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Abstract

This paper tackles the problem of detecting abrupt changes in the mean of a het-
eroscedastic signal by model selection, without knowledge on the variations of the
noise. A new family of change-point detection procedures is proposed, showing that
cross-validation methods can be successful in the heteroscedastic framework, whereas
most existing procedures are not robust to heteroscedasticity. The robustness to het-
eroscedasticity of the proposed procedures is supported by an extensive simulation
study, together with recent theoretical results. An application to Comparative Ge-
nomic Hybridization (CGH) data is provided, showing that robustness to heteroscedas-
ticity can indeed be required for their analysis.

1 Introduction

The problem tackled in the paper is the detection of abrupt changes in the mean of a signal
without assuming its variance is constant. Model selection and cross-validation techniques
are used for building change-point detection procedures that significantly improve on ex-
isting procedures when the variance of the signal is not constant. Before detailing the
approach and the main contributions of the paper, let us motivate the problem and briefly
recall some related works in the change-point detection literature.

1.1 Change-point detection

The change-point detection problem, also called one-dimensional segmentation, deals with
a stochastic process the distribution of which abruptly changes at some unknown instants.
The purpose is to recover the location of these changes and their number. This problem
is motivated by a wide range of applications, such as voice recognition, financial time-
series analysis |29] and Comparative Genomic Hybridization (CGH) data analysis [35]. A
large literature exists about change-point detection in many frameworks [see ﬁ, , for a
complete bibliography].

The first papers on change-point detection were devoted to the search for the location of
a unique change-point, also named breakpoint [see @, for instance|. Looking for multiple
change-points is a harder task and has been studied later. For instance, Yao @] used
the BIC criterion for detecting multiple change-points in a Gaussian signal, and Miao and
Zhao @] proposed an approach relying on rank statistics.
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The setting of the paper is the following. The values Y7,...,Y, € R of a noisy signal
at points t1,...,t, are observed, with

Y =s(t;) +o(ti)e Ele] =0 and Var(e)=1 . (1)

The function s is called the regression function and is assumed to be piecewise-constant, or
at least well approximated by piecewise constant functions, that is, s is smooth everywhere
except at a few breakpoints. The noise terms e€1,...,¢€, are assumed to be independent
and identically distributed. No assumption is made on o : [0,1] — [0,00). Note that all
data (t;,Y;)1<i<n are observed before detecting the change-points, a setting which is called
off-line.

As pointed out by Lavielle @], multiple change-point detection procedures generally
tackle one among the following three problems:

1. Detecting changes in the mean s assuming the standard-deviation o is constant,
2. Detecting changes in the standard-deviation o assuming the mean s is constant,

3. Detecting changes in the whole distribution of Y, with no distinction between changes
in the mean s, changes in the standard-deviation ¢ and changes in the distribution
of e.

In applications such as CGH data analysis, changes in the mean s have an important
biological meaning, since they correspond to the limits of amplified or deleted areas of
chromosomes. However in the CGH setting, the standard-deviation o is not always con-
stant, as assumed in problem 1. See Section [0] for more details on CGH data, for which
heteroscedasticity—that is, variations of c— correspond to experimental artefacts or bio-
logical nuisance that should be removed.

Therefore, CGH data analysis requires to solve a fourth problem, which is the purpose
of the present article:

4. Detecting changes in the mean s with no constraint on the standard-deviation o :
[0,1] — [0, 00).

Compared to problem 1, the difference is the presence of an additional nuisance parameter
o making problem 4 harder. Up to the best of our knowledge, no change-point detection
procedure has ever been proposed for solving problem 4 with no prior information on o.

1.2 Model selection

Model selection is a successful approach for multiple change-point detection, as shown by
Lavielle “E] and by Lebarbier “ﬁ for instance. Indeed, a set of change-points—called a
segmentation—is naturally associated with the set of piecewise-constant functions that may
only jump at these change-points. Given a set of functions (called a model), estimation can
be performed by minimizing the least-squares criterion (or other criteria, see Section [3]).
Therefore, detecting changes in the mean of a signal, that is the choice of a segmentation,
amounts to select such a model.

More precisely, given a collection of models {Sin},,c 4, and the associated collection of
least-squares estimators {5, },,c M,,» the purpose of model selection is to provide a model

index m such that 57 reaches the “best performance” among all estimators {8, },,c 4., -
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Model selection can target two different goals. On the one hand, a model selection
procedure is efficient when its quadratic risk is smaller than the smallest quadratic risk of
the estimators {Sn},,cr,, UP to a constant factor Cy, > 1. Such a property is called an
oracle inequality when it holds for every finite sample size. The procedure is said to be
asymptotic efficient when the previous property holds with C;, — 1 as n tends to infinity.
Asymptotic efficiency is the goal of AIC ﬂ, E] and Mallows” C), @], among many others.

On the other hand, assuming that s belongs to one of the models {S},,c 4, , @ pro-
cedure is model consistent when it chooses the smallest model containing s asymptotically
with probability one. Model consistency is the goal of BIC @] for instance. See also the
article by Yang ] about the distinction between efficiency and model consistency.

In the present paper as in @], the quality of a multiple change-point detection pro-
cedure is assessed by the quadratic risk; hence, a change in the mean hidden by the noise
should not be detected. This choice is motivated by applications where the signal-to-noise
ratio may be small, so that exactly recovering every true change-point is hopeless. There-
fore, efficient model selection procedures will be used in order to detect the change-points.

Without prior information on the locations of the change-points, the natural collection
of models for change-point detection depends on the sample size n. Indeed, there exist
(g__ll) different partitions of the n design points into D intervals, each partition correspond-
ing to a set of (D — 1) change-points. Since D can take any value between 1 and n, 277!
models can be considered. Therefore, model selection procedures used for multiple change-
point detection have to satisfy non-asymptotic oracle inequalities: the collection of models
cannot be assumed to be fixed with the sample size n tending to infinity. (See Section [2.3]
for a precise definition of the collection {Sy,},,c4, used for change-point detection.)

Most model selection results consider “polynomial” collections of models {Sy.},,c .,
that is Card(M,,) < Cn® for some constants C,« > 0. For polynomial collections, proce-
dures like AIC or Mallows’ C), are proved to satisfy oracle inequalities in various frameworks
“Q, @, @, E], assuming that data are homoscedastic, that is, o(t;) does not depend on ¢;.

However as shown in “a], Mallows’ Cy, is suboptimal when data are heteroscedastic, that
is the variance is non-constant. Therefore, other procedures must be used. For instance,
resampling penalization is optimal with heteroscedastic data “a] Another approach has
been explored by Gendre [25], which consists in simultaneously estimating the mean and
the variance, using a particular polynomial collection of models.

However in change-point detection, the collection of models is “exponential”, that is
Card(M,,) is of order exp(an) for some o > 0. For such large collections, especially larger
than polynomial, the above penalization procedures fail. Indeed, Birgé and Massart [16]
proved that the minimal amount of penalization required for a procedure to satisfy an
oracle inequality is of the form

oD, oD, n
= 1 — 2
pen(m) = ¢; - + ¢ — log <Dm> ) (2)

where ¢; and ¢y are positive constants and o2 is the variance of the noise, assumed to
be constant. Lebarbier @] proposed ¢; = 5 and ¢y = 2 for optimizing the penalty (2I)
in the context of change-point detection. Penalties similar to (2]) have been introduced
independently by other authors ,EL |ﬁ|, @] and are shown to provide satisfactory results.
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Nevertheless, all these results assume that data are homoscedastic. Actually, the model
selection problem with heteroscedastic data and an exponential collection of models has
never been considered in the literature, up to the best of our knowledge.

Furthermore, penalties of the form (2)) are very close to be proportional to D,,, at least
for small values of D,,,. Therefore, the results of [6] lead to conjecture that the penalty (2]
is suboptimal for model selection over an exponential collection of models, when data are
heteroscedastic. The suggest of this paper is to use cross-validation methods instead.

1.3 Cross-validation

Cross-validation (CV) methods allow to estimate (almost) unbiasedly the quadratic risk of
any estimator, such as 5, (see Section about the heuristics underlying CV). Classical
examples of CV methods are the leave-one-out [Loo, @, @] and V-fold cross-validation
[VFCV, 23, @] More references on cross-validation can be found in ﬁ, @] for instance.

CV can be used for model selection, by choosing the model S, for which the CV
estimate of the risk of s, is minimal. The properties of CV for model selection with
a polynomial collection of models and homoscedastic data have been widely studied. In
short, CV is known to adapt to a wide range of statistical settings, from density estimation
@, @] to regression @, ] and classification “ﬁ, ] In particular, Loo is asymptotically
equivalent to AIC or Mallows’ (), in several frameworks where they are asymptotically
optimal, and other CV methods have similar performances, provided the size of the training
sample is close enough to the sample size [see for instance @, @, @] In addition, CV
methods are robust to heteroscedasticity of data ﬂa, B], as well as several other resampling
methods “a] Therefore, CV is a natural alternative to penalization procedures assuming
homoscedasticity.

Nevertheless, nearly nothing is known about CV for model selection with an exponential
collection of models, such as in the change-point detection setting. The literature on model
selection and CV ,, , ] only suggests that minimizing directly the Loo estimate
of the risk over 2"~! models would lead to overfitting.

In this paper, a remark made by Birgé and Massart “E] about penalization procedure
is used for solving this issue in the context of change-point detection. Model selection is
perfomed in two steps: First, choose a segmentation given the number of change-points;
second, choose the number of change-points. CV methods can be used at each step, leading
to Procedure [0] (Section [Bl). The paper shows that such an approach is indeed successful
for detecting changes in the mean of a heteroscedastic signal.

1.4 Contributions of the paper

The main purpose of the present work is to design a CV-based model selection proce-
dure (Procedure [6) that can be used for detecting multiple changes in the mean of a
heteroscedastic signal. Such a procedure experimentally adapts to heteroscedasticity when
the collection of models is exponential, which has never been obtained before. In partic-
ular, Procedure [0l is a reliable alternative to Birgé and Massart’s penalization procedure
] when data can be heteroscedastic.

Another major difficulty tackled in this paper is the computational cost of resampling
methods when selecting among 2" models. Even when the number (D — 1) of change-
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points is given, exploring the (g:ll) partitions of [0,1] into D intervals and performing a

resampling algorithm for each partition is not feasible when n is large and D > 0. An
implementation of Procedure [l with a tractable computational complexity is proposed in
the paper, using closed-form formulas for Leave-p-out (Lpo) estimators of the risk, dynamic
programming, and V-fold cross-validation.

The paper also points out that least-squares estimators are not reliable for change-
point detection when the number of breakpoints is given, although they are widely used
to this purpose in the literature. Indeed, experimental and theoretical results detailed in
Section B dlshow that least-squares estimators suffer from local overfitting when the variance
of the signal is varying over the sequence of observations. On the contrary, minimizers of
the Lpo estimator of the risk do not suffer from this drawback, which emphasizes the
interest of using cross-validation methods in the context of change-point detection.

The paper is organized as follows. The statistical framework is described in Section
First, the problem of selecting the “best” segmentation given the number of change-points
is tackled in Section [Bl Theoretical results and an extensive simulation study show that
the usual minimization of the least-squares criterion can be misleading when data are
heteroscedastic, whereas cross-validation-based procedures provide satisfactory results in
the same framework.

Then, the problem of choosing the number of breakpoints from data is addressed in
Section @l As supported by an extensive simulation study, V-fold cross-validation (VFCV)
leads to a computationally feasible and statistically efficient model selection procedure
when data are heteroscedastic, contrary to procedures implicitly assuming homoscedastic-
ity.

The resampling methods of Sections [l and M are combined in Section [ leading to a
family of resampling-based procedures for detecting changes in the mean of a heteroscedas-
tic signal. A wide simulation study shows they perform well with both homoscedastic and
heteroscedastic data, significantly improving the performance of procedures which implic-
itly assume homoscedasticity.

Finally, Section [flillustrates on a real data set the promising behaviour of the proposed
procedures for analyzing CGH microarray data, compared to procedures previously used
in this setting.

2 Statistical framework

In this section, the statistical framework of change-point detection via model selection is
introduced, as well as some notation.

2.1 Regression on a fixed design

— R. Let t; < --- < t, € [0,1] be

Let 8* denote the set of measurable functions [0, 1]
[0,1] + [0,00) be some functions and

some deterministic design points, s € §* and o :
define
Vie{l,...,n}, Y = s(t;) + o(t)e; (3)

where €1, ..., €, are independent and identically distributed random variables with E [¢;] =
0 and E [612] =1
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As explained in Section [[1], the goal is to find from (t;,Y;)1<i<n a piecewise-constant
function f € §* close to s in terms of the quadratic loss

n

s = 7I% = =37 (£(t) — s(t:))?

=1

2.2 Least-squares estimator

A classical estimator of s is the least-squares estimator, defined as follows. For every
f € 8%, the least-squares criterion at f is defined by

Z (Y; — f(t:)* .

=1

S

Pory(f) ==

The notation P,v(f) means that the function (£,Y) — ~(f;(,Y)) = (Y — f(t))? is
integrated with respect to the empirical distribution P, := n~! S Oy vy)- Poy(f) is
also called the empirical risk of f.

Then, given a set S C S* of functions [0, 1] — R (called a model), the least-squares
estimator on model S is

ERM(S: P,) = arg min {Pr ()}

The notation ERM(S; P,) stresses that the least-squares estimator is the output of the
empirical risk minimization algorithm over S, which takes a model S and a data sample
as inputs. When a collection of models {Sp},,c M, is given, Sm(Pp) or S, are shortcuts
for ERM(Sy; P).

2.3 Collection of models

Since the goal is to detect jumps of s, every model considered in this article is the set of
piecewise constant functions with respect to some partition of [0, 1].

For every K € {1,...,n — 1} and every sequence of integers ap = 1 < a3 < g < -+ <
ax < n (the breakpoints), (I)‘)/\GA(al,maK) denotes the partition

[tao;tal)a cec [taK—l;taK)’ [tOIK; 1]
of [0,1] into (K +1) intervals. Then, the model S, ) is defined as the set of piecewise
constant functions that can only jump at t = t,; for some j € {1,...,K}.

For every K € {1,...,n—1}, let M,(K + 1) denote the set of such sequences
(a1, ...ax) of length K, so that {Sm}meﬂn(lﬁtl) is the collection of models of piece-

wise constant functions with K breakpoints. When K = 0, M, (1) := {0} and the
model Sy is the linear space of constant functions on [0,1]. Remark that for every K
and m € My, (K +1), S, is a vector space of dimension D,,, = K + 1. In the rest of the pa-
per, the relationship between the number of breakpoints K and the dimension D = K + 1
of the model S(q,,...ay) is used repeatedly; in particular, estimating of the number of break-
points (Section M) is equivalent to choosing the dimension of a model. In addition, since a
model S,, is uniquely defined by m, the index m is also called a model.



[Postprime

Version définitive du manuscrit publié dans / Final version of the manuscript
published in :
Statistics and Computing, 2010, vol. 21, n°® 4, 613-632, 10.1007/s11222-010-9196-x

The classical collection of models for change-point detection can now be defined as
{Sm}epr,» where My, = Upep, Ma(D) and D, = {1,...,n}. This collection has a
cardinality 2771,

In_this paper, a slightly smaller collection of models is considered, that is, all
m € M, such that each element of the partition (Ix),c, ~contains at least two design
points (tj)i<j<n. Indeed, when nothing is known about the noise-level o(-), one can-
not hope to distinguish two consecutive change-points from a local variation of o. For
every D € {1,...,n}, let M,(D) denote the set of m € M,(D) satisfying this prop-
erty. Then, the collection of models used in this paper is defined as {Si.},,cr, Where
M = Upep, Mn(D) and D, C {1,...,n/2}. Finally, in all the experiments of the
paper, D,, = {1,...,4n/10} for reasons detailed in Section £.2 in particular Remark [3l

2.4 Model selection

Among {Sm},en,, the best model is defined as the minimizer of the gquadratic loss

|s — Sml|2 over m € M,, and called the oracle m*. Since the oracle depends on s, one can
only expect to select m(P,) from the data such that the quadratic loss of Sz is close to
that of the oracle with high probability, that is,

Is =5l <C inf {lls =3l | + R ®)

where C' is close to 1 and R, is a small remainder term (typically of order n™!). Inequality
(@) is called an oracle inequality.

3 Localization of the breakpoints

A usual strategy for multiple change-point detection @, @] is to dissociate the search for
the best segmentation given the number of breakpoints from the choice of the number of
breakpoints.

In this section, the number K = D —1 of breakpoints is fixed and the goal is to localize
them. In other words, the goal is to select a model among {Sm}mEMn(D)'

3.1 Empirical risk minimization’s failure with heteroscedastic data

As explained by many authors such as Lavielle @], minimizing the least-squares criterion
over {Sm}perpy 18 @ classical way of estimating the best segmentation with (D — 1)
change-points. This leads to the following procedure:

Procedure 1.

Meru(D) = arg min | {Py(5n)} = ERM <§D; Pn> ,

n

where Sp = UmeM, (D)Sm

is the set of piecewise constant functions with exactly (D —1) change-points, chosen among
to, ..., ty (see Section [2.3)).
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Figure 1:  Comparison of 5,,»py (dotted black line), 85, (p) (dashed blue line) and
Sineo(D) (Plain magenta line, see Section [3.2.2), D being the “optimal” dimension (see
Figure B)). Data are generated as described in Section B3Il with n = 100 data points.
Left: homoscedastic data (s2,0.), D = 4. Right: heteroscedastic data (s3,0pc3), D = 6.

Remark 1. Dynamic programming ] leads to an efficient implementation of Procedure [TI
with computational complexity O (nz)

Among models corresponding to segmentations with (D — 1) change-points, the oracle

model can be defined as

* N . ~ 12
(D)= arg i {lls 51}

Figure [ illustrates how far mgrMm (D) typically is from m*(D) according to variations of
the standard-deviation . On the one hand, when data are homoscedastic, empirical risk
minimization yields a segmentation close to the oracle (Figure[l], left). On the other hand,
when data are heteroscedastic, empirical risk minimization introduces artificial breakpoints
in areas where the noise-level is above average, and misses breakpoints in areas where the
noise-level is below average (Figure [, right). In other words, when data are heteroscedas-
tic, empirical risk minimization over Sp locally overfits in high-noise areas, and locally
underfits in low-noise areas.

The failure of empirical risk minimization with heteroscedastic data observed on Fig-
ure[Ilis general , Chapter 7] and can be explained by Lemmal[Ilbelow. Indeed, the criteria
P,y(3,) and ||s — §,||%, respectively minimized by mgrym(D) and m*(D) over M, (D),
are close to their respective expectations, as proved by the concentration inequalities of |7,
Proposition 9| for instance. Lemma [I] enables to compare these expectations.

Lemma 1. Let m € M,, and define sy, :== argmingeg, ||s — flI?. Then,

n

E [Py G)] = s = sl = V) + 3 (1) @
=1
E[lls = nll2] = lls = smll}, + V(m) (6)

where

oy o(t)?y,
and VA € Ay, (03)2 21 0(t) Lyer,

Vi(m) : " Card({k|tp € I})

)= EAeAm (03)2



[Postprime

Version définitive du manuscrit publié dans / Final version of the manuscript
published in :
Statistics and Computing, 2010, vol. 21, n°® 4, 613-632, 10.1007/s11222-010-9196-x

Lemma [] is proved in ] As it is well-known in the model selection literature, the
expectation of the quadratic loss (@) is the sum of two terms: s — s,,|2 is the bias of
model S,, and V(m) is a variance term, measuring the difficulty of estimating the D,,
parameters of model Sy,. Up to the term n=1 Y"1 | o(¢;)? which does not depend on m, the
empirical risk underestimates the quadratic risk (that is, the expectation of the quadratic
loss), as shown by (Bl), because of the sign in front of V(m).

Nevertheless, when data are homoscedastic, that is when Vi, o(t;) = 7, V(m) =
D, 7*n~t is the same for all m € M, (D). Therefore, () and (B) show that for every
D > 1, when data are homoscedastic

i E Pn Am = i E _Am 2
arg | min (B [Py (5)]) afgme‘iz‘f(m{ (s = 3al2] }

Hence, mgry(D) and m*(D) tend to be close to one another, as on the left of Figure [Il

On the contrary, when data are heteroscedastic, the variance term V(m) can be quite
different among models m € M, (D), even though they have the same dimension D.
Indeed, V(m) increases when a breakpoint is moved from an area where o is small to an
area, where o is large. Therefore, the empirical risk minimization algorithm rather puts
breakpoints in noisy areas in order to minimize —V (m) in (Bl). This is illustrated in the
right panel of Figure [I where the oracle segmentation m*(D) has more breakpoints in
areas where o is small.

3.2 Cross-validation

Cross-validation (CV) methods are natural candidates for fixing the failure of empirical
risk minimization when data are heteroscedastic, since CV methods are naturally adaptive
to heteroscedasticity (see Section [[.3)). The purpose of this section is to properly define
how CV can be used for selecting m € M, (D) (Procedure 2)), and to recall theoretical
results showing why this procedure adapts to heteroscedasticity (Proposition [I).

3.2.1 Heuristics

The cross-validation heuristics M, @] relies on a data splitting idea: For each candidate
algorithm-—say ERM(S,,;-) for some m € M, (D)—, part of the data—called training
set—is used for training the algorithm. The remaining part—called validation set—is used
for estimating the risk of the algorithm. This simple strategy is called walidation or hold-
out. One can also split data several times and average the estimated values of the risk over
the splits. Such a strategy is called cross-validation (CV). CV with general repeated splits
of data has been introduced by Geisser , ]

In the fixed-design setting, (¢;,Y;)i1<i<n are not identically distributed so that CV
estimates a quantity slightly different from the usual prediction error. Let T be uniformly
distributed over {t1,...,t,} and Y = s(T') + o(T)¢, where € is independent from €y, ..., €,
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with the same distribution. Then, the CV estimator of the risk of S(P,) estimates

n

> E. [(s(ti) +o(ti)e; — §(ti))2}

Eiry) [(G) - ¥)?] =
=1

n

1
~12 2
—lls =32 + = ot -

=1

Hence, minimizing the CV estimator of E(7 v [(§m(T) - Y)Q] over m amounts to minimize

|s — 5|2, up to estimation errors.

Even though the use of CV in a fixed-design setting is not usual, theoretical results
detailed in Section [3.2.4] below show that CV actually leads to a good estimator of the
quadratic risk ||s — §m||721 This fact is confirmed by all the experimental results of the

paper.

3.2.2 Definition

Let us now formally define how CV is used for selecting some m € M, (D) from data. A
(statistical) algorithmn A is defined as any measurable function P, — A(P,) € S*. For any
t; € [0,1], A(t;; P,,) denotes the value of A(P,) at point ¢;.

For any I c {1,...,n}, define I¥) := {1,...,n}\I®,

1 1
pO.—_ =  N“ . and P®.—_ -~ P

Then, the hold-out estimator of the risk of any algorithm A is defined as

Rio( A, Pa, 1) i= Py (A (PD)) = m > (At PO) - 1@-)2 .
ieI()

The cross-validation estimators of the risk of A are then defined as the average of
Ryo(A, Pn,I](-t)) over j = 1,..., B where Ift), .. ,Ig) are chosen in a predetermined way

|. Leave-one-out, leave-p-out and V-fold cross-validation are among the most classical

t t
®

examples of CV procedures. They differ one another by the choice of I, ..., I5’.

e Leave-one-out (Loo), often called ordinary CV @, ], consists in training with the
whole sample except one point, used for testing, and repeating this for each data
point: I](t) ={1,...,n}\ {j} for j =1,...,n. The Loo estimator of the risk of A is
defined by

~ 1 & AN 2

Rioo(A P) =~ 3" [(Y] — At PCD)) ] ,

7j=1
where qu_j) =(n— 1)_1 Zz‘,i;«éj 6(ti7Yi) :

e Leave-p-out (Lpo,, with any p € {1,...,n — 1}) generalizes Loo. Let &, denote the
collection of all possible subsets of {1,...,n} with cardinality n — p. Then, Lpo
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consists in considering every I(*) ¢ &p as training set indices:

a2 = (1) S L [oare)] -
1

eg, b jeI®

o V-fold cross-validation (VFCV) is a computationally efficient alternative to Lpo and
Loo. The idea is to first partition the data into V blocks, to use all the data but
one block as a training sample, and to repeat the process V times. In other words,
VFCV is a blockwise Loo, so that its computational complexity is V' times that
of A. Formally, let By,...,By be a partition of {1,...,n} and P,gB’“) = (n —
Card(By,)) ! > i¢B, Ot;vy) for every k € {1,...,V}. The VFCV estimator of the
risk of A is defined by

- 1V 1 N\ 2
Rury (A P) = Y | & (0= (@) - o

k=1 JEB

The interested reader will find theoretical and experimental results on VFCV and
the best way to use it in ﬁ, ] and references therein, in particular “E]

Given the Loo estimator of the risk of each algorithm A among {ERM(Sm; )}, pm,, (0)»
the segmentation with (D — 1) breakpoints chosen by Loo is defined as follows.

Procedure 2.

Mroo(D) = arg min {ELOO (ERM (Sp; ) ,pn)} .

The segmentations chosen by Lpo and VFCV are defined similarly and denoted respectively
by Mpo, (D) and by myr, (D).

As illustrated by Figure [[ when data are heteroscedastic, myo(D) is often closer to
the oracle segmentation m*(D) than mgrym(D). This improvement will be explained by
theoretical results in Section B.2.4] below.

3.2.3 Computational tractability

The computational complexity of ERM(S,,; P,) is O(n) since for every A € A,,, the value
of 5, (Pn) on Iy is equal to the mean of {Y;}, .; . Therefore, a naive implementation of

Lpop has a computational complexity O (n (;)), which can be intractable for large n in
the context of model selection, even when p = 1. In such cases, only VFCV with a small
V would work straightforwardly, since its computational complexity is O(nV').

Nevertheless, closed-form formulas for the Lpo estimator of the risk have been derived
in the density estimation “ﬁ, @] and regression “ﬂ] frameworks. Some of these closed-
form formulas apply to regressograms §,, with m € M,,. The following theorem gives a
closed-form expression for ELpop (m) = ELpop (ERM(Sp;-), P,) which can be computed
with O(n) elementary operations.

11
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Theorem 1 (Corollary 3.3.2 in ]) Let m € M,,, S, and 8, = ERM(S,,; ) be defined
as in Section @ For every (t1,Y1),...,(tn, Yn) € R? and A € A,,, define

Sa1 = ZYJ']I{%'EIA} and Sz = Z}/jQ]l{tjEIA} :

J=1 J=1

Then, for every p € {1,...,n — 1}, the Lpo,, estimator of the risk of 5, defined by (8) is
given by

- 1
Ripo, (m) = ) _ Ny [{(Ax = B2) Sa2 + BASY 1} Ljny 52y + {00} Loy
AeA,

where for every A € Ay,

ny := Card ({i | t; € I\}) Ny =1=1gpon (n ) nA>/(n)

p—nx p

Ay == V3(0) (1—i) AC )+V( 1)

s\ N

2 — ]ln >3 V)\(O) n >3
By =V\(1 A= 1 1,53 —2 YAT ) A>3
A /\( )n,\(n,\—l) +n)\—1 + A3 Tl)\—l

sinfoy () SU6)
2 W

Remark 2. V\(k) can also be written as E [Zk]lz>0] where Z has hypergeometric distri-
bution with parameters (n,n — p,ny).

and Vke {-1,0,1}, Vi(k):=
r=max {1 (p— m)}

An important practical consequence of Theorem [ is that for every D and p, ﬁszop (D)
can be computed with the same computational complexity as mgrm(D), that is O (nZ)
Indeed, Theorem [0l shows that RLPO (m) is a sum over A € A, of terms depending only
on {Y}t er,» 50 that dynamic programming ] can be used for computing the mini-
mizer mLpop (D) of RLpop( m) over m € M,,. Therefore, Lpo and Loo are computationally
tractable for change-point detection when the number of breakpoints is given.

Dynamic programming also applies to myp, with a computational complexity
@ (Vnz), since each term appearing in EVFV (m) is the average over V quantities that
must be computed, except when V' = n since VFCV then becomes Loo. Since VFCV is
mostly an approximation to Loo or Lpo but has a larger computational complexity, ﬁszop
will be preferred to myr, (D) in the following.

3.2.4 Theoretical guarantees

In order to understand why CV indeed works for change-point detection with a given
number of breakpoints, let us recall a straightforward consequence of Theorem [ which is
proved in details in ﬂ Lemma 7.2.1 and Proposition 7.2.3|.

Proposition 1. Using the notation of Lemmall, for any m € M,

E [Ripo, (m)] % lls = smll2 + —— 3 (@) + - o(0)? . (10)

n —
P yenn i1

12
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Figure 2: Regression functions s1, s, s3; s1 and so are piecewise constant with 4 jumps; s3
is piecewise constant with 9 jumps.

where the approzimation holds as soon as minyep,, ny is large enough (in particular larger
than p).

The comparison of () and (I0) shows that Lpo, yields an almost unbiased estimator
of ||s — ]2 The only difference is that the factor 1/n in front of the variance term V (m)
has been changed into 1/(n — p). Therefore, minimizing the Lpo, estimator of the risk
instead of the empirical risk allows to automatically take into account heteroscedasticity
of data.

3.3 Simulation study

The goal of this section is to experimentally assess, for several values of p, the performance
of Lpo, for detecting a given number of changes in the mean of a heteroscedastic signal.
This performance is also compared with that of empirical risk minimization.

3.3.1 Setting

The setting described in this section is used in all the experiments of the paper.

Data are generated according to (B) with n = 100. For every i, t; = i/n and ¢;
has a standard Gaussian distribution. The regression function s is chosen among three
piecewise constant functions si, s2, s3 plotted on Figure 2l The model collection described
in Section 23]is used with D,, = {1,...,4n/10}. The noise-level function o(-) is chosen
among the following functions:

1. Homoscedastic noise: 0. = 0.251g 1,

2. Heteroscedastic piecewise constant noise: ope1 = 0.21g /3] + 0.051[1/31], Opc2 =
20p¢,1 OF Ope3 = 2.50pc,1 .

3. Heteroscedastic sinusoidal noise: o5 = 0.5sin (t7/4).

All combinations between the regression functions (s;);=1,2,3 and the five noise-levels
0. have been considered, each time with N = 10000 independent samples. Results below
only report a small part of the entire simulation study but intend to be representative
of the main observed behaviour. A more complete report of the results, including other

13
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Figure 3: E [Hs —'S\mm(p) ] as a function of D for B among ‘ERM’ (empirical risk

n
minimization), ‘Loo’ (Leave-one-out), ‘Lpo(20)’ (Lpo, with p = 20) and ‘Lpo(50)’ (Lpo,
with p = 50). Left: homoscedastic (s2,0.). Right: heteroscedastic (s3,0pc3). All curves
have been estimated from N = 10000 independent samples; error bars are all negligible in front of
visible differences (the larger ones are smaller than 8.10° on the left, and smaller than 2.10~* on
the right). The curves D — ||s — 55, (p) Hi behave similarly to their expectations.

regression functions s and noise-level functions o, is given in the second authors’ thesis “ﬂ,
Chapter 7]; see also Section 3 of the supplementary material.

3.3.2 Results: Comparison of segmentations for each dimension

The segmentations of each dimension D € D, obtained by empirical risk minimization
(‘ERM’, Procedure[I)) and Lpo, (Procedure [2)) for several values of p are compared on Fig-

2
ure [3, through the expected values of the quadratic loss E [Hs — 'S\mm (D) H ] for procedure
n

.

On the one hand, when data are homoscedastic (Figure B], left), all procedures yield
similar performances for all dimensions up to twice the best dimension; Lpo, performs
significantly better for larger dimensions. Therefore, unless the dimension is strongly over-
estimated (whatever the way D is chosen), all procedures are equivalent with homoscedastic
data.

On the other hand, when data are heteroscedastic (Figure 3] right), ERM yields signifi-
cantly worse performance than Lpo for dimensions larger than half the true dimension. As
explained in Sections B and B.2.4], mgrwm (D) often puts breakpoints inside pure noise for
dimensions D smaller than the true dimension, whereas Lpo does not have this drawback.
Therefore, whatever the choice of the dimension (except D < 4, that is for detecting the
obvious jumps), Lpo should be prefered to empirical risk minimization as soon as data are
heteroscedastic.

14
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5. 0. ERM Loo Lpoy Lpos,

2 c 2.88+£0.01 293+£0.01 293+0.01 294+0.01
pec,l | 1.31£0.02 116 £0.02 1.14+0.02 1.11 £ 0.01
pc,3 | 3.09 £0.03 252+£003 248=*0.03 2.32=£0.03

3 c 3.18 £0.01 325+£0.01 329+0.01 3.44+0.01
pc,1 | 3.00 £ 0.01 2.67 £0.02 2.68+0.02 277 £ 0.02
pc,3 | 441 £0.02 3.97 £0.02 4.00=£0.02 4.11 £ 0.02

Table 1: Average performance Co, ([, Id]) for change-point detection procedures 8 among
ERM, Loo and Lpo,, with p = 20 and p = 50. Several regression functions s and noise-level
functions o have been considered, each time with N = 10000 independent samples. Next
to each value is indicated the corresponding empirical standard deviation divided by v/N,
measuring the uncertainty of the estimated performance.

3.3.3 Results: Comparison of the “best” segmentations

This section focuses on the segmentation obtained with the best possible choice of D, that
2

is the one corresponding to the minimum of D +— Hs - /s\m,p( D)H (plotted on Figure [])
n

for procedures P among ERM, Loo, and Lpo, with p = 20 and p = 50. Therefore, the
performance of a procedure B3 is defined by

& wtizo { s Snucn ]
E [infme/vtn {HS - gmHiH

which measures what is lost compared to the oracle when selecting one segmentation
msp(D) per dimension. Even if the choice of D is a real practical problem—which will
be tackled in the next sections—, Coy ([3,1d]) helps to understand which is the best
procedure for selecting a segmentation of a given dimension. The notation Co, ([9B,1d])
has been chosen for consistency with notation used in the next sections (see Section [B.]).

Table [II confirms the results of Section B.3.20 On the one hand, when data are ho-
moscedastic, ERM performs slightly better than Loo or Lpo,. On the other hand, when
data are heteroscedastic, Lpo, often performs better than ERM (whatever p), and the
improvement can be large (more than 20% in the setting (s2,0pc,3)). Overall, when ho-
moscedasticity of the signal is questionable, Lpo, appears much more reliable than ERM
for localizing a given number of change-points of the mean.

The question of choosing p for optimizing the performance of Lpo, remains a widely
open problem. The simulation experiment summarized with Table [l only shows that Lpo,
improves ERM whatever p, the optimal value of p depending on s and o.

Cor ([B,1d]) :=

4 Estimation of the number of breakpoints

In this section, the number of breakpoints is no longer fixed or known a priori. The goal
is precisely the estimation of this number, as often needed with real data.

Two main procedures are considered. First, a penalization procedure introduced by
Birgé and Massart “E] is analyzed in Section B} this procedure is successful for change-
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point detection when data are homoscedastic @, @] On the basis of this analysis, V-
fold cross-validation (VFCV) is then proposed as an alternative to Birgé and Massart’s
penalization procedure (BM) when data can be heteroscedastic.

In order to enable the comparison between BM and VFCV when focusing on the ques-
tion of choosing the number of breakpoints, VFCV is used for choosing among the same
segmentations as BM, that is {mgrm(D)} pep, - The combination of VFCV for choosing
D with the new procedures proposed in Section Bl will be studied in Section Bl

4.1 Birgé and Massart’s penalization

First, let us define precisely the penalization procedure proposed by Birgé and Massart
“E] successfully used for change-point detection in @ Eﬁ

Y

Procedure 3 (Birgé and Massart ])
1. Ym € M, 5y := ERM (S,,; P,) .

2. mpy = argmingem,,, DoeD, {PnY(5m) + pengy(m)} , where for every m € M,,
the penalty pengy;(m) only depends on Sy, through its dimension:

petipy (1) = petgyy (Do) i= C22 (5+208 (5 ) - (1)

m

where C is estimated from data using Birgé and Massart’s slope heuristics “E, ], as
proposed by Lebarbier @] and by Lavielle @] See Section 1 of the supplementary
material for a detailed discussion about C.

3. gBM = ShpMm-

All m € M, (D) are penalized in the same way by pengy(m), so that Procedure
actually selects a segmentation among {mgrm(D)}pep, - Therefore, Procedure [3 can be
reformulated as follows, as noticed in |16, Section 4.3].

Procedure 4 (Reformulation of Procedure [3).

1. VD € Do, pugryg(p) = ERM (Sp3 P ) where Sp = Uyt (p) S -

2. Dpy := arg minpep, {Pav (S g (D)) + Penpy (D) } where penpy (D) is defined by

(1.
3. SpM = §mERM(BBM) :
In the following, ‘BM’ denotes Procedure [ and
critpm(D) = PoY( 8 mgra (D)) + Penpm (D)

is called the BM criterion.

Procedure M clarifies the reason why penpgy; must be larger than Mallows’ C), penalty.
Indeed, for every m € M,,, Lemma /[ shows that when data are homoscedastic, P,v(5,,)+
pen(m) is an unbiased estimator of ||s — §m||i when pen(m) = 202 D,,n~!, that is Mallows’

16
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Figure 4: Comparison of the expectations of ||s — /S\T’h(D)Hi (‘Loss’), crityp, (D) (‘VF5)
and critgym(D) (‘BM’). Data are generated as explained in Section B3Il Left: ho-
moscedastic (s2,0.). Right: heteroscedastic (s2,0pc,3). Expectations have been estimated
from N = 10000 independent samples; error bars are all negligible in front of visible differences
(the larger ones are smaller than 5.10~% on the left, and smaller than 2.10~2 on the right). Similar
behaviours are observed for every single sample, with slightly larger fluctuations for crityr,, (D)
than for critgy (D). The curves ‘BM’ and ‘VF5’ have been shifted in order to make comparison
with ‘Loss’ easier, without changing the location of the minimum.

C)p penalty. When Card(M,,) is at most polynomial in n, Mallows’ C), penalty leads to an
efficient model selection procedure, as proved in several regression frameworks m, @, @]
Hence, Mallows’ ()}, penalty is an adequate measure of the “capacity” of any vector space
S of dimension D,,, at least when data are homoscedastic.

On the contrary, in the change-point detection framework, Card(M,,) grows exponen-
tially with n. The formulation of Procedure il points out that pengy(D) has been built
so that critpy (D) estimates unbiasedly Hs — S Fipra(D) HZ for every D, where 55, (p) is

the empirical risk minimizer over Sp. Hence, pengy (D) measures the “capacity” of Sp,
which is much bigger than a vector space of dimension D. Therefore, pengy; should be
larger than Mallows’ Cp, as confirmed by the results of Birgé and Massart [16] on minimal
penalties for exponential collections of models.

Simulation experiments support the fact that critgy (D) is an unbiased estimator of
Hs — /S\fﬁ(D)HfL for every D (up to an additive constant) when data are homoscedastic
(Figure Ml left). However, when data are heteroscedastic, theoretical results proved by
Birgé and Massart , E] no longer apply, and simulations show that critpy (D) does
not always estimate Hs — S Aiprm(D) Hi well (Figure d right). This result is consistent with
Lemma [Tl as well as the suboptimality of penalties proportional to D,, for model selection
among a polynomial collection of models when data are heteroscedastic [6].

Therefore, pengy;(D) is not an adequate capacity measure of Sp in general when data
are heteroscedastic, and another capacity measure is required.

4.2 Cross-validation

As shown in Section B2, CV can be used for estimating the quadratic loss ||s — A(P,)|?
for any algorithm A. In particular, CV was successfully used in Section [3 for estimating

17



[Postprime

Version définitive du manuscrit publié dans / Final version of the manuscript
published in :
Statistics and Computing, 2010, vol. 21, n°® 4, 613-632, 10.1007/s11222-010-9196-x

the quadratic risk of ERM(S,,;) for all segmentations m € M, (D) with a given number
(D — 1) of breakpoints (Procedure [2)), even when data are heteroscedastic.

Therefore, CV methods are natural candidates for fixing BM’s failure. The proposed
procedure—with VFCV—is the following.

Procedure 5.

1. VYD € Dy, S mpnns(p) i= ERM (59; Pn> :

2. ZA?VFV := argminpep, {crityr, (D)}
where crityp, (D) := Ryp, (ERM (SD(-); ) ) and Ryp, is defined by (@).

Remark 3. In algorithm (¢;,Y;)1<i<n — ERM <§D;Pn>, the model Sp depends on the

design points. When the training set is (;,Y;);¢p,, the model Sp is the union of the
Sp such that VA € A,,, I contains at least two elements of {¢; s.t. i ¢ Bx}. Such an m
exists as soon as D < (n —maxy {Card(By)})/2 and two consecutive design points t;, t;+1
always belong to different blocks By, which is always assumed in this paper. Note that the
dynamic programming algorithms ] quoted in Section can straightforwardly take
into account such constraints when minimizing the empirical risk over Sp.

The dependence of Sp on the design explains why crityg, (D) decreases for D close to
n(V —1)/(2V), as observed on Figured Indeed, when D is close to n;/2 (where n; is the
size of the design), only a few {Sm}meMnt (p) Temain in Sp; for instance, when D = ny/2,

S p is equal to one of the {Sy,},,c M, (D)" Therefore, the “capacity” of S p decreases in the
neighborhood of D = n;/2.

Similar procedures can be defined with Loo and Lpo, instead of VFCV. The interest
of VFCYV is its reasonably small computational cost—taking V' < 10 for instance—, since

no closed-form formula exists for CV estimators of the risk of ERM (5 D; Pn).

4.3 Simulation results

A simulation experiment was performed in the setting presented in Section B3], for com-
paring BM and VFy with V' = 5 blocks. A representative picture of the results is given by
Figure @ and by Table [2 [see , Chapter 7, and Section 3 of the supplementary material
for additional results|.

As illustrated by Figure @], crityp, (D) can be used for measuring the capacity of Sp.
Indeed, VFCV correctly estimates the risk of empirical risk minimizers over Sp for every
D and for both homoscedastic and heteroscedastic data; crityg, (D) only underestimates
Hs - /S\fﬁ(D)HfL for dimensions D close to n(V — 1)/(2V), for reasons explained at the end
of Remark Bl On the contrary, critpy (D) is a poor estimate of Hs - §m(D)HZ when data
are heteroscedastic.

Subsequently, VFCV yields a much smaller performance index

]

E [infeat, {l1s = Sn(Pa) %}

E [Hs — 5.

merm (Dy)

Cor ([ERM,B]) :=
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s. o. Oracle VFE5 BM
2 C 288 = 0.01 4.51 £ 0.03 5.27 + 0.03
pc,2 | 2.88 £0.02 6.58 &£ 0.06 19.82 £+ 0.07
S 3.01 £0.01 5.21 +0.04 9.69 £ 0.40
3 C 3.18 £ 0.01 4.41 +£0.02 4.39 +0.01
pc,2 | 4.06 £0.02 5.99 +£0.02 7.86 + 0.03
s | 4024001 5.97+0.03 7.59 4+ 0.03

Table 2: Performance Co, ([JERM,B]) for P = Id (that is, choosing the dimension D* :=
arg minpep,, {Hs -5, (D)Hi})’ B = VFy with V =5 or 9 = BM. Several regression

MERM
functions s and noise-level functions ¢ have been considered, each time with N = 10000
independent samples. Next to each value is indicated the corresponding empirical standard

deviation divided by v/ N, measuring the uncertainty of the estimated performance.

than BM when data are heteroscedastic (Table 2)); see also the supplementary material
(Section 1) for details about the performances of BM and possible ways to improve them.
When data are homoscedastic, VFCV and BM have similar performances (maybe with a
slight advantage for BM), which is not surprising since BM uses the knowledge that data
are homoscedastic. Moreover, BM has been proved to be optimal in the homoscedastic
setting “E, ]

Overall, VFCV appears to be a reliable alternative to BM when no prior knowledge
guarantees that data are homoscedastic.

5 New change-point detection procedures via cross-
validation

Sections [l and [ showed that when data are heteroscedastic, CV can be used successfully
instead of penalized criteria for detecting breakpoints given their number, as well as for
estimating the number of breakpoints. Nevertheless, in Section 4] the segmentations com-
pared by CV were obtained by empirical risk minimization, so that they can be suboptimal
according to the results of Section [3

The next step for obtaining reliable change-point detection procedures for heteroscedas-
tic data is to combine the two ideas, that is, to use CV twice. The goal of the present
section is to properly define such procedures (with various kinds of CV) and to assess their
performances.

5.1 Definition of a family of change-point detection procedures

The general strategy used in this article for change-point detection relies on two steps:
First, detect where (D — 1) breakpoints should be located for every D € D,,; second,
estimate the number (D — 1) of breakpoints. This strategy can be summarized with the
following procedure:

Procedure 6 (General two-step change-point detection procedure).

19



[Postprime

Version définitive du manuscrit publié dans / Final version of the manuscript
published in :
Statistics and Computing, 2010, vol. 21, n°® 4, 613-632, 10.1007/s11222-010-9196-x

1. VD € Dy, Ap(P) = Sm(p) = argminge g, py {crit1(Sm, Pn)} where for every
model S, crity(S, P,) € R estimates ||s — ERM(S;Pn)Hi and S, = ERM(S,,; P,,) is
defined as in Section B3]

2. D= arg minpep, {crite(Ap, P,,)}, where for every algorithm Ap, crita(Ap, P,) € R
estimates ||s — Ap(P,)|.

~

3. Output: the segmentation m(D) and the corresponding estimator §W D) of s.

Let us now detail which are the candidate criteria crit; and crity for being used in
Procedure 6l For the first step:

e The empirical risk (‘ERM’) is
crity grM (S, Pr) := Py (ERM (S; By))
e The Leave-p-out estimator of the risk (‘Lpo,’) is, for every p € {1,...,n — 1},
crity Lpo(S, Pa,p) = Ripo, (ERM(S; "), P)
e For comparison, the ideal criterion (‘Id’) is defined by crity 1q(S, P,) :=
s — ERM(S; P[5

As in Section B, Loo denotes Lpo;. The VFCV estimator of the risk ﬁvpv could also be
used as crity; it will not be considered in the following because it is computationally more
expensive and more variable than Lpo (see Section B.2]).

For the second step:

e Birgé and Massart’s penalization criterion (‘BM’) is
crite,gm(Ap, Pn) := Py (Ap (Pn)) + penpy (D)

where pengy(D) is defined by ([I) with ¢; = 5, ¢z = 2 and C is chosen by the slope
heuristics (see Section 1 of the supplementary material).

e The V-fold cross-validation estimator of the risk (‘VFy’) is, for every V € {1,...,n},
crita vry (Ap, Pn) == Rvr, (Ap, Py) |

where EVFV is defined by (@) and the blocks By, ..., By are chosen as in Procedure[dl
(see Remark []).

e For comparison, the ideal criterion (‘Id’) is defined by critg ;q(Ap,P,) =
Is = Ap(Po)]l2-

Remark 4. For crite, definitions using Lpo could theoretically be considered. They are not
investigated here because they are computationally intractable.

In the following, the notation [, 5] is used as a shortcut for “Procedure [ with crit o
and crity 57, and the outputs of [a, 3] are denoted by M, 5 € M, and s,5) € S*. For
instance, BM coincides with [ERM, BM]; Procedures [«, Id] are compared for several o
in Section B} Procedures [ERM, 8] are compared for 5 € {Id, BM, VF5} in Section @l
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s. o | [ERM,VFs] [Loo,VF5]  [Lpoy, VF5] [ERM,BM]

1 c 5.40 + 0.05 5.03 £ 0.05 5.10 £ 0.06 3.91 £ 0.03

pc,1 | 11.96 = 0.03 10.25 + 0.03 10.28 £ 0.03 12.85 £ 0.04

pc,3 | 4.96 + 0.05 4.82 4+ 0.04 4.79 + 0.05 13.08 £+ 0.04

S 7.33 £ 0.06 6.82 1+ 0.05 6.99 + 0.06 9.41 £ 0.04

2 c 4.51 + 0.03 4.55 + 0.03 4.50 + 0.03  5.27 £ 0.03

pc,1 | 11.67 = 0.09 10.26 + 0.08 10.29 + 0.08 19.36 + 0.07

pc,3 | 6.66 = 0.06 5.81 £+ 0.06 5.74 £ 0.06 20.12 £ 0.06

S 5.21 + 0.04 5.19 + 0.03 5.17 £ 0.03  9.69 + 0.04

3 C 4.41 + 0.02 4.54 + 0.02 4.62 + 0.02 4.39 + 0.01

pc,1 | 4.91 £+ 0.02 4.40 4+ 0.02 4.44 + 0.02  6.50 £ 0.02

pc,3 | 6.32 + 0.02 5.74 + 0.02 581 +£0.02  8.47 £+ 0.03

s 9.97 £0.02 5.72 £ 0.02 5.86 £0.02 7.59 £ 0.03

Table 3: Performance C, () for several change-point detection procedures B in several
settings (s,0). Each time, N = 10000 independent samples have been generated. Next to
each value is indicated the corresponding empirical standard deviation divided by v N.

5.2 Simulation study

A simulation experiment compares procedures [o, VF5] for several a and [ERM, BM], in
the setting described in Section B3Il A representative picture of the results is given by
Table [B] [see 21, Chapter 7, for additional results|. The (statistical) performance of each
competing procedure P is measured by

Ells - 53(P)112]
E [infreat, {lls = Sm(P)I%}]

both expectations being evaluated by averaging over N = 10000 independent samples.

Cor(P) =

Remark 5. Birgé and Massart’s penalization procedure is the only classical change-point
detection procedure considered in this experiment for two reasons. First, change-point
detection procedure looking for changes in the distribution of Y; would clearly fail to
detect changes in the mean of the signal, as soon as the noise-level ¢ varies inside areas
where the mean is constant. Second, among procedures detecting changes in the mean of a
signal in a setting comparable to the setting of the paper (that is, frequentist, parametric,
off-line, with no information on the number of change-points), BM appears to be the most
reliable procedure according to recent papers ,130]. The question of the calibration of
C is addressed in Section 1 of the supplementary material.

First, BM is consistently outperformed by the other procedures, except in the ho-
moscedastic settings in which it confirms its strength.

Second, empirical risk minimization (ERM) slightly outperforms CV (Loo and Lpoy)
when data are homoscedastic. On the contrary, when data are heteroscedastic, Loo and
Lpoyg clearly outperform ERM, often by a margin larger than 10% (for instance, when
0 = 0Opc,1). Therefore, the results of Section [3 are confirmed when using VF5 (instead of
Id) for choosing the dimension.
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Framework A B C
[ERM, BM] 6.82 + 0.03 7.21 +0.04 13.49 £+ 0.07
[ERM,VF5] | 4.78 £0.03 5.09 +£0.03 7.17 £ 0.05
[Loo, VF5] | 4.65 + 0.03 4.88 +0.03  6.61 £ 0.05
[Lpog, VF5] | 4.78 £ 0.03 4.91 + 0.03 6.49 + 0.05
[Lposo, VFs] | 4.97 £0.03 5184 0.04  6.69 & 0.05

Table 4: Performance C((f) ('B) of several model selection procedures P in frameworks A,
B, C with sample size n = 100. In each framework, N = 10, 000 independent samples
have been considered. Next to each value is indicated the corresponding empirical standard
deviation divided by v/N.

Third, the comparison between [[Lpop,VF5]] for several values of p is less clear. Even
though p = 1 (that is, Loo) mostly outperforms p = 20 (as well as p = 50, see the
supplementary material), differences are small and often not significant despite the large
number of samples generated. The conclusion of the simulation experiment on this question
is that all values of p between 1 and n/2 all perform almost equally well, with a small
advantage to p = 1 which may not be general. Let us mention here that the choice of p for
Lpo, is usually related to overpenalization [see for instance B, , ], but it seems difficult
to characterize the settings for which overpenalization is needed for detecting change-points
given their number.

5.3 Random frameworks

In order to assess the generality of the results of Table Bl the procedures considered in
Section have been compared in three random settings. The following process has been
repeated N = 10, 000 times. First, piecewise constant functions s and ¢ are randomly
chosen (see Section 2 of the supplementary material for details). Then, given s and o, a
data sample (¢;,Y;)1<i<n is generated as described in Section B.3.1] and the same collection
of models is used. Finally, each procedure P is applied to the sample (¢;,Y;)1<i<n, and its
loss ||s — gsp(Pn)Hi is measured, as well as the loss of the oracle inf,,crq,, {Hs - 's\meL}

To summarize the results, the quality of each procedure is measured by the ratio

Es,a,el,,,,,en |:||S - gm(Pn)Hi]

Es,a,el,...,en |:infm€./\/ln {HS - gm”i}]

The notation C(gf%) (P) differs from Co; () to emphasize that each expectation includes the
randomness of s and o, in addition to the one of (€);;,-

The results of this experiment—which are reported in Table @—mostly confirm the
results of the previous section (except that all the frameworks are heteroscedastic here),
that is, whatever p, [Lpo,, VF5] outperforms [ERM, VF5], which strongly outperforms
[ERM, BM]. Similar results—not reported here—have been obtained with a sample size
n = 200 and N = 1000 samples.
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Moreover, the difference between the performances of [Lpo,, VF5] and [ERM, VF5] is
the largest in setting C and the smallest in setting A. This fact confirms the interpretation
given in Section [3 for the failure of ERM for localizing a given number of change-points.
Indeed, the main differences between frameworks A, B and C—which are precisely defined
in Section 2 of the supplementary material— can be sketched as follows:

A the partitions on which s is built is often close to regular, and o is chosen indepen-
dently from s.

B the partitions on which s is built are often irregular, and o is chosen independently
from s.

C the partitions on which s is built are often irregular, and ¢ depends on s, so that the
noise-level is smaller where s jumps more often.

In other words, frameworks A, B and C have been built so that for any D € D,, the
largest variations over M, (D) of V(m) (defined by (7)) occur in framework C, and the
smallest variations occur in framework A. As a consequence, variations of the performance
of [ERM, VF;5] compared to [Lpo,, VF5] according to the framework certainly come from
the local overfitting phenomenon presented in Section [3]

6 Application to CGH microarray data

In this section, the new change-point detection procedures proposed in the paper are
applied to CGH microarray data.

6.1 Biological context

The purpose of Comparative Genomic Hybridization (CGH) microarray experiments is to
detect and map chromosomal aberrations. For instance, a piece of chromosome can be
amplified, that is appear several times more than usual, or deleted. Such aberrations are
often related to cancer disease.

Roughly, CGH profiles give the log-ratio of the DNA copy number along the chromo-
somes, compared to a reference DNA sequence [see @@, for details about the biological
context of CGH data).

The goal of CGH data analysis is to detect abrupt changes in the mean of a signal (the
log-ratio of copy numbers), and to estimate the mean in each segment. Hence, change-point
detection procedures are needed.

Moreover, assuming that CGH data are homoscedastic is often unrealistic. Indeed,
changes in the chemical composition of the sequence are known to induce changes in the
variance of the observed CGH profile, possibly independently from variations of the true
copy number. Therefore, procedures robust to heteroscedasticity, such as the ones proposed
in Section [B], should yield better results—in terms of detecting changes of copy number—
than procedures assuming homoscedasticity.

The data set considered in this section is based on the Bt474 cell lines, which denote
epithelial cells obtained from human breast cancer tumors of a sixty-year-old woman @]
A test genome of Bt474 cell lines is compared to a normal reference male genome. Even
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though several chromosomes are studied in these cell lines, this section focuses on chromo-
somes 1 and 9. Chromosome 1 exhibits a putative heterogenous variance along the CGH
profile, and chromosome 9 is likely to meet the homoscedasticity assumption. Log-ratios of
copy numbers have been measured at 119 locations for chromosome 1 and at 93 locations
for chromosome 9.

6.2 Procedures used in the CGH literature

Before applying Procedure [6] to the analysis of Bt474 CGH data, let us recall the definition
of two change-point detection procedures, which were the most successful for analyzing the
same data according to the literature @]

The first procedure is a simplified version of BM proposed by Lavielle @, Section 2]
and first used on CGH data in [36]. Note that BM would give similar results on the data
of Figure [l

The second procedure—denoted by ‘PML’ for penalized maximum likelihood—aims at
detecting changes in either the mean or the variance, that is breakpoints for (s,o). The
selected model is defined as the minimizer over m € M,, of

. 1 N -~
critpyr, (m) = Z ny log -~ Z (Y; — s (ts; Pn))2 +C"D,, ,
ANEA A tiEI)\

where ny = Card {t; € I} and C" is estimated from data by the slope heuristics algorithm

[28, 134].

6.3 Results

Results obtained with BMsimple, PML, [ERM, VF5] and [Lpoy, VF5] on the Bt474 data
set are reported on Figure

For chromosome 9, BMsimple and PML yield (almost) the same segmentation, so that
the homoscedasticity assumption is certainly not much violated. As expected, [ERM, VF5]
and [Lpoyg, VF5] also yield very similar segmentations, which confirms the reliability of
these procedures for homoscedastic signal [see , Section 7.6 for details].

The picture is quite different for chromosome 1. Indeed, as shown by Figure [ (right),
BMsimple selects a segmentation with 7 breakpoints, whereas PML selects a segmentation
with only one breakpoint. The major difference between BMsimple and PML supports at
least the idea that these data must be heteroscedastic.

Nevertheless, none of the segmentations chosen by BMsimple and PML are entirely
satisfactory: BMsimple relies on an assumption which is certainly violated; PML may use
a change in the estimated variance for explaining several changes in the mean.

CV-based procedures [ERM, VF5] and [Lpoy,, VF5] yield two other segmentations,
with a medium number of breakpoints, respectively 4 and 3. In view of the simulation
experiments of the previous sections, the segmentation obtained via [Lpogy, VF5] should
be the most reliable one since data are heteroscedastic. Therefore, the right of Figure
can be interpretated as follows: The noise-level is small in the first part of chromosome 1,
then higher, but not as high as estimated by PML. In particular, the copy number changes
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Figure 5: Change-points locations along Chromosome 9 (Left) and Chromosome 1 (Right).
The mean on each homogeneous region is indicated by plain horizontal lines.
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twice inside the second part of chromosome 1 (as defined by the segmentation obtained
with PML), indicating that two putative amplified regions of chromosome 1 have been
detected.

Note however that choosing among the segmentations obtained with [ERM, VF5] and
[Lpoyg, VF5] is not an easy task without additional data. A definitive answer would need
further biological experiments.

7 Conclusion

7.1 Results summary

Cross-validation (CV) methods have been used to build reliable procedures (Procedure [6)
for detecting changes in the mean of a signal whose variance may not be constant.

First, when the number of breakpoints is given, empirical risk minimization has been
proved to fail for some heteroscedastic problems, from both theoretical and experimental
points of view. On the contrary, the Leave-p-out (Lpo,) remains robust to heteroscedas-
ticity while being computationally efficient thanks to closed-form formulas given in Sec-
tion [3.2.3] (Theorem [IJ).

Second, for choosing the number of breakpoints, the commonly used penalization pro-
cedure proposed by Birgé and Massart in the homoscedastic framework should not be
applied to heteroscedastic data. V-fold cross-validation (VFCV) turns out to be a reliable
alternative—both with homoscedastic and heteroscedastic data—, leading to much better
segmentations in terms of quadratic risk when data are heteroscedastic. Furthermore, un-
like usual deterministic penalized criteria, VFCV efficiently chooses among segmentations
obtained by either Lpo or empirical risk minimization, without any specific change in the
procedure.

To conclude, the combination of Lpo (for choosing a segmentation for each possi-
ble number of breakpoints) and VFCV yields the most reliable procedure for detecting
changes in the mean of a signal which is not a priori known to be homoscedastic. The
resulting procedure is computationally tractable for small values of V', since its computa-
tional complexity is of order O(Vn?), which is similar to many comparable change-point
detection procedures. The influence of V' on the statistical performance of the procedure
is not studied specifically in this paper; nevertheless, considering V' = 5 only was sufficient
to obtain a better statistical performance than Birgé and Massart’s penalization procedure
when data are heteroscedastic. When applied to real data (CGH profiles in Section [6]),
the proposed procedure turns out to be quite useful and effective, for a data set on which
existing procedures highly disagree because of heteroscedasticity.

7.2 Prospects

The general form of Procedure [l could be used with several other criteria, at both steps of
the change-point detection procedure. For instance, resampling penalties “a] could be used
at the first step, for localizing the change-points given their number. At the second step,
V-fold penalization “a] could also be used instead of VFCV, with the same computational
cost and possibly an improved statistical performance.
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Comparing precisely these resampling-based criteria for optimizing the performance of
Procedure [6] would be of great interest and deserves further works. Simultaneously, several
values of V should be compared for the second step of Procedure[6l, and the precise influence
of p when Lpo, is used at the first step should be further investigated. Preliminary results
in this dlrectlon can already be found in _ Chapter 7).
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1 Calibration of Birgé and Massart’s penalization

Birgé and Massart’s penalization makes use of the penalty

pengy (D) == é;—D (5 + 2log (%))

In a previous version of this work ﬂa, Chapter 7], C was defined as suggested in ﬂ, ],
that is, C= 2I?max sump With the notation below. This yielded poor perforrnances which
seemed related to the definition of C Therefore alternative definitions for C have been
investigated, leading to the choice C = 2Kthresh throughout the paper, where Kthresh is
defined by (2l) below. The present appendix intends to motivate this choice.

Two main approaches have been considered in the literature for defining C in the
penalty penpg:

e Use C =02 any estimate of the noise-level, for instance,

1 n/2
0% = - > (Yai — Yaia)® (1)
i=1

assuming n is even and t; < -+ < t,.

o Use Birgé and Massart’s slope heuristics, that is, compute the sequence

~

~ KD n
D(K) := aI‘gDIIéIII)ln {Pn’Y(SmERM(D)) + - (5 + 2log (5)>} ,

find the (umque) K = Kjump at which D(K) jumps from large to small values, and
define C = 2Kjump

The first approach follows from theoretical and experimental results M I] which show
that C should be close to 02 when the noise-level is constant; (IJ) is a classical estimator
of the variance used for instance by Baraud B] for model selection in a different setting.

The optimality (in terms of oracle inequalities) of the second approach has been proved
for regression with homoscedastic Gaussian noise and possibly exponential collections of
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S. g. 2I/{’max.jump 2I/(\"chresh. ;5 O.thue
1 6.85 £ 0.12 3.91 £ 0.03 1.74 £0.02  2.05 + 0.02
pc,3 | 17.56 £ 0.15 13.08 + 0.04 442 +0.04 1043 £ 0.05
S 20.07 £ 0.31 941 +£0.04 2.18 £0.03 1.66 £ 0.02
2 c 6.02 £ 0.03 527 £0.03 3.58 +0.02 3.54 £+ 0.02
pc,3 | 17.76 £ 0.10 20.12 + 0.07 10.58 + 0.07 16.64 + 0.08
s 10.17 £ 0.06  9.69 £0.04 5.28 £0.03 10.95 £ 0.02
3 c 497+ 0.02 439 £0.01 4.62 £0.01 4.21 +0.01
pc,3 | 8.66 +£0.03 847 +0.03 6.64 +0.02 8.00 £ 0.03
s 850+ 004 759 +£0.03 594+£0.02 1550 +£0.04
A 7.52+004 6.82+£003 486 =£0.03 5.55=£0.03
B 7.89 £0.04 721 +£0.04 518+ 0.03 577 +0.03
C 12.81 & 0.08 13.49 £ 0.07 8.93 £ 0.06 12.44 4+ 0.07

Table 1: Performance Cor(BM) with four different definitions of C' (see text), in some of
the simulation settings considered in the paper. In each setting, N = 10000 independent

samples have been generated. Next to each value is indicated the corresponding empirical
standard deviation divided by vV N.

models “ﬂ] as well as in a heteroscedastic framework with polynomial collections of models
E] In the context of change-point detection with homoscedastic data, Lavielle ﬁ] and
Lebarbier ﬂ§] showed that C' = 2KmaX jump can even perform better than C = o2 when
Kmax jump corresponds to the highest jump of D( )

Alternatively, it was proposed in E] to define C = 2I?thresh, where

= =~ n
= mi t. < resh. \= | —— .
Kthresh. min {K S.t D(K) S Dth h Ln(n)J } (2)

These three definitions of C' have been compared with C' = 02, := n~! S o(t)? in
the settings of the paper. A representative part of the results is reported in Table [Il The
main conclusions are the following.

. ZIA(threSh. almost always beats QI?maX,jump, even in homoscedastic settings. This con-
firms some simulation results reported in [2].

e o2 often beats slope heuristics-based definitions of C but not always, as previously
noticed by Lebarbier ﬂ§] Differences of perforrnance can be huge (in particular when
o = 0), but not always in favour of o2, (for instance, when s = s3).

e 02 yields significantly better performance than o2, in most settings (but not all),

with huge margins in some heteroscedastic settings.

The latter result actually comes from an artefact, which can be explained as follows.
First,

n

—~1 1 - 1 @&
E[O’Q}:EZ 2+ Z tQZ —Stgzl 2>—ZO’

=1 =1 =1

- Utrue .

SIH
3
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The difference between these expectations is not negligible in all the settings of the paper.
For instance, when n = 100, t; = i/n and s = s1, n=1 >, (s(t2;) — s(t2i—1))? = 0.04 whereas
02 varies between 0.015 (when 0 = 0Opc,1) to 0.093 (when o = opc3). Nevertheless, o2
would not overestimate o2, at all in a very close setting: Shifting the jumps of s; by
1/100 is sufficient to make n=>".(s(t2;) — s(t2i—1))? equal to zero, and the performances

of BM with C = 02 would then be very close to the performances of BM with C = Ctrue-
Second, overpenalization turns out to improve the results of BM in most of the het-
eroscedastic settings considered in the paper. The reason for this phenomenon is illustrated
by the right panel of Figure 4. Indeed, penpy; is a poor penalty when data are het-
eroscedastic, underpenalizing dimensions close to the oracle but overpenalizing the largest
dimensions (remember that C = QI?thresh. on Figure 4). Then, in a setting like (s2, 0pc,3)
multiplying pengy; by a factor Cover > 1 helps decreasing the selected dimension; the same
cause has different consequences in other settings, such as (s1,0s or (s3,0.). Neverthe-
less, even choosing C' using both P, and s, (critpm(D)) s remains a poor estimate of

<Hs Smprm(D ||2)D>0 in most heteroscedastic settings (even up to an additive constant).

To conclude, pengy; with C = o2 is not a reliable change-point detection procedure,
and the apparently good performances observed in Table [l could be misleading. This leads
to the remaining choice C= 2Kthresh which has been used throughout the paper, although
this calibration method may certainly be improved.

Results of Table [ for C = 02 indicate how far the performances of pengy; could
be improved without overpenalization. According to Tables d and B, BM with C' = o2,
only has significantly better performances than [ERM, VF5] or [Loo, VF5] in the three
homoscedastic settings and in setting (s1,05).

Finally, overpenalization could be used to improve BM, but choosing the overpenaliza-
tion factor from data is a difficult problem, especially without knowing a priori whether
the signal is homoscedastic or heteroscedastic. This question deserves a specific extensive
simulation experiment. To be completely fair with CV methods, such an experiment should
also compare BM with overpenalization to V-fold penalization ﬂ] with overpenalization,
for choosing the number of change-points.

2 Random frameworks generation

The purpose of this appendix is to detail how piecewise constant functions s and ¢ have
been generated in the frameworks A, B and C of Section 5.3. In each framework, s and o
are of the form

Ko—1

s(z) = Z @ ligsia,00) T K oy sak, 1] withap=0<a; < - <ag, =1
=0
Ko—1

o(@) =Y Bl + BroLib, sbrc, 41] with bg=0<b; < --- <bg, =1
=0

for some positive integers Ky, K, and real numbers «y,...,ax, € R and fy,...,0k, > 0.
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Remark 1. The frameworks A, B and C depend on the sample size n, through the distri-
bution of K, K,, and of the size of the intervals [a;;a;11) and [b;;bj11). This ensures
that the signal-to-noise ratio remains rather small, so that the quadratic risk remains an
adequate performance measure for change-point detection.

When the signal-to-noise ratio is larger (that is, when all jumps of s are much larger
than the noise-level, and the number of jumps of s is small compared to the sample size),
the change-point detection problem is of different nature. In particular, the number of
change-points would be better estimated with procedures targeting identification (such as
BIC, or even larger penalties) than efficiency (such as VFCV).

2.1 Framework A

In framework A, s and o are generated as follows:
o K, the number of jumps of s, has uniform distribution over {3,...,|v/n]}.

e For 0 <j < Kq,
KS + 1)Afnin
K
k=0 Uk
with A%, = min{5/n,1/(Ks+ 1)} and Uy,...,Uk, are i.i.d. with uniform distri-
bution over [0;1].

)Uj

1—
P

min

e oy = Vpand for 1 < j < K, aj = aj—1 + V; where Vp,..., Vi, are ii.d. with
uniform distribution over [—1; —0.1] U [0.1; 1].

e K,, the number of jumps of o, has uniform distribution in {5,..., [\/n]}.
e For 0 <j < K,,

(1= (K, +1)AZ

!
min)Uj

Ks !

k=0 Uk

bj+1 — bj =AY

min

with A7 = min{5/n,1/(Ks + 1)} and Uy, ..., Uy are ii.d. with uniform distri-

bution over [0; 1].
e fo,..., K, are i.i.d. with uniform distribution over [0.05;0.5].

Two examples of a function s and a sample (¢;,Y;) generated in framework A are plotted
on Figure [II

2.2 Framework B

The only difference with framework A is that Up,...,Uk, are i.i.d. with the same distri-
bution as Z = [10Z7 + Zs| where Z; has Bernoulli distribution with parameter 1/2 and Z»
has a standard Gaussian distribution. Two examples of a function s and a sample (¢;, Y;)
generated in framework B are plotted on Figure 2
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Figure 1: Random framework A: two examples of a sample (t;,Y;)1<i<100 and the corre-
sponding regression function s.
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Figure 2: Random framework B: two examples of a sample (t;,Y;)1<i<i00 and the corre-
sponding regression function s.
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2.3 Framework C

The main difference between frameworks C and B is that [0;1] is split into two regions:
K, +1 = 1/2 and Ky = K1 + Kz2 + 1 for some positive integers K1, K, 2, and the
bounds of the distribution of ; are larger when b; > 1/2 and smaller when b; < 1/2. Two

examples of a function s and a sample (¢;,Y;) generated in framework C are plotted on
Figure Bl More precisely, s and o are generated as follows:

e K1 has uniform distribution over {2, ..., Kiax1} with Kpax1 = [vn|—1—[([v/n—
1])/3].

e Ko has uniform distribution over {0, ..., Kpax 2} with Kpaxo = [([v/n —1])/3].

o Let Uy,...,Uk, be iid. random variables with the same distribution as Z =
|10Z1 + Z3| where Z; has Bernoulli distribution with parameter 1/2 and Z, has
a standard Gaussian distribution.

e For 0 <j <Ky,

1— (Ko + DA U,
N L e P
> ko Uk
with A% = min {5/n,1/(K,, +1)}.
o For K,1+1<j <K,
2
i1 —a; = AP 4 (1 — (K2 + 1)ALT;
J 7

min K
Zk:KS,DLl Uk

with A2 = min {5/n,1/(Kso +1)}.

min
e ap = Vpand for 1 < j < K, a; = aj_1 + Vj where Vp,..., Vi, are iid. with
uniform distribution over [—1; —0.1] U [0.1; 1].

o Ky, (bj+1 —bj)o<j<k, are distributed as in frameworks A and B.

e (,...,0K, are independent.
When b; < 1/2, ; has uniform distribution over [0.025;0.2].
When b; > 1/2, 8; has uniform distribution over [0.1;0.8].

3 Additional results from the simulation study

In the next pages are presented extended versions of the Tables of the main paper, as well
as an extended version of Table [Il (Table [7]).
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Figure 3: Random framework C: two examples of a sample (t;,Y;)1<i<100 and the corre-
sponding regression function s.
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5. o ERM Loo Lpoy, Lpogq
1 ¢ |[1.59+0.01 1.6040.02 1.58+0.01 1.58 +0.01
pc,l | 1.04 £ 0.01  1.06 = 0.01 1.06 = 0.01  1.06 + 0.01
pc,2 | 1.89 £ 0.02 1.87 £0.02 1.87 £0.02 1.87 4 0.02
pc,3 | 2.05 +£0.02 2.05 £ 0.02 2.05 +0.02 2.07 & 0.02
S 1.54 £ 0.02 1.5240.02 1.52 £0.02 1.51 &+ 0.02
2 ¢ [2.88+£0.01 293+0.01 2934001 294+0.01
pc,1 | 1.31 £0.02 1.16 £0.02 1.14 £ 0.02 1.11 + 0.01
pc,2 | 2.884+0.02 2244002 219+0.02 2.13 4 0.02
pc,3 | 3.094+0.03 2524003 248 +£0.03 2.32 4 0.03
s |3.01+£0.01 3.03+0.01 3.05+001 3.13+0.01
3 ¢ |318+001 325+0.01 329+0.01 3.44+0.01
pc,1 | 3.00 £0.01 2.67 £0.02 2.68 £0.02 2.77 & 0.02
pc,2 | 4.06 £ 0.02 3.63 +£0.02 3.64 £0.02 3.78 & 0.02
pc,3 | 4.414+0.02 3.97 £0.02 4.00 £0.02 4.11 4 0.02
s 4.024+ 001 3.82+0.01 3.85+0.01 3.9840.01

Table 2: Average performance Co, ([, Id]) for change-point detection procedures 8 among
ERM, Loo and Lpo,, with p = 20 and p = 50. Several regression functions s and noise-level
functions o have been considered, each time with N = 10000 independent samples. Next
to each value is indicated the corresponding empirical standard deviation divided by v/N,
measuring the uncertainty of the estimated performance.

s. . Oracle VF5 BM
1 c 1.59 £+ 0.01 5.40 £ 0.05 3.91 £+ 0.03
pc,1 | 1.04 £ 0.01 11.96 £+ 0.03 12.85 4+ 0.04
pc,2 | 1.89 £ 0.02  6.43 £ 0.05 13.03 &+ 0.04
pc,3 | 2.05 £0.02  4.96 £ 0.05 13.08 4+ 0.04
S 1.54 £+ 0.02 7.33 £0.06 9.41 + 0.04
2 c 2.88 £ 0.01 4.51 £0.03 5.27 + 0.03
pc,1 | 1.31 £0.02 11.67 = 0.09 19.36 &+ 0.07
pc,2 | 2.88 £ 0.02  6.58 £ 0.06 19.82 &+ 0.07
pc,3 | 3.09 £ 0.03 6.66 = 0.06 20.12 4+ 0.07
S 3.01 £+ 0.01 5.21 £ 0.04 9.69 £+ 0.40
3 c 3.18 + 0.01 441 + 0.02 4.39 £ 0.01
pc,1 | 3.00 £ 0.01  4.91 £0.02 6.50 £ 0.02
pc,2 | 4.06 £ 0.02  5.99 £ 0.02 7.86 + 0.03
pc,3 | 441 £0.02  6.32 £0.02 847 £ 0.03
S 4.02 + 0.01 5.97 +£ 0.03  7.59 £ 0.03

Table 3: Performance Co, (JERM,B]) for P = Id (that is, choosing the dimension D* :=

arg minpep,, {Hs — gﬁERM(D)Hi ), B = VFy with V =5 or 8 = BM. Several regression
functions s and noise-level functions ¢ have been considered, each time with N = 10000
independent samples. Next to each value is indicated the corresponding empirical standard

deviation divided by v/ N, measuring the uncertainty of the estimated performance.
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s. o | [ERM,VFs] [Loo,VFs]  [Lpog, VFs] [Lposy, VF5] [ERM,BM]
1 ¢ | 540 +£005 503 +005 510+005 524+005 3.91+0.03
pe,l | 11.96 & 0.03  10.25 +0.03 1028 £ 0.03  10.66 + 0.04 12.85 & 0.04
pc,2 | 643 +0.05 5.83+005 599 +005 620005 13.03+0.04
pc,3 | 496 005 4.82+£004 479 +0.05 5.02+005 13.08+0.04

s | 7334006 6.82+005 6.99+006 6.91+006 941 + 0.04

2 ¢ | 451 £003 4.55 £ 003 4.50 £ 0.03 4.73 £ 0.03 5.27 + 0.03
pe,l | 1167 £ 0.09 10.26 & 0.08 10.29 + 0.08 1045 + 0.09 19.36 = 0.07
pc2 | 658 +£0.06 5854006 5.85+0.06 5.49 +0.06 19.82 + 0.07
pe,3 | 6.66 006 581+ 006 5.74+006 5.66 %006 20.12 % 0.06

s | 5214004 5.19+003 5.17+003 551+004 9.69+ 0.04

3 ¢ | 441 £002 454002 462 +£002 494+002 4.39+ 001
pe,l | 4.91 £0.02  4.40 +£0.02  4.44 £0.02 469 £ 002  6.50 % 0.02
pc,2 | 599 £0.02 5.34+002 5424002 575+002 7.86+0.03
pc,3 | 6.324£0.02 5.74 £0.02 581 +£002 6244002 847 + 0.03

s | 5974002 5.72+002 5864002 6074002 7.59+0.03

Table 4: Performance Cop () for several change-point detection procedures . Several
regression functions s and noise-level functions o have been considered, each time with
N = 10000 independent samples. Next to each value is indicated the corresponding
empirical standard deviation.

Framework A B C

[[ERM,BM]] 6.82 £0.03 7.21 £0.04 13.49 £ 0.07
[ERM,VF5] | 4.78 £0.03 5.09 +£0.03 7.17 £ 0.05
[Loo, VF5] | 4.65 + 0.03 4.88 +0.03 6.61 £ 0.05
[Lpogy, VF5] | 4.78 £ 0.03 4.91 £+ 0.03 6.49 £ 0.05
[Lposg, VF5] | 4.97 £ 0.03 5.18 £0.04 6.69 £+ 0.05

Table 5: Performance C(gf{) ('B) of several model selection procedures P in frameworks A,

B, C with sample size n = 100. In each framework, N = 10, 000 independent samples
have been considered. Next to each value is indicated the corresponding empirical standard
deviation divided by v/N.
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Framework A B C
[[ERM,BM]] 9.04 +£0.12 11.62 +0.14 21.21 +0.31
[ERM,BM3] | 534 £0.10 6.24 +0.11 11.48 + 0.22
[[ERM,VF5]] 5.10 £ 0.11 5.92 £ 0.11 7.31 &+ 0.14
[[LOO,VF5]] 4.90 £ 0.11 5.63 £0.11 6.89 + 0.16
[Lpoyy, VF5] | 4.88 £ 0.10 5.55 +£ 0.10 6.82 £+ (.15
[Lposy, VFs] | 511 £ 0.11 5.49 +£0.10 7.14 £ 0.15

Table 6: Performance C((f) ('B) of several model selection procedures P in frameworks A,

B, C with sample size n = 200. In each framework, N = 1, 000 independent samples have
been considered. Next to each value is indicated the corresponding empirical standard
deviation divided by v/N.

S. g. 2I/{’max.jump 2I/(\"chresh. ;5 O.thue
1 c 6.85 £ 0.12 3.91 £ 0.03 1.74 £0.02  2.05 &+ 0.02
pc,1 | 70.97 £ 1.18 12.85 + 0.04 1.13 £0.02 10.20 £ 0.05
pc,2 | 23.74 £0.26 13.03 = 0.04 3.55 & 0.04 10.43 £ 0.05
pc,3 | 17.56 £ 0.15 13.08 + 0.04 442 +0.04 1043 £ 0.05
S 20.07 £ 0.31 941 +£0.04 2.18 £0.03 1.66 £ 0.02
2 c 6.02 £ 0.03 527 £0.03 3.58 +0.02 3.54 £+ 0.02
pc,1 | 17.83 £ 0.10 19.36 + 0.07  8.52 + 0.06 15.62 + 0.08
pc,2 | 17.63 = 0.10 19.82 + 0.07 10.77 £ 0.07 16.56 £ 0.08
pc,3 | 17.76 £ 0.10 20.12 + 0.07 10.58 + 0.07 16.64 + 0.08
s 10.17 £ 0.06  9.69 £0.04 5.28 £0.03 10.95 £ 0.02
3 c 497+ 0.02 4.39 £0.01 4.62 £0.01 4.21 +0.01
pc,1 7.18 £0.03 650 £0.02 452+ 0.02 6.70 &+ 0.03
pc,2 | 814 £0.03 786 +0.03 6.224+0.02 7.55 £ 0.03
pc,3 | 8.66 £ 0.03 847 +0.03 6.64 £0.02 8.00 £ 0.03
S 8.50 +£0.04 759 +£0.03 594+ 0.02 15.50 4+ 0.04
A 752+ 004 6.82+£003 486 =£0.03 5.55=£0.03
B 7.89 £0.04 721 +£0.04 518+ 0.03 577 +0.03
C 12.81 £ 0.08 13.49 £+ 0.07 8.93 £ 0.06 12.44 £ 0.07

Table 7: Performance Co(BM) with four different definitions of C' (see text), in some of
the simulation settings considered in the paper. In each setting, N = 10000 independent

samples have been generated. Next to each value is indicated the corresponding empirical
standard deviation divided by v V.
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