Characterization of protein-aroma interactions at a molecular scale
Laurette Tavel, Isabelle Andriot, Anne Tromelin, Céline Moreau, Elisabeth Guichard

To cite this version:
Laurette Tavel, Isabelle Andriot, Anne Tromelin, Céline Moreau, Elisabeth Guichard. Characterization of protein-aroma interactions at a molecular scale. 13. World Congress of Food Science and Technology (IUFOST): "Food is Life", Sep 2006, Nantes, France. 2006. hal-02815218

HAL Id: hal-02815218
https://hal.inrae.fr/hal-02815218
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Introduction: β-lactoglobuline (β-LG) A variant
Flavour compounds of different chemical classes were tested.

The presence of 5% EtOH was proved by NMR analyses to induce no perturbation of amino acids involved in binding.

NMR spectroscopy
- Bruker 500 MHz, 5 mm probe
- T=37°C
- 2D (1H, 1H) TOCSY-Watergate sequence with a mixing time of 40 ms
- β-LG in 12mM NaCl buffer, pH=2.3
 - addition of an aroma compound
 - >60% complexed protein

FT-IR spectroscopy
- FT6000 FT-IR spectrometer, ATR accessory
- T=25°C
- 512 scans, resolution of 2 cm⁻¹
- Analyses in 12mM NaCl buffer, 5% EtOH, pH=2
 - β-LG/aroma, >70% complexed protein
 - Aroma compound alone

3D Molecular Modeling
- Catalyst/Hypogen software
- Point of view of the receptor: Information only from the ligand
- 59 aroma characterized by their affinity data K_b (2)

Characteristics: Hydrogen bond acceptor and Hydrobic

β-LG → amino acids assignment
- NH/CHα = fingerprint region of protein

Shift variation method:
\[\Delta \delta = \delta_{\text{complex}} - \delta_{\text{protein}} \]

FTIR spectra:
- Amide I band (1590-1700 cm⁻¹)
 - Screening of aroma compound in function of IR profile
- Differential spectra:
 - Complex spectrum – aroma spectrum
 - Amide I / Amide II = 1.46
 - Normalisation of Amide I band

Identification of common structure of aroma having a probable common binding site
- Generation of hypotheses
 - Set of features in 3D space
 - Estimation of affinity data
- Correlation $K_{B\text{Estimated}} / K_{B\text{Experimental}}$
- Alignment of aroma on the features
- Analyse cost

Valid model
- Division into pools

2 binding sites
- External site
- Central cavity

2 binding behaviours
- Significant perturbation of Amide I band
- No significant perturbation of Amide I band

2 predictive models
- Compact alignment
- Extended alignment
- Compact molecules
- Long acyl chain

Conclusion: Whatever the technique used, results confirmed the existence of at least two different binding sites for aroma compounds on β-LG: one binding site in the hydrophobic pocket for flavour molecules with a long acyl chain, and one external site for compact compounds.

References: