

Red and black fruits aromas characterization in Bordeaux wines thanks to preparative HPLC applied to wines extracts

Bénédicte Pineau, Jean-Christophe Barbe, Cornelis van Leeuwen, Denis Dubourdieu

▶ To cite this version:

Bénédicte Pineau, Jean-Christophe Barbe, Cornelis van Leeuwen, Denis Dubourdieu. Red and black fruits aromas characterization in Bordeaux wines thanks to preparative HPLC applied to wines extracts. 8. Symposium International d'Œnologie "Œno 2007", Jun 2007, Talence, France. 1 p., 2007. hal-02816213

HAL Id: hal-02816213 https://hal.inrae.fr/hal-02816213

Submitted on 6 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Red and black fruits aromas characterization in Bordeaux wines thanks to preparative HPLC applied to wines extracts

Bénédicte Pineau, Jean-Christophe Barbe, Cornelis Van Leeuwen and Denis Dubourdieu

UMR 1219 Œnologie - Institut des Sciences de la Vigne et du Vin

Faculté d'Enologie de Bordeaux - Université Victor Ségalen Bordeaux 2 - 351 cours de la Libération - 33405 Talence Cedex - FRANCE ENITA de Bordeaux - 1, cours du Général de Gaulle - 33170 Gradignan - FRANCE

Till now, more than 800 aromatic compounds have been identified in wines. Wine is so a very complex matrix, from which it is difficult to isolate, previously to analysis, a specific aromatic character. Some recent researches have suggested the use of High Pressure Liquid Chromatography (HPLC) preparative methods (1) as a help for the isolation of aromatic compounds. The main goal of our study was to determine how HPLC applied to wine extracts could be helpful for selection and characterization of red and black fruits aromas of Bordeaux red wines.

Preparation of wine extracts. 500 ml of wine MATERIALS and METHODS was extracted using 100 ml, 50 ml, and 50 ml dichloromethane, with magnetic stirring (500 rpm) for 5 minutes. The three extracts were blended, dried over anhydrous sodium sulfate and concentrated to obtain a 1 ml wine extract.

HPLC assays. Normal Phase (NP) HPLC was performed with NH2 column, and Reversed Phase (RP) HPLC were performed with C8 and C18 columns. All columns were from Waters, 30 cm long and 3,9 mm i.d. Chromatographic conditions were optimized as follows: flow rate, 0,5 ml/min; injection volume: 256 µl of wine extract; program gradient: phase A, pentane (NP-HPLC) or water (RP-HPLC), phase B, dichloromethane (NP-HPLC) or ethanol (RP-HPLC) - minute 0-2, 100% A, linear programmed until 100% B in minute 50. The effluent was collected in 1 ml fractions. 25 fractions in hydroalcoholic solutions were so obtained and then directly evaluated by a panel of three trained judges, to only retain fruity fractions.

Fruity fractions extraction. Fraction 17 to 21, obtained with the C18 column, were blended and diluted with distilled water, before being extracted following the method used to prepare the wine extracts, but with 5 ml, 5 ml, and 5 ml of diethylether/pentane (1:1, v:v) and a 200 µl final volume of extract. The same method was applied to quantify esters in 50 ml of wine, with 20 µg of octan-3-ol, used as internal standard, added prior to extraction.

GC analyses. Chromatographic conditions were the same as used by Pineau et al. (3) GC-O analyses were carried out by a panel of 3 trained judges. Esters quantification were performed in GC-MS (SIM mode).

Tastings were performed in black glasses by a panel of 15 trained judges. A red wine was desaromatized by evaporating using a Rotavapor®, until no more fruity aroma were perceptible. For each fraction, a triangular test was performed as presented below. Jugdes were asked to recognize the wine with fraction added and to describe its aroma.

MERLOT WINE FRACTIONATION RESULTS

This wine was characterized by very fruity aromas. With both C8 and C18 fractionations, red fruits aromas are globally concentrated into fractions 16 to 21, whereas NH2 column shows only 2 fractions with characteristic red fruits aroma, plus another one more chemical and sweet.

Even though separation is not as powerful as with C8 and C18 phases, the use of NH2 column could so be a way to improve results obtained with silica gel (2), by both controlled elution conditions (pressure, flow rate, etc.) and increased selectivity (more numerous fractions).

fraction	NP-HPLC - NH2 column	RP-HPLC – C8 column	RP-HPLC – C18 column			
3	-	light fruity (pear, peach)	cream, milky			
4	-	fatty	cream, milky			
5	-	milky, butyric, light caramel	caramel, milky			
6	-	intense caramel, milky	cheese, butyric			
7	flowery	buttery, butyric	resinous, flowery			
8	flowery, fatty	vegetables, cheese	solvent, green			
9	flowery, cheese	solvent	alcohol, fresh			
10	flowery, fatty	solvent	phenolic, fatty			
11	flowery, light spicy	solvent	polish, banana			
12	-	solvent, citrus fruits	solvent, flowery			
13	-	green, cut grass	flowery, fresh strawberry			
14	-	fatty, biscuit	fruity, roasted nut			
15	light fresh red fruits	dusty, flowery	flowery, citrus			
16	flowery, sweet, chemical	roasted, alcohol	mint, spicy, red fruits			
17	raspberry, strawberry jams	roasted meat, citrus fruits	intense red fruits			
18	roasted, burning	mint, spicy, red fruits	red fruits, citrus fruits			
19	light, paper	red fruits, chemical, anise	raspberry, strawberry jams			
20	light, meat	earl grey, fresh raspberry	light red fruits, burnt rubber			
21	sweet	rubber, raspberry jam	roasted, burnt			
22	-	alcohol, burnt	- (alcohol)			
23	light biscuit, burnt	- (alcohol)	- (alcohol)			

CHARACTERIZATION OF WINES FRUITY AROMAS

4 red fruity wines from each Merlot (M) and Cabernet Sauvignon (CS) varieties, were fractioned on C18-column.

Table shows a very good conservation of aroma characteristics between wines and fractions.

In triangular tests, more than 80 % of the judges succeed in recognizing the wine with fraction added and descriptors given were similar or close to the table ones.

	Merlot	Cabernet Sauvignon					
Wine	caramel, fresh cherry	blackcurrant, black fruits liquor, spicy					
F5	caramel	-					
F7	caramel, fatty	fatty, cheese					
F18	heavy, winy	black fruits, spicy					
F19	chemical, strawberry	chemical, strawberry					
F20	light black fruits	light red fruits					
F21	fresh cherry, blackberry	intense blackcurrant					
F22	light black fruits	fresh, spicy					

GC analyses of fruity fractions extracts allowed identifying 12 ethyl esters and acetates, known for their red fruits aromas. From the results, blackberry and black-currant aromas, characteristics of wines M1, CS3 and CS4 might be linked to a higher content in ethyl propanoate, ethyl 2methylpropanoate and ethyl 2-methylbutanoate. That result tends to be confirmed by sensorial analysis.

Wine	C2-2MeC3	C2C4	C2C6	C2C8	C2iC5	2MeC3C2	C4C2	C6C2	C8C2	3OHC4C2	C3C2	2MeC4C2
M 1	44,9	-	0,7	-	240	45,6	171	225	220	679	75,6	5,0
M 2	118,0	2,2	7,7	0,2	1463	15,1	411	707	699	911	11,8	2,5
M 3	80,1	-	6,0	0,3	1121	14,4	270	452	419	626	17,1	2,4
M 4	54,6	1,1	5,6	0,2	925	15,6	194	392	360	400	9,9	2,0
CS 1	18,6	-	1,3	-	110	18,9	90	195	203	393	11,5	3,8
CS 2	86,6	1,4	17,3	0,3	1758	15,5	190	422	402	596	14,5	2,3
CS 3	57,8	1,2	8,7	0,1	845	24,0	166	321	255	350	34,2	3,8
CS 4	58,8	-	11,5	0,2	1016	18,9	168	373	302	318	78,1	3,7

C2-2MeC3: 2-methylpropyl acetate - C2C4: butyl acetate - C2C6: hexyl acetate - C2C8: octyl acetate - C2iC5: isoamyl acetate – 2MeC3C2: ethyl 2-methylpropanoate – C4C2: ethyl butanoate – C6C2: ethyl hexanoate – C8C2: ethyl octano – 3OHC4C2: ethyl 3-hydroxybutanoate – C3C2: ethyl propionate – 2MeC4C2: ethyl 2-methylbutanoate

The HPLC method pointed out allows a selective separation of aromatic compounds with a red fruits characteristic from the whole aromatic compounds initially presents in the wine extract. It is so a powerful way of purification, which makes easier the characterization of aromatic compounds responsible for the specific fruity aromas observed in Bordeaux red wines.

BIBLIOGRAPHY (1) Aznar et al., J. Agric. Food Chem. 2001, 49, 2924-2929. (2) Guth, J. Agric. Food Chem. 1997, 45, 3022-3026.

(3) Pineau et al., J. Agric. Food Chem. 2007, 55, 4103-4108