Does random auditing reduce tax evasion in the lab?

To cite this version:

HAL Id: hal-02815727
https://hal.inrae.fr/hal-02815727
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Does random auditing reduce tax evasion in the lab?

Mohammed Ali Bchir, Nicolas Daures, Marc Willinger
Motivations

- Empirical context
 - Water extraction from aquifers in coastal zones
 - High risk of saline intrusion
 - Under-reporting of water extraction

- Designing mechanisms to reduce misreporting
 - Random auditing + Fine
 - Collective penalties (e.g. ambient tax, …)
This study

• Authorities have limited information and limited budget
• Objective: minimizing the number of agents who cheat
• Mechanism with probabilistic audit
• Conditionnal audit probability (conditionned on past observed behavior)

Greenberg (1986)
Assumptions (1)

- In each period, each agent receives a random income y
- Players report income $z \leq y$
- Net income
 - If not audited: $y - T(z)$ \quad (N.B. $T(y) \leq y$)
 - If audited:
 - Truthful reporting: $y - T(y)$
 - Cheating: $y - T(z) - P(y,z)$ with $P(y,z) > T(y) - T(z)$
- Audit probability: $p > 0$
- Audit is perfect
Assumptions (2)

• Agents live an infinite number of periods
• Agents are risk-neutral
• Myopic behaviour
• \(p_i(y) \) is the smallest audit probability for which player \(i \) reports truthfully
• Myopic players cheat for \(p < p_i(y) \) whatever \(y \)
• (there exists \(\rho > 0 \), such that for all \(y \) and all \(i \) \(p_i(y) > \rho \))
Assumptions (3)

- $r =$ audit probability determined by the tax authority’s budget constraint (exogenous)
 - If $r = 1$ all players report truthfully
 - If $r < \rho$ all players will cheat
 - If $\rho < r < p_i(y)^{\max}$ some players will cheat

- \Rightarrow they can increase their utility by cheating until they are audited, and then stop cheating

- The tax authorities try to minimize the number of tax evaders in the population n_1
Predictions (1)

No cheating detected

Group 1

Audit detected \Rightarrow Fine

Audit proba $p_1 > 0$

Group 2

Audit and truthfull report

No audit

Group 3

Audit proba $p_3 = 1$

Cheating detected \Rightarrow Fine

Cheating detected \Rightarrow Fine

Audit proba $p_2 < p_1$
Predictions (2)

- All players cheat
- No player cheats
- No player cheats

Group 1
- n₁ players
- (αN)

Group 2
- n₂ players
- (1 − α)N

Group 3
- 0 player
Experimental design (1)

- Income stream: each subject receives a randomly selected income between 100 and 1000 yens at each period
- Infinite lifetime (cont. prob = 0.9)
- Many lives: each subject experiences several lives.
- Ending: end time announced at the beginning. After end time, no new sequence could start. Running sequence were allowed to be continued during a maximum extra-time of 15mn.
- Payment: One sequence randomly selected and paid out
Experimental design (2)

- Two-treatments:
 - T1 = low audit probability:
 Group 1 : $p_1 = \frac{1}{3}$
 Group 2 : $p_2 = \frac{1}{4}$
 - T2 = high audit probability:
 Group 1 : $p_1 = \frac{1}{2}$
 Group 2 : $p_2 = \frac{1}{3}$

- Penalty
 \[P(y,z) = (y - z) \times a \]
Summary of the data

<table>
<thead>
<tr>
<th></th>
<th>Low audit</th>
<th>High audit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>Average number of sequences</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>(min/max)</td>
<td>(3/12)</td>
<td>(4/16)</td>
</tr>
<tr>
<td>Average number of periods</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>(min/max)</td>
<td>(21/82)</td>
<td>(21/82)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>7630</td>
<td>10180</td>
</tr>
</tbody>
</table>
Proportions of subjects in groups

<table>
<thead>
<tr>
<th></th>
<th>Low audit</th>
<th>High audit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((p_1 = 1/3), \ p_2 = 1/4)</td>
<td>((p_1 = 1/2, \ p_2 = 1/3))</td>
</tr>
<tr>
<td>Predicted</td>
<td>Estimated</td>
<td>Predicted</td>
</tr>
<tr>
<td>Group 1</td>
<td>43%</td>
<td>50%</td>
</tr>
<tr>
<td>Group 2</td>
<td>57%</td>
<td>28%</td>
</tr>
<tr>
<td>Group 3</td>
<td>0%</td>
<td>20%</td>
</tr>
</tbody>
</table>
Beginning and end behaviour

High audit probability

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average 2 first sequences</td>
<td>58.8%</td>
<td>29.1%</td>
</tr>
<tr>
<td>Average 2 last sequences</td>
<td>49.6%</td>
<td>17.8%</td>
</tr>
</tbody>
</table>
Evolution of the frequency of fraud with repetition

Low audit

<table>
<thead>
<tr>
<th>seq</th>
<th>group 1</th>
<th>group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>9 et +</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Legend:
- Blue: Group 1
- Red: Group 2
High audit

seq 1 seq 2 seq 3 seq 4 seq 5 seq 6 seq 7 seq 8 seq 9 seq >=10
39 39 39 39 38 37 32 29 24 <= 14
group 1 group 2

[Bar chart showing data for seq 1 to seq >=10, with values ranging from 0 to 1 for each category. The chart includes two groups, indicated by blue and maroon bars.]

Legend:
- Blue bar: group 1
- Maroon bar: group 2
Frequency of fraud according to income (low audit)
Frequency of fraud per income level for each group (low audit)

<table>
<thead>
<tr>
<th>Income Level</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7.41%</td>
<td>0.93%</td>
</tr>
<tr>
<td>200</td>
<td>21.27%</td>
<td>3.80%</td>
</tr>
<tr>
<td>300</td>
<td>41.84%</td>
<td>10.11%</td>
</tr>
<tr>
<td>400</td>
<td>0.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>500</td>
<td>20.0%</td>
<td>30.0%</td>
</tr>
<tr>
<td>600</td>
<td>40.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>700</td>
<td>60.0%</td>
<td>70.0%</td>
</tr>
<tr>
<td>800</td>
<td>80.0%</td>
<td>90.0%</td>
</tr>
<tr>
<td>900</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

The bar chart shows the frequency of fraud for each income level for group 1 and group 2.
Frequency of fraud according to income (high audit)
Frequency of fraud per income level for each group (high audit)
Individual strategies

1. Predicted strategy (15%)
 Group 1: Fraud the whole income almost always
 Group 2: No fraud (almost always)

2. Predicted strategy for high income only (23%)
 Group 1: Fraud the whole income only for high income
 Group 2: No fraud (almost always)

3. Cheating more frequently as income increases (27%)
 Fraud if income is high in both groups
Predicted strategy
(low audit)

<table>
<thead>
<tr>
<th>ID</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>80,00</td>
<td>0,00</td>
</tr>
<tr>
<td>4</td>
<td>75,74</td>
<td>0,00</td>
</tr>
<tr>
<td>7</td>
<td>72,03</td>
<td>8,41</td>
</tr>
<tr>
<td>29</td>
<td>72,60</td>
<td>5,45</td>
</tr>
<tr>
<td>30</td>
<td>96,36</td>
<td>0,00</td>
</tr>
<tr>
<td>31</td>
<td>86,79</td>
<td>5,08</td>
</tr>
</tbody>
</table>
Predicted strategy for high income
(Low audit)

<table>
<thead>
<tr>
<th>ID</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47,03</td>
<td>2,15</td>
</tr>
<tr>
<td>6</td>
<td>41,30</td>
<td>5,88</td>
</tr>
<tr>
<td>9</td>
<td>48,48</td>
<td>3,95</td>
</tr>
<tr>
<td>11</td>
<td>46,24</td>
<td>10,81*</td>
</tr>
<tr>
<td>24</td>
<td>48,61</td>
<td>16,67*</td>
</tr>
<tr>
<td>27</td>
<td>52,88</td>
<td>3,16</td>
</tr>
<tr>
<td>34</td>
<td>44,04</td>
<td>0,00</td>
</tr>
</tbody>
</table>

* Below 3,5% after sequence 1

- Low incomes : $y \leq 350$
- High incomes : $y \geq 750$
- Middle incomes : $350 < y < 750$
Summary

• Mechanism to minimize fraud based on random auditing and segregation
• Group 1: subjects fraud less frequently than predicted, and fraud only a part of their income
• Group 2: subjects fraud too frequently
• In both groups fraud is more frequent as income increases
Feasibility

\[p_1 \alpha + p_2 (1 - \alpha) \leq r \]

\[\rho \alpha < r \]

Group 1

\[p_1 = \frac{\rho}{2} \]

\[\frac{\rho}{2} \alpha \]

Group 2

\[p_2 = \frac{\alpha}{1 - \alpha} \times \frac{\rho}{2} \]

\[\frac{\alpha}{(1 - \alpha)} \frac{\rho}{2} (1 - \alpha) \]

Group 3

\[p_3 = 1 \]