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Introduction

The genetic basis of adaptation is a central question in 
evolutionary genetics (Orr 1998). It is not known if 
adaptations are due to changes in regulatory or protein 
coding parts of the genes, if they occur though many 
small of few large mutations, or what is the role of 
interaction between genes and environment. An 
interesting question is whether similar adaptations  
occur using similar mutations and same genes in  
different populations and species (Hoekstra and Coyne 
2007).

Arabidopsis lyrata is an outcrossing perennial relative 
of selfing Arabidopsis thaliana. It occurs in isolated 
populations scattered in Europe and North-America. 
Transplant studies have shown that populations are  
locally adapted (Leinonen et al. 2008). 

We focus here on two populations, one from a 
northern, high altitude site (Spiterstulen, Norway) and 
the second originating from Central Europe (Plech, 
Germany) (Fig. 1). We study the response of the  
reproductive and morphological characters to  
environmental cues that are known to affect flowering, 
and the genetic basis for these differences.

Conclusions

The two populations showed contrasting responses 
to environmental cues, suggesting canalization of  
crucial traits due to adaption to local environments.

The genetic architectures of natural variation in  
flowering in A. lyrata and A. thaliana seem to be 
different. While the variation in A. thaliana is 
mainly governed by FRI and FLC, our results  
suggest that differences between A. lyrata 
populations in flowering time are due to more subtle 
mutations mainly at other loci. 

We are currently studying additional crosses, and  
carrying out association studies and analyses of  
sequence variation at flowering time candidate  
genes.

Figure 3. QTLs detected in three experminents.

We made an F2 cross between Pech and Spiterstulen 
A. lyrata populations using two independent  
grandparents from each population.

Growth conditions
We grew F2 plants together with parental populations 
and F1 plants in growth chambers with three different 
combinations of photoperiod, vernalization and  
nutrient treatments. When vernalized, 5 week old  
rosettes were exposed to 4oC at 8 h photoperiod, for 9 
weeks time, and then returned to normal growth  
conditions.

Material

 

and methods

Figure 1. A. lyrata plants in Spiterstulen grow on alpine 
river banks exposed to flood and hard winter conditions; in 
Plech they grow on rocky outcrops.

Spiterstulen, Norway
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Experiment GC01 GC05 GC05 
Photoperiod 20 h  14 h 14 h 
Fertilization at day 178 continuous continuous 
Vernalization no  no yes 
F2 sample size 181 118 168 
Abreviation LD 14hD 14hDV 
 

Traits scored
Probability and timing of flowering, and traits related 
to reproductive effort, morphology and size were  
scored in parents, F1 and F2.

QTL-mapping
We constructed a genetic map with 40 markers using 
530 F2 seeds, resulting in a map with 18 cM mean 
intervals between markers. We did QTL-mapping with 
the program R/qtl version 1.02-2 (Broman et al. 2003).
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Populations showed significant differences in most  
traits in the three growth conditions. Plech generally 
flowered more probably, earlier, and more vigorously 
than Spiterstulen; further, Plech rosettes were smaller 
and flatter.

Flowering probability and timing were plastic , 
responding positively to fertilization and vernalization 
in both parentals, F1 and F2 (Fig. 2). Reproductive 
effort, on the other hand, was plastic only in Plech; 
inflorescence shoot number, flower number, and  
inflorescence height were strongly canalized in  
Spiterstulen. Respectively, only Spiterstulen showed  
plastic response of rosette height to vernalization,  
while the rosette was always very flat in Plech.

We detected a modest number of QTLs for  
flowering, reproductive investment and morphology 
(Fig. 3), each of the QTLs explaining 5 to 25% of the 
total variance in F2. Plech alleles generally promoted 
flowering and reproductive investment as expected. 
Some QTLs (e.g. bottom of chromosome 2 and  
beginning of chromosomes 4 and 7) were detected in 
many environments, and the same areas had QTLs 
for both flowering and morphological/reproductive  
traits, suggesting possible pleiotropic effects of genes 
in developmental pathways. 

Our experimental design did allow detection of only 
large effect QTLs, so many smaller QTLs could  
additionally segregate in this cross. 

In A. thaliana, two major genes, FLC and FRI are 
known to govern a large part of the naturally  
occurring variation in flowering time (e.g. LeCorre et 
al. 2002, Gazzani et al. 2003). In the current cross, 
there was a QTL for number of flowers close to the 
FLC, but no evidence for a QTL in the FRI region. 
The FRI indel polymorphism that was earlier found 
to govern flowering time variation (Kuittinen et al. 
2008) did not segregate in the current cross.
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Figure 2.  Timing of floweirng in parental populations 
and F2 plants in GC05 experiment.
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GC01 Flowering probability  
at day 99,  
at day178(fertilization), 
at day 258 
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GC05 Flowering probability  
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