GME solution is easy to implement and solve. We thus propose to combine these two
branches of econometric literature.

Like Lee and Pitt, we start by recognizing that virtual prices are variables to be estimated
simultaneously with other structural parameters. On the other hand, while Lee and Pitt makes
substitution to reduce the dimension of the econometric program, we directly specify the
virtual prices variables in our GME program like other structural parameters. So they are the
product of proper probabilities and support values.

Our full program to estimate a censored, non homothetic and globally regular translog
demand system is given by (with m the index for support values):
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This program obviously deserves several remarks. The first two terms in the objective
function and the first two lines of constraints are quite usual in GME programs: they
correspond to the entropy on the o structural parameters and the error terms and to their
(proper) definitions respectively. The third term in the objective function is the entropy
related to virtual prices while the third line of constraints their proper definitions. To simplify
the notations, we introduce virtual prices for all goods, positively consumed or not. But we
only maximise the entropy function when virtual prices are truly endogenous variables and
not constrained to be equal to market prices when the consumption is strictly positive (hence
the Kronecker delta). This is the purpose of the sixth line of complementary constraint which
basically implies that the virtual price is equal to the market price when the good is positively
consumed, is endogenously determined otherwise. The last term in the objective function
corresponds to the entropy related to new variables introduced to impose the concavity
condition (and fourth line of constraints their proper definition). Basically this condition is
maintained by adopting a Cholesky decomposition (Lau, 1978) (see seventh line of constraint
expressed in matrix form). Finally the fifth line of constraint is obviously the demand system
and finally the last inequality ensures that the indirect utility function is an increasing function
of the income. More generally the two last constraints ensure the translog demand system is
globally regular, hence that there exists only one system of virtual prices and finally that the
maximisation program (29) is feasible and have one unique global optimum (Van Soest and
Kooreman, 1988).

Without being ideal our solution offers several advantages compared to current approaches to
deal with censored demand systems. First unlike the Lee and Pitt approach, analytical
expressions of virtual prices are not needed to formulate the extremum maximisation
program. Accordingly we are not constrained in the definition of our program to restrict
ourself to a very limited number of goods. Moreover we are not constrained by the flexible
functional form used to represent preferences. On the other hand we must admit that this form
must be globally regular, i.e. at every point, in order to ensure the existence of a solution and



the translog is a very good candidate. At this stage we mention that some works are under
way to define regionally regular functional forms (for instance Wolf and al., 2006) which are
by definition intermediate between the locally and globally regular ones. The tricky issue here
is to correctly define these so called inner regions.

Second our solution does not require to know the market prices that prevail when the good is
not consumed. On the contrary, the Lee and Pitt approach start from the explicit assumption
that virtual prices are lower than market prices. We admit that there are some cases
(household surveys) where the econometrician is able to find good proxies for these market
prices. There are also cases where adopting a market price is not trivial. For instance let’s
assume that one country (say France) is not importing a good from another one (say
Germany) in a particular year and imports are non minor otherwise. Should we take this
particular year export price of the latter (Germany) to a third one (say Netherlands) would
imply that German production is homogeneous. However from the previous years we may
observe that German export prices are differentiated by countries. In fact we have the
possibility with our solution to capture the level of market prices when they exist. We can
simply introduce this information when we define the upper bound of the support values

(Zzzkim )

Third our solution allows to specify a demand system which is simultaneously zero-censored,
non homothetic and globally regular. We thus stick with all properties of the micro economic
theory of consumer behaviour. In fact the current literature on the econometric estimation of
demand systems either focuses on the monotony property or on the concavity property of the
underlying expenditure functions. Both issues are seldom acknowledged simultaneously.
However Barnett (2002) and Barnett and Pasupathy (2003) strongly argue for the joint
consideration of these two properties because partial adoption of these properties may lead to
false economic analysis.

On the other hand our solution is not completely ideal in the sense that it seems to us
impossible to derive the asymptotic properties of our proposed estimators in the general non
homothetic case. This is not really surprising because otherwise ML estimators would exist.
Accordingly we only empirically determine the properties of these estimators by relying on
bootstrapping techniques (Gallant and Golub, 1984). Finally we mention that in the simpler
homothetic case it is possible to derive these properties as in the ML case (Newey and
McFadden, 1994).

5. Sampling experiments

In the general case, our proposed estimator can not be expressed in closed form and
consequently its finite sample properties can not be derived from direct evaluation of the
estimator functional form. Accordingly we report in this section the results of Monte Carlo
sampling experiments. We first compare it to the Lee and Pitt ML approach in a three good
homothetic case and then move in a second step to a non homothetic case. We previously
detail our databases.

a. Data assumptions.

In order to generate our data, we first assume some true values for structural parameters. In
the homothetic case these assumptions are:
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Then we generate series (1000 points) for the log of prices and log of expenditure according
to independent centred normal distributions with variances equal to 0.3. On the other hand we
assume a correlation among error terms and simulate a joint normal distribution. In order to
do that, we first drawn from two independent centred normal distributions with variances
equals to 0.1 and then generate, through a Cholesky decomposition, a third one assuming a
correlation between the two formers. The resulting joint distribution is the following:

e, 0Y( s> ps,$, )
~N ; with 5, =5, =0.084and p =0.565
e, 0)\ps;s, s,°

With all these data, we then simply apply equations (2) to determine 1000*3 shares. Some of
them are negative: 30.6% for the first good, 17.7% for the second good while the third one is
always consumed. This reduces the dimension of our problem when estimating with the ML
approach. This does not prevent the comparison between the two approaches.

For these cases when negative shares do appear, we define a new model where we impose that
these shares are null. This allows to compute virtual prices. In the same time the shares of
positively consumed goods are modified with the “virtual price demand system” in order to
fully satisfy theoretical conditions. During this process we constraint the marginal utility of
income to be positive. We end up with a dataset containing 1000 theoretically consistent
observations of a three good system with some zeros. In that case we have information on the
market prices as well as on the virtual prices. The purpose of the econometric estimation is to
retrieve the latters as well as the structural parameters.

In the non homothetic case, we only modify the matrix of £ structural parameters while all
other assumptions are maintained. This matrix is now:

03 —0.1 —025
A=l -01 05 -03
~025 —-03 0.5

With these parameters, income elasticities are respectively equal to 0.5, 1 and 1.5. The
number of negative demand shares are equal to 22.7% for the first good, 16% for the second
good and still none for the third good. We proceed as above to determine the virtual prices
and the final non homothetic dataset

b. Econometric results on the homothetic case

When one wants to perform GME econometrics, it is necessary to define the number and the
level of support values for all econometric variables. This possibility is widely discussed in
the GME literature. Proponents of this approach argue that this is a means for the
econometrician to incorporate out of the sample information. Opponents claim that this allows
the econometrician to bias the results. In the results of experiments reported below we always



assume that there are three symmetric support values for each econometric variable. We
define very large support values so as to not introduce a priori information on structural
parameters, i.e. —10, 0 and 10. The support values of the error terms are given by -1, 0 and 1.
On the other hand we assume like Lee and Pitt that virtual prices can not be higher than
market prices when defining their support values. We also assume that these virtual prices can
not be negative (the lower bound of log of price is —2).

The GME estimation is performed with the GAMS software. The ML one has been conducted
on the SAS software because GAMS does not allow to solve integrals with endogenous
bounds.

In both methods, the program is highly non linear. Arndt et al. (1999) advocate to use simple
LS results to give starting values. In a first try, we choose as starting point the true values of
parameter. The results we obtained are presented in the table below :

initial values = true values
ESUmated | Esumated
virtual virtual
prices / prices /
True virtual| Market
beta alpha r s1 s2 R? prices prices
< 3 0.5 -0.25 -0.25 -0.1
Zg % -0.25 0.5 -0.25 -0.2 0.565 0.084 0.084
=S -0.25 -0.25 0.5 -0.7
w 0.43011 -0.19166 -0.23845(-0.11463 0.72937 | 71.31% -29.92%
= -0.19166 0.43382 -0.24215(-0.20357| 0.30363 | 0.07269 | 0.10654 | 0.60239 4.82% -23.00%
o -0.23845 -0.24215 0.48061 | -0.6818 0.43468
y 0.47288 -0.22102 -0.25186(-0.09079 0.72756 | 64.27% -38.95%
s -0.22102 0.50694 -0.28592(-0.18658(0.5877228|0.0956687|0.1253028| 0.61963 | -39.23% | -369.89%
-0.25186 -0.28592 0.53777 [-0.72263 0.43447

Structural parameters estimated through ML seem to be a bit closer to true parameters than
those estimated through GME. However virtual prices estimated by GME, especially for the
good 2 are closer to “true” virtual prices than those estimated by ML. This probably explains
why the qualities of adjustment for all equations are nearly the same for both methods.

We secondly adopt different starting values: two interesting empirical results appear. Firstly
the ML approach does not always lead to a solution while we always get one with the GME
one. Secondly the econometric results obtained with the GME are rather independent of these
initial values which indicates a good stability of the method. For instance the table below
report the GME econometric results with new starting values while the ML program fails to
converge.

Our tentative interpretation of these results is the following. The concavity condition is
explicitly introduced as a firm constraint in the GME program (see program 29) while only
implicit in the derivation of the likelihood expression. Accordingly when solving the GME
program the GAMS software first “looks” for a feasible region of structural parameters and
virtual prices and then maximise the objective function. On the other hand, the ML program is
doing both simultaneously and may have difficulties between the optimisation of the
likelihood function and the satisfaction of theoretical conditions.



initial values <> true values
EStimated | Esumated
virtual virtual
price/True |price/Market
beta alpha r s1 s2 R2? virtual price price
o g 0.3 -0.2 -0.2 -0.3
85 -0.2 0.4 -0.2 -0.5 0.1 0.05 0.02
£ -0.1 -0.2 0.3 0.2
w 0.43012 -0.19166 -0.23845|-0.11463 0.72937 | 71.31% -29.92%
= -0.19166 0.43382 -0.24215|-0.20357( 0.30363 | 0.07269 | 0.10654 | 0.60239 4.82% -23.00%
O -0.23845 -0.24215 0.48061 | -0.6818 0.43468

c. Econometric results on the homothetic case

One great advantage offered by our solution is the possibility to estimate zero censored non
homothetic demand system. Our estimation program in this case is more non linear that in the
homothetic case. Accordingly we again test the sensitivity of the results to starting values.

Results reported in the table below show again a great stability of GME results with respect to
these initial values.

initial values = true values
Estimated
Virtual |Estimated
Price/True| Virtual
virtual Price/Mar
beta alpha R? price ket price
_ 0.3 -0.1 -0.25 -0.1
o9
g3 -0.1 0.5 -0.3 -0.2
| -025 0.3 0.5 -0.7
2 0.26849 -0.07709 -0.19139(-0.11428( 0.56153 | -46.27% | -15.30%
% -0.07709 0.39424 -0.31714(-0.20606| 0.59868 | 61.43% | -10.79%
® -0.19139 -0.31714 0.50854 (-0.67966| 0.48657
initial values <> true values
Estimated
Virtual |Estimated
Price/True| Virtual
virtual Price/Mar
beta alpha R? price ket price
" 04 -0.1 -0.1 -0.3
T O
£2 | -01 0.4 03 | -05
= @©
> 0.1 0.3 0.2 0.2
2 0.26849 -0.07709 -0.19139(-0.11428( 0.56153 | -46.27% | -15.30%
% -0.07709 0.39424 -0.31714(-0.20606| 0.59868 | 61.43% | -10.79%
® -0.19139 -0.31714 0.50854 [-0.67966| 0.48657

d. Empirical properties of estimators




So far we only discuss the econometric results in terms of existence of solution, the quality of
adjustment and the sensibility to starting values. We now focus on the precision of the
estimates. As said earlier, delivering and/or computing the asymptotic properties of all
estimators is challenging and we rely here on bootstrap inference techniques.

Basically the bootstrap is a re-sampling procedure which allows to compute the Mean Square
Error (MSE) for each method. In a nutshell, the principle of this procedure is as follows in a
simple case as (22). Let B be the number of bootstrap sample. We then apply B times the
following two steps. First we draw randomly and with replacement on initial sample (Y,X) a
sample of the same dimension noted (Y*, X*). Second we estimate the model on this sample
and get estimated parameters S *. Once this is done, we are able to compute the mean and

variance of £ * on the B bootstrap samples as well as the MSE criterion. It is defined as the
sum of the variance and the squared bias:

MSE=(p~B*) +Var(p*)

Results reported below show as expected that GME and ML econometric results converge on
the homothetic case in terms of MSE. The MSE obtained with the non homothetic case are
not directly comparable to homothetic ones but still we do not observe radical changes which
gives one first empirical support to our solution.

Form Initial values Méthod Estimated parameters MSE = bias*+variance

= true values Alpha Beta Alpha Beta
-0.1146323 | 0.4301149 -0.1916621 -0.2384528 |0.000229893|0.005167169 0.003393633 0.000398568
Linear yes GME -0.2035714 | -0.1916621  0.433816  -0.2421539 | 2.15688E-050.003393633 0.004252037 0.000235189
-0.6817963 | -0.2384528 -0.2421539  0.4806067 | 0.000357447]0.000398568 0.000235189 0.000806596
-0.090787 | 0.4728779  -0.221023  -0.251855 |9.25639E-05]0.000805946 0.00085358 0.000124002
Linear yes ML -0.186579 | -0.221023  0.5069408  -0.285918 |0.000195076| 0.00085358 0.002588352 0.001364752
-0.722633 | -0.251855  -0.285918  0.5377726 ]0.000545003)0.000124002 0.001364752 0.001671818
-0.1146323 | 0.430115  -0.1916622 -0.2384528 |0.000229893|0.005167169 0.003393633 0.000398568
Linear no GME -0.2035714 | -0.1916622 0.4338161  -0.242154 |2.15688E-05|0.003393633 0.004252037 0.000235189
-0.6817963 | -0.2384528  -0.242154  0.4806068 |0.000357447]0.000398568 0.000235189 0.000806596
-0.090794 | 0.4728756 -0.22101 -0.251865 | 8.34666E-05( 0.00080618 0.000853747 0.000124004
Linear no ML -0.186585 -0.22101 0.5069351  -0.285925 |0.0001815490.000853747 0.00017205 0.001364544
-0.722622 | -0.251865  -0.285925  0.5377899 |0.000511258]|0.000124004 0.001364544 0.001671619
-0.1142763 | 0.2684858 -0.0770935 -0.1913923 |0.000218359|0.054206738 0.029875726 0.003746322
Non Linear yes GME -0.2060647 | -0.0770935 0.3942379 -0.3171444 | 4.42671E-05|0.029875726 0.010940225 0.004910412
-0.6796589 | -0.1913923 -0.3171444  0.5085368 |0.0004395380.003746322 0.004910412 0.000417259
-0.1142763 | 0.2684858 -0.0770935 -0.1913923 |0.000218359(0.054206738 0.029875726 0.003746322
Non Linear no GME -0.2060647 | -0.0770935 0.3942379 -0.3171444 | 4.42671E-05(0.029875726 0.010940225 0.004910412
-0.6796589 | -0.1913923 -0.3171444  0.5085368 |0.0004395380.003746322 0.004910412 0.000417259

6. Concluding comments

The econometric estimation of zero censored demand system faces major difficulties. The
virtual price approach pioneered by Lee and Pitt in an econometric framework is theoretically
consistent but empirically feasible only for homothetic demand system and even may fail to
converge depending on initial conditions. In this paper we propose to expand on this approach
by relying on the generalized maximum entropy concept instead of the Maximum Likelihood
paradigm. The former is robust to the error distribution while the latter must stick with a
normality assumption. Accordingly the econometric specification of censored demand
systems with virtual prices is made easier even with non preferences defined over several
goods. Illustrative Monte Carlo sampling results show its relative performance.

There are several extensions to this paper that must be contemplated before getting definitive
statements on this long standing issue. In the Monte Carlo experiments reported in this paper



we only consider three good demand systems. We also try a five good demand system with
the GME approach and we face no econometric difficulties. Nevertheless it will be interesting
to test the method in more contrasting cases with larger shares of zero points for instance. The
difficulty we had to deal with up to now is not to estimate but rather to simulate in the very
first step a consistent dataset. In particular our experience shows that it is crucial to maintain
the often overlooked condition that marginal utility of income must be positive. In that respect
we fully agree with Barnett that complete respect of all theoretical conditions is very crucial.

Another extension is to confront this approach to real datasets and contrast it to other
methods. Real datasets are always more difficult to analyse than built-ones due to endogeneity
and/or multi-collinearity issues for instance. According to results reported by van Akkeren et

al. (2002) we are quite confident that our approach will allow to manage these cases but this is
to be checked.

Finally our approach allows to estimate simultaneously and explicitly structural parameters
and virtual prices. In the entropy objective function, one has the possibility to weight one
component relative to the others. For instance one may improve the prediction or the precision
of the estimates depending on its own objective (Golan et al., 1996). It may interesting in
some cases to focus on the virtual prices and in other cases on the structural parameters.
Additional works may explore deeper this possibility.
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Annex 1: Derivation of the likelihood function when only good one is not consumed.

We have two possibilities to get this expression and explores both below.
Solution 1 : 1(w,,, wy, /x,) = Ple, < —B,, / w;, x, )P(wy, / x,)
This likelihood expression implies to know the law of w; subject to data :

w, =0

pll
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As a linear combination of normal distributions, wy; follows a normal law :
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2.2 2
wy, & N(ay, 04,87 + 55 =20,,75,5,)

. 202, 2
P(wy, [ x;) = f(wys 0,080 +55 = 204,75,5,)

1 Loy,
0 .
: 0.1
\/al 5.+ 855 —2a,rs,5, \/Ochs1 +55 —20,75,5,

Wy —

l

A, +ée, . . . . .
Moreover, e, = 02 thus e, /w,, is a linear function of e,, : this random variable
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follows a normal law.

E(e,;/wy,,) 1s the orthogonal projection of e, on the space generate by w,, :



cov(e,;,w,,)

E(e,/w,)= (w,, — E(w,,)) (w2 is not centred)
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With f (y;,u, 0'2) the cumulative distribution function of a univariate normal law with
expectation y and variance o2 at point y.

After centring and reducing :
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Let’s come back to our likelihood :
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We now know the distribution of (WZ[ / xi,eli) and we know that (e, /x,) follows a centred
normal law of variance s;2.
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