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On population resilience to external perturbations

Lionel Roques∗ Mickaël D. Chekroun†

Abstract

We study a spatially-explicit harvesting model in periodic or bounded
environments. The model is governed by a parabolic equation with a
space-dependent nonlinearity of KPP type, and a negative external
forcing term. The domain is either the whole space R

N , with periodic
coefficients, or a bounded domain. Analyzing the stationary states, we
define two main types of solutions: the “significant” solutions, which
always stay above a certain small threshold value, and the “remnant”
solutions, which are always below this value. Using sub- and super-
solution methods, the characterization of the first eigenvalue and first
eigenfunction of some linear elliptic operators, we obtain existence and
nonexistence results, as well as results on the number of stationary so-
lutions. We also characterize the asymptotic behavior of the evolution
equation as a function of the forcing term amplitude. In particular,
we define critical thresholds on the forcing term below which the pop-
ulation density converges to a significant state, while it converges to a
remnant state whenever the forcing term lies above the highest thresh-
old. These bounds were shown to be useful in studying the influence of
environmental fragmentation on the long-time behavior of the popula-
tion density, in terms of the forcing term amplitude. We also present
numerical results in the case of stochastic environments.

Keywords: reaction-diffusion, heterogeneous media, harvesting models,
stochastic environments, periodic environments.

1 Introduction

Overexploitation has led to the extinction of many species [4]. Tradition-
ally, models of ordinary differential equations (ODEs) or difference equations

∗Unité Biostatistique et Processus Spatiaux (BioSP), INRA, Domaine St Paul - Site
Agroparc, 84914 Avignon Cedex 9, France

†Environmental Research and Teaching Institute, École Normale Supérieure, 24 rue
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have been used to estimate the maximum sustainable yields from popula-
tions and perform quantitative analysis of harvesting policies and manage-
ment strategies [17]. Occulting age or stage structures as well as delay mech-
anisms, which will not be treated by the present paper, the ODEs models
are generally of the type:

dU

dt
= F (U) − Y (U), (1.1)

where U is the population biomass at time t, F (U) is the growth function
and Y (U) corresponds to the harvest function. In these models, the most
commonly used growth function is logistic, with F (U) = U(µ − νU) ([5],
[25], [35]), where µ > 0 is the intrinsic growth rate of the population and
ν > 0 models its susceptibility to crowding effects.

Different harvesting strategies Y (U) have been considered in the litera-
ture, and are used in practical resource management. A very common one is
the constant-yield harvesting strategy, where a constant number of individu-
als are removed per unit of time: Y (U) = δ, with δ a positive constant. This
harvesting function naturally appears when a quota is set on the harvesters
([31], [32], [38]). Another frequently used harvesting strategy is the propor-
tional harvesting strategy (also called constant-effort harvesting), where a
constant proportion of the population is removed. It leads to a harvesting
function of the type Y (U) = δU .

Much less has been done in this field using reaction-diffusion models (but
see [23], [26], [29]). The aim of this paper is to perform an analysis of some
harvesting models, within the framework of reaction-diffusion equations.

One of the most celebrated reaction-diffusion model has been introduced
by Fisher [15] and Kolmogorov, Petrovsky and Piskunov [22] in 1937. Since
then, it has been widely used to model spatial propagation or spreading of
biological species into homogeneous environments (see books [25], [28] and
[40] for review). The corresponding equation is

ut = D∇2u + u(µ − νu), (1.2)

where u = u(t, x) is the population density at time t and space position x,
D is the diffusion coefficient, and µ and ν still correspond to the constant
intrinsic growth rate and susceptibility to crowding effects. In the 80’s, this
model has been extended to heterogeneous environments by Shigesada et
al. [37]. The corresponding model (which we denote by SKT-model in this
paper) is of the type:

ut = D∇2u + u(µ(x) − ν(x)u). (1.3)
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The coefficients µ(x) and ν(x) now depend on the space variable x, and
can therefore include some effects of environmental heterogeneity. More
recently, this model revealed that the heterogeneous character of the envi-
ronment played an essential role on species persistence, in the sense that for
different spatial configurations of the environment, a population can survive
or become extinct, depending on the habitat spatial structure ([8], [12], [34],
[36]).

As mentioned above, the combination of a harvesting model with a
Fisher-KPP population dynamics model, leading to an equation of the form
ut = D∇2u+u(µ−νu)−Y (x, u) has been considered in recent papers, either
using a spatially dependent proportional harvesting term Y (x, u) = q(x)u
in [26] [29], or a spatially dependent and time-constant harvesting term
Y (x) = h(x) in [23]. In these papers, the models were considered in bounded
domains with Dirichlet (lethal) boundary conditions.

Here we study a population dynamics model of the SKT-type, with a
spatially dependent harvesting term Y (x, u):

ut = D∇2u + u(µ(x) − ν(x)u) − Y (x, u). (1.4)

We mainly focus on a “quasi-constant-yield” case, where the harvesting term
only depends on u for very low population densities (ensuring the nonneg-
ativity of u). We consider two types of domains and boundary conditions.
In the first case, the domain is bounded with Neumann (reflective) bound-
ary conditions; this framework is often more realistic for modelling species
which cannot cross the domain boundary. In the second case, we consider the
model (1.4) in the whole space R

N with periodic coefficients. This last situ-
ation, though technically more complex, is useful, for instance, for studying
spreading phenomena ([7], [9]), and for studying the effects of environmental
fragmentation, independently of the boundary effects. Lastly, note that the
effects of variability in time of the harvesting function will be investigated
in a forthcoming publication [13].

In § 2, we define a quasi-constant-yield harvesting reaction-diffusion
model. We prove, on a firm mathematical basis, existence and nonexistence
results for the equilibrium equations, as well as results on the number of pos-
sible stationary states. We also characterize the asymptotic behavior of the
solutions of (1.4). In § 3, we illustrate the practical usefulness of the results
of § 2, by studying the effects of the amplitude of the harvesting term on the
population density in terms of environmental fragmentation. Lastly, in § 4,
we give new results for the proportional harvesting case Y (x, u) = q(x)u.
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2 Mathematical analysis of a quasi-constant-yield

harvesting reaction-diffusion model

For the sake of readability, the proofs of the results of § 2 are postponed
to § 2.5.

2.1 Formulation of the model

In this paper, we consider the model:

ut = D∇2u + u(µ(x) − ν(x)u) − δh(x)ρε(u), (t, x) ∈ R+ × Ω. (2.5)

The function u = u(t, x) denotes the population density at time t and space
position x. The coefficient D, assumed to be positive, denotes the diffusion
coefficient. The functions µ(x) and ν(x) respectively stand for the spatially
dependent intrinsic growth rate of the population, and for its susceptibility
to crowding effects. Two different types of domains Ω are considered: either
Ω = R

N or Ω is a smooth bounded and connected domain of R
N (N ≥ 1).

We qualify the first case as the periodic case, and the second one as the
bounded case. In the periodic case, we assume that the functions µ(x), ν(x)
and h(x) depend on the space variables in a periodic fashion. For that, let
L = (L1, . . . , LN ) ∈ (0, +∞)N . We recall the definition:

Definition 2.1 A function g is said to be L-periodic if g(x + k) = g(x) for
all x = (x1, · · · , xN ) ∈ R

N and k ∈ L1Z × · · · × LNZ.

Thus, in the periodic case, we assume that µ, ν and h are L-periodic. In the

bounded case we assume that Neumann boundary conditions hold:
∂u

∂n
= 0

on ∂Ω, where n is the outward unit normal to ∂Ω. The period cell C is
defined by

C := (0, L1) × · · · × (0, LN ),

in the periodic case, and in the bounded case, we set

C := Ω,

for the sake of simplicity of some forthcoming statements.
We furthermore assume that the functions µ and ν satisfy

µ, ν ∈ L∞(Ω) and ∃ ν , ν ∈ R s.t. 0 < ν < ν(x) < ν, ∀ x ∈ Ω. (2.6)
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Regions with higher values of µ(x) and lower values of ν(x) will be qual-
ified as being more favorable, while, on the other hand, regions with lower
µ(x) and higher ν(x) values will be considered as being less favorable or
equivalently, more hostile.

The last term in (2.5), δh(x)ρε(u), corresponds to a quasi-constant-yield
harvesting term. Indeed, the function ρε satisfies:

ρε ∈ C1(R), ρ′ε ≥ 0, ρε(s) = 0 for all s ≤ 0, and ρε(s) = 1 for all s ≥ ε,
(2.7)

where ε is a non-negative parameter. With such a harvesting function, the
yield is constant in time whenever u ≥ ε, while it depends on the popula-
tion density when u < ε. In the sequel, the parameter ε is taken to be very
small. As we prove in the next sections, there are many situations where the
solutions of the model always remain larger than ε. For these reasons, we
qualify our model as quasi-constant-yield harvesting SKT-model, the “dom-
inant” regime being the constant-yield one. Note that the function ρε en-
sures the non-negativity of the solutions of (2.5). From a biological point
of view, ε can correspond to a threshold below which harvesting is progres-
sively abandoned. Considering constant-yield harvesting functions without
this threshold value would be unrealistic since it would lead to harvest on
zero-populations.

Finally, we specify that δ ≥ 0 and that h is a function in L∞(Ω) such
that

there exists α > 0 with α ≤ h(x) ≤ 1 for all x ∈ Ω. (2.8)

We call h the harvesting scalar field, and δ designates by this way the am-
plitude of this field.

Before starting our analysis of this model, we consider the no-harvesting
case, i.e. when δ = 0. We recall the main known results in this case. These
results will indeed be necessary for the analysis of the quasi-constant-yield
harvesting SKT-model.

2.2 The no-harvesting case

When δ = 0 in equation (2.5), our model reduces to the SKT-model de-
scribed by equation (1.3). The behavior of the solutions of this model has
been extensively studied in [8] and [9].

Results are formulated in terms of first (smallest) eigenvalue λ1 of the
Schrödinger operator Lµ defined by

Lµφ := −D∇2 − µ(x)I,
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with either periodic boundary conditions (on the period cell C) in the pe-
riodic case or Neumann boundary conditions in the bounded case. This
operator is the linearized one of the full model around the trivial solution.
Recall that λ1 is defined as the unique real number such that there exists a
function φ > 0, the first eigenfunction, which satisfies

{
−D∇2φ − µ(x)φ = λ1φ in C,
φ > 0 in C, ‖φ‖∞ = 1,

(2.9)

with either periodic or Neumann boundary conditions, depending on Ω. The
function φ is uniquely defined by (2.9) ([7]), and belongs to W 2,τ (C) for all
1 ≤ τ < ∞ (see [1] and [2] for further details). We set

φ := min
x∈C

φ(x).

We recall that a stationary state p of equation (1.3) satisfies the equation,

−D∇2p = p(µ(x) − ν(x)p). (2.10)

The following result on the stationary states of (2.10) is proved in [8].

Theorem 2.2 (i) If λ1 < 0, the equation (2.10) admits a unique nonnega-
tive, nontrivial and bounded solution, p0.

(ii) If λ1 ≥ 0, the only nonnegative and bounded solution of (2.10) is 0.

Moreover, in the periodic case, the solution p0 is L-periodic. Throughout
this paper, p0 always denotes the stationary solution given by Theorem 2.2,
Part (i).

In order to emphasize that this solution can be “far” from 0 (see Defini-
tion 2.5, and the commentary following (2.14)), we give a lower bound for
p0.

Proposition 2.3 Assume that λ1 < 0, then p0 ≥
−λ1φ

ν
in Ω.

The asymptotic behavior of the solutions of (1.3) is also detailed in [8].
It is proved that λ1 < 0 is a necessary and sufficient condition for species
persistence, whatever the initial population u0 is:

Theorem 2.4 Let u0 be an arbitrary bounded and continuous function in
Ω such that u0 ≥ 0, u0 6≡ 0. Let u(t, x) be the solution of (1.3), with initial
datum u(0, x) = u0(x).

(i) If λ1 < 0, then u(t, x) → p0(x) in W 2,τ
loc (Ω), for all 1 ≤ τ < ∞, as

t → +∞ (uniformly in the bounded case).
(ii) If λ1 ≥ 0, then u(t, x) → 0 uniformly in Ω as t → +∞.
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The situation (i) corresponds to persistence, while in the case (ii) the pop-
ulation tends to extinction. In the sequel, unless otherwise specified, we
therefore always assume that λ1 < 0, so that the population survives, at
least when there is no harvesting. We are now in position to start our main
analysis of steady states and related asymptotic behavior of the solutions of
(2.5).

2.3 Stationary states analysis

As it is classically demonstrated in finite dimensional dynamical system
theory and many problems in the infinite dimensional setting (see e.g. [39]),
the asymptotic behavior of the solutions of (2.5) is governed in part by the
steady states and their relative stability properties. In that respect, we
study in this section the positive stationary solutions of (2.5), namely the
solutions of

−D∇2pδ = pδ(µ(x) − ν(x)pδ) − δh(x)ρε(pδ), x ∈ Ω, (2.11)

in the periodic and bounded cases. When needed, we may note (2.11,δ)
instead of (2.11).

Note that, provided pδ ≥ ε in Ω, pδ is equivalently a solution of the
simpler equation

−D∇2pδ = pδ(µ(x) − ν(x)pδ) − δh(x), x ∈ Ω. (2.12)

This last equation has been analyzed in the case of Dirichlet boundary con-
ditions in [29], in the particular case of constant coefficients µ and ν.

Because of the type of harvesting function considered here, we are lead
to introduce the definition:

Definition 2.5 Set ε0 :=
ε

φ
≥ ε. We say that a nonnegative function σ is

remnant whenever max
C

σ < ε0, whereas it is significant if it is a bounded

function satisfying min
C

σ ≥ ε0.

Remark 1: The concepts of remnant and significant solutions, as well as
the harvesting term δh(x)ρε(u), are not classical. In order to clarify these
notions, we present in Fig. 1 a short graphical study of the non-spatial
model:

dU

dt
= U(µ − νU) − δρε(U) =: k(U), t ∈ R+, (2.13)
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µ
ν

U

δ∗

δ
b

δ
a

ε

Figure 1: The logistic growth function U 7→ U(µ − νU) (solid line), and
the harvesting function U 7→ δρε(U) for three values of δ (dashed lines).
The abscissae of the points of intersection of the solid and dashed lines
correspond, respectively, to remnant (if smaller than ε) and significant (if
strictly larger than ε) stationary solutions of (2.13). We observe that the
number of significant solutions is: one, if δ < k(ε) (case δ = δa); two, if
k(ε) ≤ δ < µ2/(4ν) (case δ = δb); one, if δ = µ2/(4ν) (case δ = δ∗); zero,
if δ > µ2/(4ν). The number of nonzero remnant solutions is zero or more,
if δ ≤ k(ε) (depending on the shape of ρε); one or more, if δ > k(ε), since,
from (2.7), ρ′ε(0) = 0. We assumed here that ε0 = ε.

with constant coefficients µ, ν > 0.

Since ε0 is assumed to be small in our model, the remnant solutions
of (2.11) correspond to very low population densities. On the other hand,
significant solutions are everywhere above ε0. In particular, a constant-yield
is ensured in that case. Contrarily to the ODE case, stationary solutions
which are neither remnant nor significant may exist, as outlined in the next
theorems. However, as we will see while studying the long-time behavior of
the solutions of the model (2.5), they are of less importance (see Theorem
2.11 and § 3). The threshold ε0 is different from ε in general. We had to
define remnant and significant functions using ε0 for technical reasons (see
the proof of Theorem 2.10, part (ii), equation (2.31)). Since ε is assumed to
be very small, it has no implication on the biological interpretation of our
results. Moreover, most of our results still work when ε0 is replaced by ε.

Let us now start our analysis of equation (2.11). In the sequel, we always
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assume that

ε0 <
−λ1φ

4ν
, (2.14)

so that, in particular, from Proposition 2.3, the solution p0 of (2.10) is
significant.

We begin by proving that there exists a threshold δ∗ such that, if the
amplitude δ is below δ∗, the equation (2.11) admits significant solutions,
while it does not in the other case.

Theorem 2.6 Assume that λ1 < 0, then there exists δ∗ ≥ 0 such that
(i) if δ ≤ δ∗ there exists at least a positive significant solution pδ ≤ p0 of

(2.11).
(ii) if δ > δ∗, there is no positive significant solution of (2.11).

Remark 2: There is no positive bounded solution of (2.11) whenever
λ1 ≥ 0.

Under stronger hypotheses, we are able to prove that (2.11) admits at
most two significant solutions. In order to state this result, we need some
definitions. Let G be the space defined by

G := H1(C), (2.15)

in the bounded case, and by

G := H1
per =

{
ψ ∈ H1

loc(R
N ) such that ψ is L-periodic

}
, (2.16)

in the periodic case. Let us define the standard Rayleigh quotient, for all
ψ ∈ G, ψ 6≡ 0, and for all σ ∈ L∞(C),

Rσ(ψ) :=

∫

C

D|∇ψ|2 − σ(x)ψ2

∫

C

ψ2
. (2.17)

According to the Courant-Fischer Theorem (see e.g. [6]), the second smallest
eigenvalue λ2 of the operator Lµ can be characterized by:

λ2 = min
Ek⊂G,dim(Ek)=2

max
ψ∈Ek, ψ 6≡0

Rµ(ψ). (2.18)

This characterization is equivalent to the classical one given in [18].
We are now in position to state the theorem:
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Theorem 2.7 Assume that λ1 < 0 ≤ λ2, then, in the bounded case, the
equation (2.11) admits at most two significant solutions. In the periodic
case, (2.11) admits at most two L′-periodic significant solutions for all L′ ∈
(0,+∞)N . Moreover, under these hypotheses, if two solutions p1,δ and p2,δ

exist, they are ordered in the sense that, for instance, p1,δ < p2,δ in Ω.

Remark 3: Similar methods also allow us to assess a result on the number
of solutions of equation (2.12). Indeed, if λ1 < 0 ≤ λ2, then we obtain
that (2.12) admits at most two non-negative bounded (and periodic in the
periodic case) solutions. If these solutions exist, they are ordered.

In the periodic case, Theorem 2.7 also gives some information on the
periodicity of the significant solutions of (2.11), which are actually found to
have the same periodicity as the coefficients of the equation (2.11):

Corollary 2.8 Assume that λ1 < 0 ≤ λ2. Then, in the periodic case, the
significant periodic solutions of (2.11) are L-periodic.

The fact that λ1 < 0 is directly related to the instability of the trivial
solution in the SKT-model. The additional condition λ2 ≥ 0 in this theorem
is linked to the existence of a stable manifold or center manifold of the
steady state 0 of the SKT-model, in some appropriate functional spaces (see
[39]). Therefore, the assumptions of Theorem 2.7, and the Krein Rutmann
theory, allow us to conclude that under these assumptions, the unstable
manifold of 0 is of dimension equal to one or equivalently the stable manifold
is of codimension one. Such results on multiplicity of solutions of elliptic
nonlinear equations with a source or sink term have been investigated in the
past, and are known nowadays as being of Ambrosetti-problem type. These
results also involve manifolds of codimension 1 (in the functional space of
forcing), and first and second eigenvalues (for the Laplace operator only)
(see [27] for a survey of these results).

In any event, Theorem 2.7 relies on the assumption that λ2 ≥ 0. In the
next proposition, we give conditions under which λ2 may become positive.

Proposition 2.9 (i) In the bounded case, if C is a (smooth) domain with

diameter d := max
x,y∈C

‖x − y‖RN , λ2(C) ≥ D
(π

d

)2
− max

C
µ.

(ii) In the periodic case, λ2(C) ≥ D

(
π

Ld

)2

− max
C

µ, where Ld denotes

the length of the longest diagonal of the period cell C.
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For instance, when C = [0, 1] × [0, 1], we have d = Ld =
√

2; thus, for
D = 1 and max

C
µ = 4, we get λ2 > 0.9. However, this lower bound is far

from being optimal. Indeed, in all our computations of § 3, and under the
same hypothesis on C and D, we always had λ2 > 0, while max

C
µ = 10.

Sharper lower bounds for λ2 can be found in [11]; however, these bounds are
also more sensitive to the geometry of the domain, and thus less general.
They are therefore not detailed here.

We now introduce a result which is important for more applied ecological
questions. Indeed, one of the main drawbacks of Theorem 2.6 is that it
gives no computable bound for δ∗. Obtaining information on the value of
δ∗ is precious for more inclined ecological questions such as the study of the
relationships between δ∗ and the environmental heterogeneities. The next
theorem states some computable estimates of δ∗.

Let us define

δ1 :=
λ2

1φ

ν(1 + φ)2
and δ2 :=

λ2
1

4αν
. (2.19)

Note that neither δ1 nor δ2 depend on δ and ε.

Theorem 2.10 (i) If λ1 < 0 and δ ≤ δ1, then there exists a positive signif-
icant (and L−periodic in the periodic case) solution pδ of (2.11) such that

pδ ≥ − λ1φ

ν(1 + φ)
.

(ii) If λ1 < 0 and δ > δ2, the only possible positive bounded solutions of
(2.11) are remnant.

The lower bound of Part (i), for pδ, does not depend on ε. Thus, there is a
clear distinction between the remnant and significant solutions. Note that,
of course, δ1 ≤ δ2.

The formulae (2.19) allow numerical evaluations. An important quantity
to compute is the size of the gap δ2 − δ1, and its fluctuations in terms of
environmental configurations. This question is addressed in § 3 through a
numerical study.

2.4 Asymptotic behavior

In this section, we prove that the quantity δ∗ in fact corresponds to a max-
imum sustainable yield, in the sense that when δ is smaller than δ∗, the
population density u(t, x) converges to a significant stationary state of (2.5)
as t → ∞, whereas when δ is larger than δ∗, the population density con-
verges to a stationary state which is not significant. In fact, when δ is larger
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than the quantity δ2 defined by (2.19) we even prove that the population
converges to a remnant stationary state of (2.5).

We assume here that the harvesting starts on a stabilized population
governed by the standard SKT-model with δ = 0. From Theorem 2.4, this
means that we study the behavior of the solutions u(t, x) of our model (2.5),
starting with the initial datum u(0, x) = p0(x). Since we have assumed that
λ1 < 0, it follows from Theorem 2.2, Proposition 2.3 and (2.14) that p0 is
well defined and significant.

Let us describe, with the next theorem, the long-time behavior of the
population density.

Theorem 2.11 Let u(t, x) be the solution of (2.5) with initial datum u(0, x) =
p0(x). Then u is non-increasing in t and,

(i) if δ ≤ δ∗, u(t, x) → pδ(x) uniformly in Ω as t → +∞, where pδ is
the maximal significant solution of (2.11). Moreover pδ is L-periodic in the
periodic case;

(ii) if δ > δ∗, then the function u(t, ·) converges uniformly in Ω to a
solution of (2.11) which is not significant;

(iii) if δ > δ2, the function u(t, ·) converges uniformly in Ω to a remnant
solution of (2.11).

Remark 4: If, in addition, we assume that λ2 ≥ 0, then Theorem 2.7 says
that, whenever δ ≤ δ∗, the equation (2.5) admits at most two significant
stationary states (which are periodic stationary states in the periodic case).
In that case, the stationary state pδ selected at large times is the higher one.
If we do not assume that λ2 ≥ 0, this stationary state can still be defined as
“the maximal one” that can be constructed by a sub- and super- solution
method (see [3]).

From the above theorem, we observe that, whenever δ ≤ δ∗, the solution
u(t, x) of (2.5), with initial datum p0, remains significant for all times t ≥ 0.
This ensures a constant yield in time, and justifies the name of the model.

Similar results could be obtained for a wider class of initial data. Indeed,
with similar methods, the convergence of u(t, x) to a significant solution of
(2.11) can be obtained whenever δ ≤ δ∗ for all bounded and continuous
initial data u(0, x) which are larger than the smallest significant solution of
(2.11). In particular, when u(0, x) is larger than the maximal significant
solution of (2.11), u(t, x) converges to this maximal significant solution as
t → +∞. A more detailed analysis of the basin of attraction related to the
maximal significant solution will be further investigated in the forthcoming
paper [13].
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Theorem 2.11 shows that the practical determination of δ∗ is directly
linked to the size of the gap δ2 − δ1. As we will see in § 3, this gap (δ1, δ2)
can be very narrow in certain situations. In those cases, the numerical
computation of δ1 and δ2 therefore gives a sharp localization of the maxi-
mum sustainable quota δ∗ ∈ [δ1, δ2], that can be of non-negligible ecological
interest.

2.5 Proofs of the results of § 2

Proof of Proposition 2.3: Let φ be defined by (2.9), with the appropriate

boundary conditions. Set κ0 :=
−λ1

ν
. Then the function κ0φ satisfies

−D∇2(κ0φ) − µ(x)κ0φ + ν(x)(κ0φ)2 = λ1κ0φ + ν(x)(κ0φ)2,

= κ0φ(λ1 + ν(x)κ0φ) ≤ 0.

Thus κ0φ is a subsolution of the equation (2.10) satisfied by p0. Since
for M ∈ R large enough, M is a supersolution of (2.10), it follows from the

uniqueness of the positive bounded solution p0 of (2.10) that p0 ≥ κ0φ ≥
−λ1φ

ν
.

¤

Before proving Theorem 2.6, we begin with the following lemma.

Lemma 2.12 For all δ > 0, if pδ is a nonnegative bounded solution of
(2.11), then pδ ≤ p0.

Proof of Lemma 2.12: Assume that there exists x0 ∈ Ω such that
pδ(x0) > p0(x0). The function pδ satisfies

−D∇2pδ − pδ(µ(x) − ν(x)pδ) = −δh(x)ρε(pδ) ≤ 0,

thus pδ is a subsolution of the equation (2.10) satisfied by p0. Since for
M ∈ R large enough, M is a supersolution of (2.10) we can apply a clas-
sic iterative method to infer the existence of a solution p′0 of (2.10) (with
Neumann boundary conditions in the bounded case since both pδ and M
satisfy Neumann boundary conditions) such that pδ ≤ p′0 ≤ M . In partic-
ular p′0(x0) > p0(x0), which is in contradiction with the uniqueness of the
positive bounded solution of (2.10). ¤
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Proof of Theorem 2.6: Let us define

δ∗ := sup{δ ≥ 0, (2.11) admits a significant solution}.

For δ = 0, we know from Proposition 2.3 that p0 is a significant solution of
(2.11). Moreover, for δ large enough, the nonexistence of significant solutions
of (2.11) is a direct consequence of the maximum principle (it is also a
consequence of the proof of Theorem 2.10, Part (ii)). Thus δ∗ is well defined
and bounded.

Assume that δ∗ > 0, and let us prove that equation (2.11,δ∗) admits a
significant solution. By definition of δ∗, there exists a sequence (pδk

)k∈N of
solutions of (2.11,δk) with 0 < δk ≤ δ∗ and δk → δ∗ as k → +∞. Moreover,
from Lemma 2.12, ε0 ≤ pδk

≤ p0 for all k ≥ 0. Thus, from standard elliptic
estimates and Sobolev injections, the sequence (pδk

)k∈N converges (up to the

extraction of some subsequence) in W 2,τ
loc , for all 1 ≤ τ < ∞, to a significant

solution pδ∗ of (2.11,δ∗).
Now, let 0 ≤ δ < δ∗. Then

−D∇2pδ∗ − pδ∗(µ(x) − ν(x)pδ∗) + δh(x) = (δ − δ∗)h(x) < 0,

thus pδ∗ is a subsolution of (2.11,δ). Since p0 is a supersolution of (2.11,δ),
and pδ∗ ≤ p0, a classical iterative method gives the existence of a significant
solution pδ of (2.11,δ) (with Neumann boundary conditions in the bounded
case since both p0 and pδ satisfy Neumann boundary conditions). This
concludes the proof of Theorem 2.6. ¤

Proof of Theorem 2.7: As a preliminary, we prove that if two solution
exist, then they cannot intersect. Let p1,δ and p2,δ be two significant solu-
tions of (2.11). In the bounded case, we assume that p1,δ and p2,δ satisfy
Neumann boundary conditions. In the periodic case, we assume that there
exists L′ ∈ (0, +∞)N such that p1,δ and p2,δ are L′-periodic, we then denote
the period cell by C ′. Let us set qδ := p2,δ − p1,δ. Then qδ verifies

−D∇2qδ − [µ(x) − ν(x)(p1,δ + p2,δ)]qδ = 0, (2.20)

thus, setting ρ(x) := µ(x) − ν(x)(p1,δ + p2,δ), we obtain

−D∇2qδ − ρ(x)qδ = 0, (2.21)

with the same boundary conditions that were satisfied by p1,δ and p2,δ.
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Let λ̂1 and λ̂2 be respectively the first and second eigenvalues of the
operator Lρ := −D∇2 − ρI. Let Rσ(φ), be defined by equation (2.17).
Since ρ(x) < µ(x) − 2νε0 for all x ∈ Ω, we get

Rρ(ϕ) ≥ Rµ(ϕ) + 2νε0,

for all ϕ ∈ G′, where G′ := H1(C) in the bounded case and

G′ := H1
per =

{
ϕ ∈ H1

loc(R
N ) such that ϕ is L′-periodic

}
,

in the periodic case. Thus, by the classical min-max formula (2.18), it follows
that

λ̂2 ≥ λ2 + 2νε0 > 0. (2.22)

Furthermore, from (2.21), 0 is an eigenvalue of the operator Lρ. Thus, (2.22)

implies that λ̂1 = 0. As a consequence, qδ is a principal eigenfunction of the
operator Lρ. The principal eigenfunction characterization thus implies that
qδ has a constant sign. Finally, we get that p1,δ and p2,δ do not intersect
each other.

Let us now prove that equation (2.11) admits at most two significant
solutions. Arguing by contradiction, we assume that there exist three sig-
nificant (L′-periodic in the periodic case, for some L′ ∈ (0, +∞)N ) solutions
p1,δ, p2,δ, and p3,δ of (2.11). From the above result, we may assume, without
loss of generality, that p3,δ > p2,δ > p1,δ > ε0. Set q2,1 := p2,δ − p1,δ and
q3,2 := p3,δ − p2,δ, then these functions satisfy the equations

−D∇2q2,1 − ρ2,1(x)q2,1 = 0, (2.23)

and
−D∇2q3,2 − ρ3,2(x)q3,2 = 0, (2.24)

with ρ2,1 := µ(x) − ν(x)(p1,δ + p2,δ) and ρ3,2 := µ(x) − ν(x)(p2,δ + p3,δ).
Moreover, q2,1 > 0 and q3,2 > 0. Thus 0 is the first eigenvalue of the
operators Lρ2,1 := −D∇2 − ρ2,1I and Lρ3,2 := −D∇2 − ρ3,2I with either
Neumann or L′-periodic boundary conditions.

From the strong maximum principle (see e.g. [18]) (together with Hopf’s
Lemma in the bounded case, and using the L′-periodicity of q3,2 in the
periodic case), we obtain the existence of θ > 0 such that q3,2 > θ. Since
the operator Lρ3,2

is self-adjoint, we have the following formula for its first

eigenvalue λ̂1
3,2

,

λ̂1
3,2

= min
ϕ∈G′

Rρ3,2(ϕ),
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thus

λ̂1
3,2

= min
ϕ∈G′

{
Rρ2,1(ϕ) +

∫
C

ν(p3,δ − p1,δ)ϕ
2

∫
C

ϕ2

}
≥ min

ϕ∈G′

{
Rρ2,1(ϕ)

}
+ νθ,

≥ λ̂1
2,1

+ νθ,

where λ̂1
2,1

is the first eigenvalue of the operator Lρ2,1 . Since the first
eigenvalues of the operators Lρ2,1 and Lρ3,2 are both 0, we deduce that
0 ≥ 0 + νθ > 0, hence a contradiction. ¤

Proof of Corollary 2.8: Let pδ be a significant L′-periodic solution of
(2.11), and let k ∈ ∏N

i=1 LiZ. From the L-periodicity of the equation (2.11),
pδ(· + k) is also a solution of (2.11). By periodicity of pδ, the functions pδ

and pδ(· + k) intersect each other. Thus, from Theorem 2.7, since pδ and
pδ(· + k) are both L′-periodic, pδ ≡ pδ(· + k). Therefore, pδ is a L-periodic
function. ¤

Proof of Proposition 2.9: In the bounded case, let C̃ be the convex hull
of the set C. It was proved in [30] that the second Neumann eigenvalue of

the Laplace operator −D∇2 on C̃ was larger than D
(π

d

)2
. Since C ⊂ C̃,

we have H1(C) ⊂ H1(C̃). Using formula (2.18), we thus obtain that the

second eigenvalue of Lµ in the bounded case satisfies λ2 ≥ D
(π

d

)2
−max

C
µ.

This proves part (i) of Proposition 2.9.
In the periodic case, since H1

per can be seen as a subset of H1(C), it
follows from (2.18) that,

λ2 ≥ min
Ek⊂H1(C),dim(Ek)=2

max
ψ∈Ek, ψ 6≡0

Rµ(ψ). (2.25)

The period cell C is convex but not smooth enough to assert that the right-
hand side of (2.25) is equal to the second eigenvalue in the bounded case.
Let Ld be the longest diagonal of C. Then C is included in a ball BLd

of
diameter Ld. Thus, from formula (2.18), the right-hand side of (2.25) is
larger than the second eigenvalue of Lµ on BLd

. From (i), the conclusion of
(ii) follows. ¤

Proof of Theorem 2.10, Part (i): Let λ1 and φ be defined by (2.9), and let
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κ be a nonnegative real number such that κ > ε0. Then we have

−D∇2(κφ) − κφ(µ(x) − κφν(x)) + δh(x)ρε(κφ) ≤ λ1κφ + κ2φ2ν(x) + δ
≤ κφ(λ1 + κφν(x)) + δ
≤ max

τ∈I
{τ(λ1 + τν)} + δ,

(2.26)
where I = {κφ(x), x ∈ C}. Setting g(τ) := τ(λ1 + τν), since ‖φ‖∞ = 1,
and since g is a convex function, it follows from (2.26) that

−D∇2(κφ) − κφ(µ(x) − κφν(x)) + δh(x)ρε(κφ) ≤ max{g(κ), g(κφ)} + δ.
(2.27)

Let us take κ0 be such that g(κ0) = g(κ0φ), namely κ0 = − λ1

ν(1 + φ)
(note

that κ0φ > ε). We get

−D∇2(κ0φ)− κ0φ(µ(x)− κ0φν(x)) + δh(x) ≤ −
λ2

1φ

ν(1 + φ)2
+ δ ≤ 0, (2.28)

from the hypothesis on δ of Theorem 2.10, Part (i). Therefore, κ0φ is a
subsolution of (2.11) with either L-periodic or Neumann boundary condi-
tions. Moreover, if M is a large enough constant, M is a supersolution of
(2.11) with L-periodic or Neumann boundary conditions. Thus, it follows
from a classical iterative method that there exists a solution pδ of (2.11),
with the required boundary conditions, and which satisfies κ0φ ≤ pδ ≤ M
in Ω. Moreover, in the periodic case, since κ0φ and M are L-periodic and
since the equation (2.11) is also L-periodic, it follows that pδ is L-periodic.
Theorem 2.10, Part (i) is proved. ¤

Proof of Theorem 2.10, Part (ii): Assume that λ1 < 0, δ > δ2 and that
there exists a positive bounded solution pδ of (2.11) which is not remnant,
i.e.

there exists x0 with pδ(x0) ≥ ε0. (2.29)

Since φ is bounded from below away from 0 and pδ is bounded, we can define

γ∗ = inf {γ > 0, γφ > pδ in Ω} > 0. (2.30)

It follows from the definition of γ∗ that γ∗φ ≥ pδ in Ω, and in particular,
γ∗φ(x0) ≥ pδ(x0) ≥ ε0. Since ‖φ‖∞=1, we get γ∗ ≥ ε0. Thus,

γ∗φ ≥ ε0φ = ε, (2.31)
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which implies ρε(γ
∗φ) = 1. Thus, h(x)ρε(γ

∗φ) ≥ α, and we get,

−D∇2(γ∗φ)−γ∗φ(µ(x)−γ∗φν(x))+δh(x)ρε(γ
∗φ) ≥ γ∗φ(λ1+γ∗φν(x))+δα,

on Ω. Moreover, since γ∗φ > 0 and ν ≥ ν, we have γ∗φ(λ1 + γ∗φν(x)) ≥
−λ2

1

4ν
. Using the fact that δ > δ2 =

λ2
1

4αν
, we thus get:

−D∇2(γ∗φ)−γ∗φ(µ(x)−γ∗φν(x))+δh(x)ρε(γ
∗φ) ≥ −λ2

1

4ν
+ δα > 0, (2.32)

on Ω. Therefore, γ∗φ is a supersolution of (2.11). Set z := γ∗φ − pδ. From
the definition of γ∗, we know that z ≥ 0, and that there exists a sequence
(xn)n∈N in Ω such that z(xn) → 0 as n → +∞.

In the bounded case, up to the extraction of some subsequence, xn →
x ∈ Ω as n → +∞. By continuity, z(x) = 0. Moreover, subtracting (2.11)
to (2.32), we get

−D∇2z + [ν(x)(γ∗φ + pδ) + χ(x) − µ(x)]z > 0 in Ω, (2.33)

where the function χ is defined by χ(x) = δh(x)ρε(γ∗φ(x))−ρε(pδ(x))
γ∗φ(x)−pδ(x) whenever

γ∗φ(x) − pδ(x) 6= 0, and χ(x) = ρ′ε(pδ(x)) otherwise. Since ρε is C1, χ is
bounded. Thus b(x) := ν(x)(γ∗φ + pδ) + χ(x)−µ(x) is a bounded function.
Using the strong elliptic maximum principle, we deduce from (2.33) that
z ≡ 0. Thus γ∗φ ≡ pδ is a positive solution of (2.11). It is in contradiction
with (2.32).

In the periodic case, we must also consider the situation where the se-
quence (xn)n∈N is not bounded. Let (xn) ∈ C be such that xn − xn ∈∏N

i=1 LiZ. Up to the extraction of some subsequence, we can assume that
there exists x∞ ∈ C such that xn → x∞ as n → +∞. Set φn(x) = φ(x+xn)
and pδ,n(x) = pδ(x + xn). From standard elliptic estimates and Sobolev
injections, it follows that (up to the extraction of some subsequence) pδ,n

converge in W 2,τ
loc , for all 1 ≤ τ < ∞, to a function pδ,∞ satisfying

−∇2(Dpδ,∞)− pδ,∞(µ(x + x∞)− pδ,∞ν(x + x∞)) + δh(x + x∞)ρε(pδ,∞) = 0,

in R
N , while γ∗φn converges to γ∗φ∞ := γ∗φ(· + x∞), and

−∇2(Dγ∗φ∞)−γ∗φ∞(µ(x+x∞)−γ∗φ∞ν(x+x∞))+δh(x+x∞)ρε(γ
∗φ∞) > 0,

in R
N . Let us set z∞(x) := γ∗φ∞(x)−pδ,∞(x). Then z∞(x) = limn→+∞ z(x+

xn), therefore z∞ ≥ 0 and z∞(0) = 0. Moreover, there exists a bounded
function b∞ such that

−D∇2z∞ + b∞z∞ > 0 in R
N . (2.34)
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It then follows from the strong maximum principle that z∞ ≡ 0 and we
again obtain a contradiction. Finally, we necessarily have pδ ≤ ε0, and the
proof of Theorem 2.10, Part (ii) is complete. ¤

Proof of Theorem 2.11, Part (i): Assume that δ ≤ δ∗. Let pδ be the unique
maximal significant solution defined in the proof of Theorem 2.10, Part (i).
Then, from Lemma 2.12,

pδ(x) ≤ p0(x) = u(0, x), ∀ x ∈ Ω, (2.35)

which implies
pδ(x) ≤ u(t, x) in R+ × Ω, (2.36)

since pδ is a stationary solution of (2.5). Moreover, since p0 is a supersolution
of (2.11), u is nonincreasing in time t, and standard parabolic estimates
imply that u converges in W 2,τ

loc (Ω), for all 1 ≤ τ < ∞, to a bounded
stationary solution u∞ of (2.5). Furthermore, from (2.36) we deduce that
pδ ≤ u∞ ≤ p0. Since pδ is the maximal positive solution of (2.11), it follows
that u∞ ≡ pδ. Moreover, in the periodic case, since p0 and the equation (2.5)
are L-periodic, u(t, x) is also L-periodic in x. Therefore the convergence is
uniform in Ω. Part (i) of Theorem 2.11 is proved. ¤

Proof of Theorem 2.11, Parts (ii) and (iii): Assume that δ > δ∗. Since 0 is a
stationary solution of (2.5) and u(0, x) = p0 > 0, we obtain that u(t, x) > 0
in R

+ × Ω, and again, from standard parabolic estimates, we know that u
converges in W 2,τ

loc (Ω) (for all 1 ≤ τ < ∞) to a bounded stationary solution
u∞ ≥ 0 of (2.5) as t → +∞. Moreover, in the periodic case, from the
L-periodicity of the initial data and of the equation (2.5), we know that
u(t, ·) and u∞ are L-periodic. Therefore the convergence is uniform in Ω. It
follows from Theorem 2.6, Part (ii) that u∞ cannot be a significant solution
of (2.11). Moreover, if δ > δ2, Theorem 2.10, Part (ii) ensures that u∞ is a
remnant solution of (2.11). ¤

3 Numerical investigation of the effects of envi-

ronmental fragmentation

We propose here to apply the results of §2, on the estimation of the maxi-
mum sustainable yield, to the study of the effects of environmental fragmen-
tation. A theoretical investigation of the relationships between maximum
sustainable yield and fragmentation is difficult to achieve (see Remark 5).
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To overcome this difficulty, we propose a numerical study in the case of
stochastic environments. Firstly, we show that the gap δ2 − δ1, obtained
from (2.19) and Theorem 2.10, remains small whatever the degree of frag-
mentation is. This gap corresponds to the numerical values of the harvesting
quota δ for which we do not know whether the population density will con-
verge to a significant or a remnant solution of the stationary equation (2.11).
Secondly, we show that there is a monotone increasing relationship between
the maximal sustainable yield δ∗ and the habitat aggregation.

Remark 5: In a periodic environment, a simple way of changing the
degree of fragmentation without changing the relative spatial pattern (fa-
vorable area/unfavourable area ratio), is to modify the size of the period cell
C. Assume that µ(x) = η

(
x
L

)
, for some 1−periodic function η with positive

integral, and for some L > 0. This means that the environment consists
in square cells of side L. Setting λ1,L := λ1, and φL := φ, we then have
−D∆φL − η

(
x
L

)
φL = λ1,LφL on [0, L]N . The function ψL(x) := φL(Lx)

thus satisfies −D∆ψL −L2η(x)ψL = L2λ1,LψL in [0, 1]N , with 1-periodicity.
From the Rayleigh formula we thus obtain:

λ1,L = min
ψ∈H1

per

D

L2

∫
[0,1]N |∇ψ|2
∫
[0,1]N ψ2

−
∫
[0,1]N ηψ2

∫
[0,1]N ψ2

,

therefore λ1,L < 0 (since ψ ≡ 1 ∈ H1
per), and λ1,L decreases with L. It

implies that δ2 increases with L. The relationship between δ1 and L is less
clear since, φL = min

C
φL may not always be an increasing function of L.

In order to lessen the boundary effects, and to focus on fragmentation,
we place ourselves in the periodic case. For our numerical computations,
we assume that the environment is made of two components, favorable and
unfavorable regions. It is expressed in the model (2.5) through the coefficient
µ(x), which takes two values µ+ or µ−, depending on the space variable x.
We also assume that

µ+ > µ−, ν(x) ≡ 1, h(x) ≡ 1 and D = 1.

Using a stochastic model for landscape generation [34], we built 2000
samples of binary environments, on the 2-dimensional period cell C = [0, 1]2,
with different degrees of fragmentation. In all these environments, the fa-
vorable region, where µ(x) = µ+, occupies 20% of the period cell. The
environmental fragmentation is defined as follows. We discretize the cell
C into nC = 50 × 50 equal squares Ci. The lattice made of the cells Ci

is equipped with a 4-neighborhood system V (Ci) (see Fig. 2), with toric
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C
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Figure 2: The 4-neighborhood system: an element Ci of C and its four
neighbors.

conditions. On each cell Ci, we assume that the function µ either takes
the value µ+ or µ−, while the number n+ = card{i, µ ≡ µ+ on Ci} is fixed
to nC × 20

100 = 500. For each landscape sample ω = (µ(Ci))i=1...nC
, we set

s(ω) =
1

2

∑

Ci⊂C

∑

Cj∈V (Ci)

11{µ(Cj) = µ(Ci)}, the number of pairs of neighbors

(Ci, Cj) such that µ takes the same value on Ci and Cj (11{·} is the indi-
cator function). The number s(ω) is directly linked to the environmental
fragmentation: a landscape pattern is all the more aggregated as s(ω) is
high, and all the more fragmented as s(ω) is small (Fig. 3). Thus, we shall
refer to s as the “habitat aggregation index”.

Remark 6: There exist several ways of obtaining hypothetical landscape
distributions. The commonest are neutral landscape models, originally in-
troduced by Gardner et al. [16]. They can include parameters which regulate
the fragmentation [20]. We preferred to use a stochastic landscape model
presented in [34], since it allows an exact control of the favorable and un-
favorable surfaces, and is therefore well adapted for analyzing the effects of
fragmentation per se. This model is inspired from statistical physics. The
number of pairs of similar neighbors s is controlled during the process of
landscape generation. This quantity can be measured a posteriori on the
landscape samples. Other measures of fragmentation could have been used,
such as fractal dimension (see [24]). For a discussion on the different ways
of measuring habitat fragmentation in real-world situations the interested
reader can refer to [14].

For our computations, we took µ+ = 10 and µ− = 0, and we computed
the corresponding values of λi

1, δi
1 and δi

2 on each landscape sample ωi of
aggregation index si, for i = 1 . . . 2000. The eigenvalues λi

1 were computed
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(a) s = 3400
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(b) s = 3800
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(c) s = 4200
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1

(d) s = 4600

0 1

1

(e) s = 4800

0 1

1

(f) s = 4900

Figure 3: Some samples of the landscapes used for the computations of δ1

and δ2, with different values of the habitat aggregation index s. The black
areas correspond to more favorable environment, where µ(x) = µ+.

with a finite elements method. We fitted the data sets {(si, δi
1)}i=1...2000

and {(si, δi
2)}i=1...2000 using ninth degree polynomials (it is enough to assess

if the relations between s and δ1, δ2 tend to be monotonic or not). The
resulting fitted curves δ1,f and δ2,f are presented in Fig. 4. Under the
assumption of normally distributed values of δ1 and δ2 for fixed s values,
we computed a lower prediction bound (δ1,lo) for new observation of δ1 and
an upper prediction bound for δ2 (δ2,up), with a level of certainty of 99%.
Thus, given a configuration ω, with a fixed value of s, when δ is smaller than
δ1,lo, we take a 0.5% chance of being above δ1, while when δ is larger than
δ2,up, we take a 0.5% chance of being below δ2. The small thickness of the
intervals (δ1,lo, δ2,up) emphasizes the quality of the relationship between the
habitat aggregation index s and the maximum sustainable yield δ∗ ∈ [δ1, δ2].
This also indicates that the criteria of Theorems 2.10 and 2.11 are close to
be optimal, at least in some situations.

Furthermore, as we can observe, the values of δ1 and δ2 tend to increase
as s increases, and thus as the environment aggregates. Since δ∗ ∈ [δ1, δ2], we
deduce from the computations presented in Fig. 4 that δ∗ tends to increase
with environmental aggregation.

These tests were performed for particular values of µ+ and µ−. However,
the thickness of the interval (δ1, δ2) can be determined for all values of µ+,
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1

1.1

1.2

1.3

s: habitat aggregation index

δ
1,f

δ
2,f

δ
2,up

δ
1,lo

Remnant
solutions

Significant
solutions

Figure 4: Solid lines: δ1,f and δ2,f correspond respectively to the data sets
{(si, δi

1)}i=1...2000 and {(si, δi
2)}i=1...2000, fitted with ninth degree polynomi-

als. Dashed lines: δ1,lo is a lower prediction bound for new observations of
δ1 and δ2,up an upper prediction bound for new observations of δ2, with in
both cases a level a certainty of 99%.
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µ− without further numerical computations, provided that µ+ − µ− = 10.
Indeed, let us set B := µ+ − µ−. For a fixed value of B, let µ0(x) be a
given L-periodic function in L∞(RN ) taking only the two values µ+

0 = B
and µ−

0 = 0. Let λ1,0 be the first eigenvalue of the operator −∇2−µ0I on C,
with L-periodicity conditions, φ0 the associated eigenfunction with minimal
value φ0 and

δ1,0 :=
λ2

1,0φ0

(1 + φ0)2
and δ2,0 :=

λ2
1,0

4
.

We have the following proposition:

Proposition 3.1 Assume that µ(x) = µ0(x) + µ−, with µ− > λ1,0. Let δ1

and δ2 be defined by (2.19). Then we have δ2 − δ1 =

(
1 − µ−

λ1,0

)2

(δ2,0 − δ1,0).

This result also indicates that the information on δ∗ is all the more precise as
the growth rate function takes low values. However, the “relative thickness”

of the interval (δ1, δ2), compared to δ1,
δ2 − δ1

δ1
, does not depend on µ−, as

it can be easily noticed.
Proof of Proposition 3.1: The relation λ1[µ(x)] = λ1,0 − µ− is a direct
consequence of the uniqueness of the first eigenvalue λ1. We assume that
µ− > λ1,0, so that λ1[µ(x)] < 0. From the uniqueness of the eigenfunction
φ associated to λ1, φ does not depend on µ−. Therefore, δ1 and δ2 satisfy

δ1 =
(λ1,0 − µ−)2φ0

(1 + φ0)2
and δ2 =

(λ1,0 − µ−)2

4
. The result immediately follows.

¤

4 A few comments on the proportional harvesting

model

In this model, the population density u is governed by the equation

ut = D∇2u + u(µ(x) − ν(x)u) − q(x)u, x ∈ Ω, (4.37)

with L-periodicity of the functions µ(x), ν(x) and q(x) in the periodic case,
and with Neumann or Dirichlet boundary conditions in the bounded case.
Setting

τ(x) := µ(x) − q(x),

this model becomes equivalent to the SKT-model (1.3). Hence, many prop-
erties of the solutions of this model are described in the existing literature.
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In particular the existence, nonexistence and uniqueness results of Theorems
2.2 and 2.4 apply. The condition λ1[µ(x) − q(x)] < 0 is therefore necessary
and sufficient for species persistence. Furthermore, the theoretical results of
[8], [12], [33], [34] on the effects of habitat arrangement on species persistence
are also true for this model.

For instance, when the function µ(x) is constant, with µ(x) ≡ µ1 > 0,
and if the domain Ω is convex and symmetric with respect to each axis
{x1 = 0}, ..., {xN = 0}, the next result is a straightforward consequence of
the paper [8],

Theorem 4.1 (i) In the periodic case, λ1[µ1 − q∗k(x)] ≤ λ1[µ1 − q(x)].
(ii) In the bounded Dirichlet case, λ1[µ1 − q∗k(x)] ≤ λ1[µ1 − q(x)],

(iii) In the bounded Neumann case, if Ω is a rectangle, λ1[µ1 − q♯
k(x)] ≤

λ1[µ1 − q(x)].

Here q∗k denotes the symmetric decreasing Steiner rearrangement of the func-

tion q with respect to the variable xk, and q♯
k denotes the monotone rear-

rangement of q with respect to xk (see [8] and [10] for the definition of these
rearrangements). These rearrangements of a function q not only preserve
its mean value, but also its distribution function. This means that if, for
instance, q corresponds to a “patch” function taking the values q1, q2 and
q3 in some regions A1, A2 and A3 respectively, with A1 + A2 + A3 = |C|,
then the areas of the regions where the rearranged functions q∗ and q♯ take
the values q1, q2 and q3 remain equal to A1, A2 and A3 respectively.

Theorem 4.1, combined with Theorem 2.4 say that the spatially rear-
ranged harvesting strategies are better for species survival. This result can
be helpful from a resource management point of view. Indeed, the author-
ities can rearrange the position of the harvested areas in order to improve
the chances of population persistence. The result of Theorem 4.1 shows
that, in the framework of these models, the creation of a large reserve gives
persistence more chances than the creation of several small reserves, and is
in accordance with the former results of [23] and [26] in the Dirichlet case.
See Fig. 5 for some illustrations in the bounded case with Dirichlet and
Neumann boundary conditions.

5 Discussion

We have proposed a model for the study of populations in heterogeneous en-
vironments, for populations submitted to an external negative forcing term.
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Figure 5: Examples of applications of Theorem 4.1, Parts (ii) and (iii) to
reserves management. In the figures (a) and (b), the boundary Γ of Ω is
lethal (Dirichlet boundary conditions). (a): The initial effort function q(x)
takes two values, q+ > 0 in the white area and q− = 0 in the shadowed
regions, which correspond to reserves. (b): Position of the reserves after
a symmetric decreasing Steiner rearrangement along the ∆1 and ∆2 axes,
successively. The rearranged configuration (b) always give more chances of
species persistence. In the figures (c) and (d), the boundary Γ is divided
into two parts: Γ = Γ1 ∪ Γ2. Γ1 is represented with a solid line and can
correspond to a coast, while Γ2 is represented with a dashed line, and can
correspond to a non-physical limit that the species cannot cross (Neumann
boundary conditions). (c): The effort function q(x) again takes two values,
q+ > 0 in the white area and q− = 0 in the reserves. (d): Position of
the reserves after monotone rearrangement along the horizontal and vertical
axes, successively. The chances of persistence are better in the rearranged
configuration (d).
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This forcing term could be regarded as a “quasi-constant-yield” harvest-
ing, depending only on the population density u when u is below a certain
small threshold ε. The introduction of such a threshold ε was necessary for
ensuring the nonnegativity of the solutions of our model, and therefore its
actuality.

We carried out new mathematical results on the elliptic equation satis-
fied by the stationary states of the model, and on the associated parabolic
equation. Both qualitative and quantitative results were obtained.

From the qualitative point of view, we described the behavior of the
model solutions in terms of the harvesting amplitude δ. Two main types of
stationary solutions were found: the remnant solutions, always below a small
threshold ε0 and therefore close to 0, and the significant solutions, always
above this threshold, thus ensuring a time-constant yield. We discussed the
maximum number of significant stationary solutions, which we found equal
to 2, under an hypothesis of positivity of the second eigenvalue λ2 of a linear
operator. We further investigated the long-time behavior of the solution of
our model, starting from a non-harvested population at equilibrium. We
found a critical value δ∗ of the harvesting term amplitude, below which the
population density tends over time to a significant stationary solution, and
above which it converges to a stationary solution which is not significant.
We also established quantitative formulae for some lower and upper bounds
for δ∗: δ1 and δ2 respectively. The threshold δ2 has the additional property
that, whenever the amplitude δ is above δ2, the population density decreases
to a remnant stationary solution.

The quantitative aspects of our study mainly consisted in discussing
the effect of environmental fragmentation on these thresholds δ1 and δ2, and
therefore on the interactions between environmental fragmentation and max-
imum sustainable yield. Namely, when computing the values of δ1 and δ2 on
2000 samples of stochastically obtained patchy environments, with different
levels of fragmentation, we found an increasing relationship between these
two coefficients and an environmental aggregation index s. This indicates
that, for given areas of favorable and unfavorable regions, the harvesting
quota that a species can sustain, while ensuring and time-constant yield, is
higher when the favorable regions are aggregated.

The reader may note that, in our model, the species mobility was not
affected by the environmental heterogeneity. Such a dependence could be
modelled by using a more general dispersion term, of the form ∇·(A(x)∇u),
instead of D∇2u, where A(x) stands for the diffusion matrix (see [8], [36]).
In fact, most of our results still work when the matrix A is of class C1,α

(with α > 0) and uniformly elliptic; i.e. when it exists τ > 0 such that
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A(x) ≥ τIN for all x ∈ Ω. Indeed, Theorems 2.2, 2.4, 2.7, 2.10, 2.11
remain true under this more general assumption. However, the effects of
environmental heterogeneity may differ, depending on the way A(x) and
µ(x) are correlated (see [21]). In the proportional harvesting case, the results
of § 4 on the effects of the arrangements of the harvested regions may also
not be valid with this dispersion term. However, in situations where A(x)
takes low values (slow motion) when q(x) is low (“reserves”, see § 4), as
underlined in [33], a simultaneous rearrangement of the functions A(x) and
q(x) would lead to lower λ1 values and therefore to higher chances of species
survival.
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