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Segmentation of the mean of heterosedasti data viaross-validationSylvain Arlot and Alain CelisseApril 8, 2009AbstratThis paper takles the problem of deteting abrupt hanges in the mean of a het-erosedasti signal by model seletion, without knowledge on the variations of thenoise. A new family of hange-point detetion proedures is proposed, showing thatross-validation methods an be suessful in the heterosedasti framework, whereasmost existing proedures are not robust to heterosedastiity. The robustness to het-erosedastiity of the proposed proedures is supported by an extensive simulationstudy, together with reent theoretial results. An appliation to Comparative Ge-nomi Hybridization (CGH) data is provided, showing that robustness to heterosedas-tiity an indeed be required for their analysis.1 IntrodutionThe problem takled in the paper is the detetion of abrupt hanges in the mean of a signalwithout assuming its variane is onstant. Model seletion and ross-validation tehniquesare used for building hange-point detetion proedures that signi�antly improve on ex-isting proedures when the variane of the signal is not onstant. Before detailing theapproah and the main ontributions of the paper, let us motivate the problem and brie�yreall some related works in the hange-point detetion literature.1.1 Change-point detetionThe hange-point detetion problem, also alled one-dimensional segmentation, deals witha stohasti proess the distribution of whih abruptly hanges at some unknown instants.The purpose is to reover the loation of these hanges and their number. This problemis motivated by a wide range of appliations, suh as voie reognition, �nanial time-series analysis [29℄ and Comparative Genomi Hybridization (CGH) data analysis [35℄. Alarge literature exists about hange-point detetion in many frameworks [see 12, 17, for aomplete bibliography℄.The �rst papers on hange-point detetion were devoted to the searh for the loation ofa unique hange-point, also named breakpoint [see 34, for instane℄. Looking for multiplehange-points is a harder task and has been studied later. For instane, Yao [49℄ usedthe BIC riterion for deteting multiple hange-points in a Gaussian signal, and Miao andZhao [33℄ proposed an approah relying on rank statistis.1
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The setting of the paper is the following. The values Y1, . . . , Yn ∈ R of a noisy signalat points t1, . . . , tn are observed, with
Yi = s(ti) + σ(ti)ǫi , E [ǫi] = 0 and Var(ǫi) = 1 . (1)The funtion s is alled the regression funtion and is assumed to be pieewise-onstant, orat least well approximated by pieewise onstant funtions, that is, s is smooth everywhereexept at a few breakpoints. The noise terms ǫ1, . . . , ǫn are assumed to be independentand identially distributed. No assumption is made on σ : [0, 1] 7→ [0,∞). Note that alldata (ti, Yi)1≤i≤n are observed before deteting the hange-points, a setting whih is alledo�-line.As pointed out by Lavielle [28℄, multiple hange-point detetion proedures generallytakle one among the following three problems:1. Deteting hanges in the mean s assuming the standard-deviation σ is onstant,2. Deteting hanges in the standard-deviation σ assuming the mean s is onstant,3. Deteting hanges in the whole distribution of Y , with no distintion between hangesin the mean s, hanges in the standard-deviation σ and hanges in the distributionof ǫ.In appliations suh as CGH data analysis, hanges in the mean s have an importantbiologial meaning, sine they orrespond to the limits of ampli�ed or deleted areas ofhromosomes. However in the CGH setting, the standard-deviation σ is not always on-stant, as assumed in problem 1. See Setion 6 for more details on CGH data, for whihheterosedastiity�that is, variations of σ� orrespond to experimental artefats or bio-logial nuisane that should be removed.Therefore, CGH data analysis requires to solve a fourth problem, whih is the purposeof the present artile:4. Deteting hanges in the mean s with no onstraint on the standard-deviation σ :

[0, 1] 7→ [0,∞).Compared to problem 1, the di�erene is the presene of an additional nuisane parameter
σ making problem 4 harder. Up to the best of our knowledge, no hange-point detetionproedure has ever been proposed for solving problem 4 with no prior information on σ.1.2 Model seletionModel seletion is a suessful approah for multiple hange-point detetion, as shown byLavielle [28℄ and by Lebarbier [30℄ for instane. Indeed, a set of hange-points�alled asegmentation�is naturally assoiated with the set of pieewise-onstant funtions that mayonly jump at these hange-points. Given a set of funtions (alled a model), estimation anbe performed by minimizing the least-squares riterion (or other riteria, see Setion 3).Therefore, deteting hanges in the mean of a signal, that is the hoie of a segmentation,amounts to selet suh a model.More preisely, given a olletion of models {Sm}m∈Mn

and the assoiated olletion ofleast-squares estimators {ŝm}m∈Mn
, the purpose of model seletion is to provide a modelindex m̂ suh that ŝ bm reahes the �best performane� among all estimators {ŝm}m∈Mn

.2
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Model seletion an target two di�erent goals. On the one hand, a model seletionproedure is e�ient when its quadrati risk is smaller than the smallest quadrati risk ofthe estimators {ŝm}m∈Mn
, up to a onstant fator Cn ≥ 1. Suh a property is alled anorale inequality when it holds for every �nite sample size. The proedure is said to beasymptoti e�ient when the previous property holds with Cn → 1 as n tends to in�nity.Asymptoti e�ieny is the goal of AIC [2, 3℄ and Mallows' Cp [32℄, among many others.On the other hand, assuming that s belongs to one of the models {Sm}m∈Mn

, a pro-edure is model onsistent when it hooses the smallest model ontaining s asymptotiallywith probability one. Model onsisteny is the goal of BIC [39℄ for instane. See also theartile by Yang [46℄ about the distintion between e�ieny and model onsisteny.In the present paper as in [30℄, the quality of a multiple hange-point detetion pro-edure is assessed by the quadrati risk; hene, a hange in the mean hidden by the noiseshould not be deteted. This hoie is motivated by appliations where the signal-to-noiseratio may be small, so that exatly reovering every true hange-point is hopeless. There-fore, e�ient model seletion proedures will be used in order to detet the hange-points.Without prior information on the loations of the hange-points, the natural olletionof models for hange-point detetion depends on the sample size n. Indeed, there exist(n−1
D−1

) di�erent partitions of the n design points into D intervals, eah partition orrespond-ing to a set of (D − 1) hange-points. Sine D an take any value between 1 and n, 2n−1models an be onsidered. Therefore, model seletion proedures used for multiple hange-point detetion have to satisfy non-asymptoti orale inequalities: the olletion of modelsannot be assumed to be �xed with the sample size n tending to in�nity. (See Setion 2.3for a preise de�nition of the olletion {Sm}m∈Mn
used for hange-point detetion.)Most model seletion results onsider �polynomial� olletions of models {Sm}m∈Mn

,that is Card(Mn) ≤ Cnα for some onstants C,α ≥ 0. For polynomial olletions, proe-dures like AIC or Mallows' Cp are proved to satisfy orale inequalities in various frameworks[9, 15, 10, 16℄, assuming that data are homosedasti, that is, σ(ti) does not depend on ti.However as shown in [6℄, Mallows' Cp is suboptimal when data are heterosedasti, thatis the variane is non-onstant. Therefore, other proedures must be used. For instane,resampling penalization is optimal with heterosedasti data [5℄. Another approah hasbeen explored by Gendre [25℄, whih onsists in simultaneously estimating the mean andthe variane, using a partiular polynomial olletion of models.However in hange-point detetion, the olletion of models is �exponential�, that is
Card(Mn) is of order exp(αn) for some α > 0. For suh large olletions, espeially largerthan polynomial, the above penalization proedures fail. Indeed, Birgé and Massart [16℄proved that the minimal amount of penalization required for a proedure to satisfy anorale inequality is of the form

pen(m) = c1
σ2Dm

n
+ c2

σ2Dm

n
log

(
n

Dm

)
, (2)where c1 and c2 are positive onstants and σ2 is the variane of the noise, assumed tobe onstant. Lebarbier [30℄ proposed c1 = 5 and c2 = 2 for optimizing the penalty (2)in the ontext of hange-point detetion. Penalties similar to (2) have been introduedindependently by other authors [38, 1, 11, 45℄ and are shown to provide satisfatory results.3
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Nevertheless, all these results assume that data are homosedasti. Atually, the modelseletion problem with heterosedasti data and an exponential olletion of models hasnever been onsidered in the literature, up to the best of our knowledge.Furthermore, penalties of the form (2) are very lose to be proportional to Dm, at leastfor small values of Dm. Therefore, the results of [6℄ lead to onjeture that the penalty (2)is suboptimal for model seletion over an exponential olletion of models, when data areheterosedasti. The suggest of this paper is to use ross-validation methods instead.1.3 Cross-validationCross-validation (CV) methods allow to estimate (almost) unbiasedly the quadrati risk ofany estimator, suh as ŝm (see Setion 3.2 about the heuristis underlying CV). Classialexamples of CV methods are the leave-one-out [Loo, 27, 43℄ and V -fold ross-validation[VFCV, 23, 24℄. More referenes on ross-validation an be found in [7, 19℄ for instane.CV an be used for model seletion, by hoosing the model Sm for whih the CVestimate of the risk of ŝm is minimal. The properties of CV for model seletion witha polynomial olletion of models and homosedasti data have been widely studied. Inshort, CV is known to adapt to a wide range of statistial settings, from density estimation[42, 20℄ to regression [44, 48℄ and lassi�ation [26, 47℄. In partiular, Loo is asymptotiallyequivalent to AIC or Mallows' Cp in several frameworks where they are asymptotiallyoptimal, and other CV methods have similar performanes, provided the size of the trainingsample is lose enough to the sample size [see for instane 31, 40, 22℄. In addition, CVmethods are robust to heterosedastiity of data [5, 7℄, as well as several other resamplingmethods [6℄. Therefore, CV is a natural alternative to penalization proedures assuminghomosedastiity.Nevertheless, nearly nothing is known about CV for model seletion with an exponentialolletion of models, suh as in the hange-point detetion setting. The literature on modelseletion and CV [14, 40, 16, 21℄ only suggests that minimizing diretly the Loo estimateof the risk over 2n−1 models would lead to over�tting.In this paper, a remark made by Birgé and Massart [16℄ about penalization proedureis used for solving this issue in the ontext of hange-point detetion. Model seletion isperfomed in two steps: First, hoose a segmentation given the number of hange-points;seond, hoose the number of hange-points. CV methods an be used at eah step, leadingto Proedure 6 (Setion 5). The paper shows that suh an approah is indeed suessfulfor deteting hanges in the mean of a heterosedasti signal.1.4 Contributions of the paperThe main purpose of the present work is to design a CV-based model seletion proe-dure (Proedure 6) that an be used for deteting multiple hanges in the mean of aheterosedasti signal. Suh a proedure experimentally adapts to heterosedastiity whenthe olletion of models is exponential, whih has never been obtained before. In parti-ular, Proedure 6 is a reliable alternative to Birgé and Massart's penalization proedure[15℄ when data an be heterosedasti.Another major di�ulty takled in this paper is the omputational ost of resamplingmethods when seleting among 2n models. Even when the number (D − 1) of hange-4
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points is given, exploring the (n−1
D−1

) partitions of [0, 1] into D intervals and performing aresampling algorithm for eah partition is not feasible when n is large and D > 0. Animplementation of Proedure 6 with a tratable omputational omplexity is proposed inthe paper, using losed-form formulas for Leave-p-out (Lpo) estimators of the risk, dynamiprogramming, and V -fold ross-validation.The paper also points out that least-squares estimators are not reliable for hange-point detetion when the number of breakpoints is given, although they are widely usedto this purpose in the literature. Indeed, experimental and theoretial results detailed inSetion 3.1 show that least-squares estimators su�er from loal over�tting when the varianeof the signal is varying over the sequene of observations. On the ontrary, minimizers ofthe Lpo estimator of the risk do not su�er from this drawbak, whih emphasizes theinterest of using ross-validation methods in the ontext of hange-point detetion.The paper is organized as follows. The statistial framework is desribed in Setion 2.First, the problem of seleting the �best� segmentation given the number of hange-pointsis takled in Setion 3. Theoretial results and an extensive simulation study show thatthe usual minimization of the least-squares riterion an be misleading when data areheterosedasti, whereas ross-validation-based proedures provide satisfatory results inthe same framework.Then, the problem of hoosing the number of breakpoints from data is addressed inSetion 4. As supported by an extensive simulation study, V -fold ross-validation (VFCV)leads to a omputationally feasible and statistially e�ient model seletion proedurewhen data are heterosedasti, ontrary to proedures impliitly assuming homosedasti-ity. The resampling methods of Setions 3 and 4 are ombined in Setion 5, leading to afamily of resampling-based proedures for deteting hanges in the mean of a heterosedas-ti signal. A wide simulation study shows they perform well with both homosedasti andheterosedasti data, signi�antly improving the performane of proedures whih impli-itly assume homosedastiity.Finally, Setion 6 illustrates on a real data set the promising behaviour of the proposedproedures for analyzing CGH miroarray data, ompared to proedures previously usedin this setting.2 Statistial frameworkIn this setion, the statistial framework of hange-point detetion via model seletion isintrodued, as well as some notation.2.1 Regression on a �xed designLet S∗ denote the set of measurable funtions [0, 1] 7→ R. Let t1 < · · · < tn ∈ [0, 1] besome deterministi design points, s ∈ S∗ and σ : [0, 1] 7→ [0,∞) be some funtions andde�ne
∀i ∈ {1, . . . , n} , Yi = s(ti) + σ(ti)ǫi , (3)where ǫ1, . . . , ǫn are independent and identially distributed random variables with E [ǫi] =

0 and E
[
ǫ2
i

]
= 1. 5



 
Version définitive du manuscrit publié dans / Final version of the manuscript 
published in :  

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 
Statistics and Computing, 2010, vol. 21, n° 4, 613-632, 10.1007/s11222-010-9196-x 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As explained in Setion 1.1, the goal is to �nd from (ti, Yi)1≤i≤n a pieewise-onstantfuntion f ∈ S∗ lose to s in terms of the quadrati loss
‖s − f‖2

n :=
1

n

n∑

i=1

(f(ti) − s(ti))
2 .2.2 Least-squares estimatorA lassial estimator of s is the least-squares estimator, de�ned as follows. For every

f ∈ S∗, the least-squares riterion at f is de�ned by
Pnγ(f) :=

1

n

n∑

i=1

(Yi − f(ti))
2 .The notation Pnγ(f) means that the funtion (t, Y ) 7→ γ(f ; (t, Y )) := (Y − f(t))2 isintegrated with respet to the empirial distribution Pn := n−1

∑n
i=1 δ(ti,Yi). Pnγ(f) isalso alled the empirial risk of f .Then, given a set S ⊂ S∗ of funtions [0, 1] 7→ R (alled a model), the least-squaresestimator on model S is

ERM(S;Pn) := arg min
f∈S

{Pnγ(f)} .The notation ERM(S;Pn) stresses that the least-squares estimator is the output of theempirial risk minimization algorithm over S, whih takes a model S and a data sampleas inputs. When a olletion of models {Sm}m∈Mn
is given, ŝm(Pn) or ŝm are shortutsfor ERM(Sm;Pn).2.3 Colletion of modelsSine the goal is to detet jumps of s, every model onsidered in this artile is the set ofpieewise onstant funtions with respet to some partition of [0, 1].For every K ∈ {1, . . . , n − 1} and every sequene of integers α0 = 1 < α1 < α2 < · · · <

αK ≤ n (the breakpoints), (Iλ)λ∈Λ(α1,...αK )
denotes the partition

[tα0 ; tα1), . . . , [tαK−1
; tαK

), [tαK
; 1]of [0, 1] into (K +1) intervals. Then, the model S(α1,...αK) is de�ned as the set of pieewiseonstant funtions that an only jump at t = tαj

for some j ∈ {1, . . . ,K}.For every K ∈ {1, . . . , n − 1}, let M̃n(K + 1) denote the set of suh sequenes
(α1, . . . αK) of length K, so that {Sm}

m∈ fMn(K+1)
is the olletion of models of piee-wise onstant funtions with K breakpoints. When K = 0, M̃n(1) := {∅} and themodel S∅ is the linear spae of onstant funtions on [0, 1]. Remark that for every Kand m ∈ M̃n(K +1), Sm is a vetor spae of dimension Dm = K +1. In the rest of the pa-per, the relationship between the number of breakpoints K and the dimension D = K + 1of the model S(α1,...αK) is used repeatedly; in partiular, estimating of the number of break-points (Setion 4) is equivalent to hoosing the dimension of a model. In addition, sine amodel Sm is uniquely de�ned by m, the index m is also alled a model.6
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The lassial olletion of models for hange-point detetion an now be de�ned as
{Sm}

m∈ fMn
, where M̃n =

⋃
D∈Dn

M̃n(D) and Dn = {1, . . . , n}. This olletion has aardinality 2n−1.In this paper, a slightly smaller olletion of models is onsidered, that is, all
m ∈ M̃n suh that eah element of the partition (Iλ)λ∈Λm

ontains at least two designpoints (tj)1≤j≤n. Indeed, when nothing is known about the noise-level σ(·), one an-not hope to distinguish two onseutive hange-points from a loal variation of σ. Forevery D ∈ {1, . . . , n}, let Mn(D) denote the set of m ∈ M̃n(D) satisfying this prop-erty. Then, the olletion of models used in this paper is de�ned as {Sm}m∈Mn
where

Mn =
⋃

D∈Dn
Mn(D) and Dn ⊂ {1, . . . , n/2}. Finally, in all the experiments of thepaper, Dn = {1, . . . , 4n/10} for reasons detailed in Setion 4.2, in partiular Remark 3.2.4 Model seletionAmong {Sm}m∈Mn

, the best model is de�ned as the minimizer of the quadrati loss
‖s − ŝm‖2

n over m ∈ Mn and alled the orale m⋆. Sine the orale depends on s, one anonly expet to selet m̂(Pn) from the data suh that the quadrati loss of ŝ bm is lose tothat of the orale with high probability, that is,
‖s − ŝ bm‖2

n ≤ C inf
m∈Mn

{
‖s − ŝm‖2

n

}
+ Rn (4)where C is lose to 1 and Rn is a small remainder term (typially of order n−1). Inequality(4) is alled an orale inequality.3 Loalization of the breakpointsA usual strategy for multiple hange-point detetion [28, 30℄ is to dissoiate the searh forthe best segmentation given the number of breakpoints from the hoie of the number ofbreakpoints.In this setion, the number K = D−1 of breakpoints is �xed and the goal is to loalizethem. In other words, the goal is to selet a model among {Sm}m∈Mn(D).3.1 Empirial risk minimization's failure with heterosedasti dataAs explained by many authors suh as Lavielle [28℄, minimizing the least-squares riterionover {ŝm}m∈M(D) is a lassial way of estimating the best segmentation with (D − 1)hange-points. This leads to the following proedure:Proedure 1.

m̂ERM(D) := arg min
m∈Mn(D)

{Pnγ(ŝm)} = ERM
(
S̃D;Pn

)
,where S̃D := ∪m∈Mn(D)Smis the set of pieewise onstant funtions with exatly (D−1) hange-points, hosen among

t2, . . . , tn (see Setion 2.3). 7
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OracleFigure 1: Comparison of ŝm⋆(D) (dotted blak line), ŝ bmERM(D) (dashed blue line) and

ŝ bmLoo(D) (plain magenta line, see Setion 3.2.2), D being the �optimal� dimension (seeFigure 3). Data are generated as desribed in Setion 3.3.1 with n = 100 data points.Left: homosedasti data (s2, σc), D = 4. Right: heterosedasti data (s3, σpc,3), D = 6.Remark 1. Dynami programming [13℄ leads to an e�ient implementation of Proedure 1with omputational omplexity O
(
n2

).Among models orresponding to segmentations with (D − 1) hange-points, the oralemodel an be de�ned as
m⋆(D) := arg min

m∈Mn(D)

{
‖s − ŝm‖2

n

}
.Figure 1 illustrates how far m̂ERM(D) typially is from m⋆(D) aording to variations ofthe standard-deviation σ. On the one hand, when data are homosedasti, empirial riskminimization yields a segmentation lose to the orale (Figure 1, left). On the other hand,when data are heterosedasti, empirial risk minimization introdues arti�ial breakpointsin areas where the noise-level is above average, and misses breakpoints in areas where thenoise-level is below average (Figure 1, right). In other words, when data are heterosedas-ti, empirial risk minimization over S̃D loally over�ts in high-noise areas, and loallyunder�ts in low-noise areas.The failure of empirial risk minimization with heterosedasti data observed on Fig-ure 1 is general [21, Chapter 7℄ and an be explained by Lemma 1 below. Indeed, the riteria

Pnγ(ŝm) and ‖s − ŝm‖2
n, respetively minimized by m̂ERM(D) and m⋆(D) over Mn(D),are lose to their respetive expetations, as proved by the onentration inequalities of [7,Proposition 9℄ for instane. Lemma 1 enables to ompare these expetations.Lemma 1. Let m ∈ Mn and de�ne sm := arg minf∈Sm

‖s − f‖2
n. Then,

E [Pnγ (ŝm)] = ‖s − sm‖2
n − V (m) +

1

n

n∑

i=1

σ(ti)
2 (5)

E

[
‖s − ŝm‖2

n

]
= ‖s − sm‖2

n + V (m) (6)where
V (m) :=

∑
λ∈Λm

(σr
λ)2

n
and ∀λ ∈ Λm, (σr

λ)2 :=

∑n
i=1 σ(ti)

2
1ti∈Iλ

Card ({k | tk ∈ Iλ})
. (7)8
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Lemma 1 is proved in [21℄. As it is well-known in the model seletion literature, theexpetation of the quadrati loss (6) is the sum of two terms: ‖s − sm‖2
n is the bias ofmodel Sm, and V (m) is a variane term, measuring the di�ulty of estimating the Dmparameters of model Sm. Up to the term n−1

∑n
i=1 σ(ti)

2 whih does not depend on m, theempirial risk underestimates the quadrati risk (that is, the expetation of the quadratiloss), as shown by (5), beause of the sign in front of V (m).Nevertheless, when data are homosedasti, that is when ∀i, σ(ti) = σ, V (m) =
Dmσ2n−1 is the same for all m ∈ Mn(D). Therefore, (5) and (6) show that for every
D ≥ 1, when data are homosedasti

arg min
m∈Mn(D)

{E [Pnγ (ŝm)]} = arg min
m∈Mn(D)

{
E

[
‖s − ŝm‖2

n

]}
.Hene, m̂ERM(D) and m⋆(D) tend to be lose to one another, as on the left of Figure 1.On the ontrary, when data are heterosedasti, the variane term V (m) an be quitedi�erent among models m ∈ Mn(D), even though they have the same dimension D.Indeed, V (m) inreases when a breakpoint is moved from an area where σ is small to anarea where σ is large. Therefore, the empirial risk minimization algorithm rather putsbreakpoints in noisy areas in order to minimize −V (m) in (5). This is illustrated in theright panel of Figure 1, where the orale segmentation m⋆(D) has more breakpoints inareas where σ is small.3.2 Cross-validationCross-validation (CV) methods are natural andidates for �xing the failure of empirialrisk minimization when data are heterosedasti, sine CV methods are naturally adaptiveto heterosedastiity (see Setion 1.3). The purpose of this setion is to properly de�nehow CV an be used for seleting m̂ ∈ Mn(D) (Proedure 2), and to reall theoretialresults showing why this proedure adapts to heterosedastiity (Proposition 1).3.2.1 HeuristisThe ross-validation heuristis [4, 43℄ relies on a data splitting idea: For eah andidatealgorithm�say ERM(Sm; ·) for some m ∈ Mn(D)�, part of the data�alled trainingset�is used for training the algorithm. The remaining part�alled validation set�is usedfor estimating the risk of the algorithm. This simple strategy is alled validation or hold-out. One an also split data several times and average the estimated values of the risk overthe splits. Suh a strategy is alled ross-validation (CV). CV with general repeated splitsof data has been introdued by Geisser [23, 24℄.In the �xed-design setting, (ti, Yi)1≤i≤n are not identially distributed so that CVestimates a quantity slightly di�erent from the usual predition error. Let T be uniformlydistributed over {t1, . . . , tn} and Y = s(T )+ σ(T )ǫ, where ǫ is independent from ǫ1, . . . , ǫn

9
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with the same distribution. Then, the CV estimator of the risk of ŝ(Pn) estimates
E(T,Y )

[
(ŝ(T ) − Y )2

]
=

1

n

n∑

i=1

Eǫ

[
(s(ti) + σ(ti)ǫi − ŝ(ti))

2
]

= ‖s − ŝ‖2
n +

1

n

n∑

i=1

σ(ti)
2 .Hene, minimizing the CV estimator of E(T,Y )

[
(ŝm(T ) − Y )2

] over m amounts to minimize
‖s − ŝm‖2

n, up to estimation errors.Even though the use of CV in a �xed-design setting is not usual, theoretial resultsdetailed in Setion 3.2.4 below show that CV atually leads to a good estimator of thequadrati risk ‖s − ŝm‖2
n. This fat is on�rmed by all the experimental results of thepaper.3.2.2 De�nitionLet us now formally de�ne how CV is used for seleting some m ∈ Mn(D) from data. A(statistial) algorithm A is de�ned as any measurable funtion Pn 7→ A(Pn) ∈ S∗. For any

ti ∈ [0, 1], A(ti;Pn) denotes the value of A(Pn) at point ti.For any I(t) ⊂ {1, . . . , n}, de�ne I(v) := {1, . . . , n} \I(t),
P (t)

n :=
1

Card(I(t))

∑

i∈I(t)

δ(ti,Yi) and P (v)
n :=

1

Card(I(v))

∑

i∈I(v)

δ(ti,Yi) .Then, the hold-out estimator of the risk of any algorithm A is de�ned as
R̂ho(A, Pn, I(t)) := P (v)

n γ
(
A

(
P (t)

n

))
=

1

Card(I(v))

∑

i∈I(v)

(
A(ti;P

(t)
n ) − Yi

)2
.The ross-validation estimators of the risk of A are then de�ned as the average of

R̂ho(A, Pn, I
(t)
j ) over j = 1, . . . , B where I

(t)
1 , . . . , I

(t)
B are hosen in a predetermined way[24℄. Leave-one-out, leave-p-out and V -fold ross-validation are among the most lassialexamples of CV proedures. They di�er one another by the hoie of I

(t)
1 , . . . , I

(t)
B .

• Leave-one-out (Loo), often alled ordinary CV [4, 43℄, onsists in training with thewhole sample exept one point, used for testing, and repeating this for eah datapoint: I
(t)
j = {1, . . . , n} \ {j} for j = 1, . . . , n. The Loo estimator of the risk of A isde�ned by

R̂Loo(A, Pn) :=
1

n

n∑

j=1

[(
Yj −A

(
tj;P

(−j)
n

))2
]

,where P
(−j)
n = (n − 1)−1

∑
i, i6=j δ(ti,Yi) .

• Leave-p-out (Lpop, with any p ∈ {1, . . . , n − 1}) generalizes Loo. Let Ep denote theolletion of all possible subsets of {1, . . . , n} with ardinality n − p. Then, Lpo10
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onsists in onsidering every I(t) ∈ Ep as training set indies:
R̂Lpop

(A, Pn) :=

(
n

p

)−1 ∑

I(t)∈Ep


1

p

∑

j∈I(v)

[(
Yj −A

(
tj;P

(t)
n

))2
]
 . (8)

• V -fold ross-validation (VFCV) is a omputationally e�ient alternative to Lpo and
Loo. The idea is to �rst partition the data into V bloks, to use all the data butone blok as a training sample, and to repeat the proess V times. In other words,VFCV is a blokwise Loo, so that its omputational omplexity is V times thatof A. Formally, let B1, . . . , BV be a partition of {1, . . . , n} and P

(Bk)
n := (n −

Card(Bk))
−1

∑
i/∈Bk

δ(ti,Yi) for every k ∈ {1, . . . , V }. The VFCV estimator of therisk of A is de�ned by
R̂VFV

(A, Pn) :=
1

V

V∑

k=1


 1

Card(Bk)

∑

j∈Bk

[(
Yj −A

(
tj ;P

(Bk)
n

))2
]
 . (9)The interested reader will �nd theoretial and experimental results on VFCV andthe best way to use it in [7, 21℄ and referenes therein, in partiular [18℄.Given the Loo estimator of the risk of eah algorithm A among {ERM(Sm; ·)}m∈Mn(D),the segmentation with (D − 1) breakpoints hosen by Loo is de�ned as follows.Proedure 2.

m̂Loo(D) := arg min
m∈Mn(D)

{
R̂Loo (ERM(Sm; ·) , Pn)

}
.The segmentations hosen by Lpo and VFCV are de�ned similarly and denoted respetivelyby m̂Lpop

(D) and by m̂VFV
(D).As illustrated by Figure 1, when data are heterosedasti, m̂Loo(D) is often loser tothe orale segmentation m⋆(D) than m̂ERM(D). This improvement will be explained bytheoretial results in Setion 3.2.4 below.3.2.3 Computational tratabilityThe omputational omplexity of ERM(Sm;Pn) is O(n) sine for every λ ∈ Λm, the valueof ŝm(Pn) on Iλ is equal to the mean of {Yi}ti∈Iλ

. Therefore, a naive implementation of
Lpop has a omputational omplexity O

(
n
(n

p

)), whih an be intratable for large n inthe ontext of model seletion, even when p = 1. In suh ases, only VFCV with a small
V would work straightforwardly, sine its omputational omplexity is O(nV ).Nevertheless, losed-form formulas for the Lpo estimator of the risk have been derivedin the density estimation [20, 19℄ and regression [21℄ frameworks. Some of these losed-form formulas apply to regressograms ŝm with m ∈ Mn. The following theorem gives alosed-form expression for R̂Lpop

(m) := R̂Lpop
(ERM(Sm; ·), Pn) whih an be omputedwith O(n) elementary operations. 11
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Theorem 1 (Corollary 3.3.2 in [21℄). Let m ∈ Mn, Sm and ŝm = ERM(Sm; ·) be de�nedas in Setion 2. For every (t1, Y1), . . . , (tn, Yn) ∈ R
2 and λ ∈ Λm, de�ne

Sλ,1 :=
n∑

j=1

Yj1{tj∈Iλ} and Sλ,2 :=
n∑

j=1

Y 2
j 1{tj∈Iλ} .Then, for every p ∈ {1, . . . , n − 1}, the Lpop estimator of the risk of ŝm de�ned by (8) isgiven by

R̂Lpop
(m) =

∑

λ∈Λm

1

pNλ

[{
(Aλ − Bλ) Sλ,2 + BλS2

λ,1

}
1{nλ≥2} + {+∞}1{nλ=1}

]
,where for every λ ∈ Λm,

nλ := Card ({i | ti ∈ Iλ}) Nλ := 1 − 1{p≥nλ}

(
n − nλ

p − nλ

)
/

(
n

p

)

Aλ := Vλ(0)

(
1 − 1

nλ

)
− Vλ(1)

nλ
+ Vλ(−1)

Bλ := Vλ(1)
2 − 1nλ≥3

nλ(nλ − 1)
+

Vλ(0)

nλ − 1

[(
1 +

1

nλ

)
1nλ≥3 − 2

]
− Vλ(−1)1nλ≥3

nλ − 1and ∀k ∈ {−1, 0, 1} , Vλ(k) :=

min{nλ,(n−p)}∑

r=max{1,(p−nλ)}

rk

(n−p
r

)( p
nλ−r

)
(

n
nλ

) .Remark 2. Vλ(k) an also be written as E
[
Zk

1Z>0

] where Z has hypergeometri distri-bution with parameters (n, n − p, nλ).An important pratial onsequene of Theorem 1 is that for every D and p, m̂Lpop
(D)an be omputed with the same omputational omplexity as m̂ERM(D), that is O

(
n2

).Indeed, Theorem 1 shows that R̂Lpop
(m) is a sum over λ ∈ Λm of terms depending onlyon {Yi}ti∈Iλ

, so that dynami programming [13℄ an be used for omputing the mini-mizer m̂Lpop
(D) of R̂Lpop

(m) over m ∈ Mn. Therefore, Lpo and Loo are omputationallytratable for hange-point detetion when the number of breakpoints is given.Dynami programming also applies to m̂VFV
with a omputational omplexity

O
(
V n2

), sine eah term appearing in R̂VFV
(m) is the average over V quantities thatmust be omputed, exept when V = n sine VFCV then beomes Loo. Sine VFCV ismostly an approximation to Loo or Lpo but has a larger omputational omplexity, m̂Lpopwill be preferred to m̂VFV

(D) in the following.3.2.4 Theoretial guaranteesIn order to understand why CV indeed works for hange-point detetion with a givennumber of breakpoints, let us reall a straightforward onsequene of Theorem 1 whih isproved in details in [21, Lemma 7.2.1 and Proposition 7.2.3℄.Proposition 1. Using the notation of Lemma 1, for any m ∈ Mn,
E

[
R̂Lpop

(m)
]
≈ ‖s − sm‖2

n +
1

n − p

∑

λ∈Λm

(σr
λ)2 +

1

n

n∑

i=1

σ(ti)
2 , (10)12
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Figure 2: Regression funtions s1, s2, s3; s1 and s2 are pieewise onstant with 4 jumps; s3is pieewise onstant with 9 jumps.where the approximation holds as soon as minλ∈Λm
nλ is large enough (in partiular largerthan p).The omparison of (6) and (10) shows that Lpop yields an almost unbiased estimatorof ‖s − ŝm‖2

n: The only di�erene is that the fator 1/n in front of the variane term V (m)has been hanged into 1/(n − p). Therefore, minimizing the Lpop estimator of the riskinstead of the empirial risk allows to automatially take into aount heterosedastiityof data.3.3 Simulation studyThe goal of this setion is to experimentally assess, for several values of p, the performaneof Lpop for deteting a given number of hanges in the mean of a heterosedasti signal.This performane is also ompared with that of empirial risk minimization.3.3.1 SettingThe setting desribed in this setion is used in all the experiments of the paper.Data are generated aording to (3) with n = 100. For every i, ti = i/n and ǫihas a standard Gaussian distribution. The regression funtion s is hosen among threepieewise onstant funtions s1, s2, s3 plotted on Figure 2. The model olletion desribedin Setion 2.3 is used with Dn = {1, . . . , 4n/10}. The noise-level funtion σ(·) is hosenamong the following funtions:1. Homosedasti noise: σc = 0.251[0,1],2. Heterosedasti pieewise onstant noise: σpc,1 = 0.21[0,1/3] + 0.051[1/3,1], σpc,2 =
2σpc,1 or σpc,3 = 2.5σpc,1 .3. Heterosedasti sinusoidal noise: σs = 0.5 sin (tπ/4).All ombinations between the regression funtions (si)i=1,2,3 and the �ve noise-levels

σ· have been onsidered, eah time with N = 10000 independent samples. Results belowonly report a small part of the entire simulation study but intend to be representativeof the main observed behaviour. A more omplete report of the results, inluding other13
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ERM
Loo
Lpo20
Lpo50Figure 3: E

[∥∥∥s − ŝ bmP (D)

∥∥∥
2

n

] as a funtion of D for P among `ERM' (empirial riskminimization), `Loo' (Leave-one-out), `Lpo(20)' (Lpop with p = 20) and `Lpo(50)' (Lpopwith p = 50). Left: homosedasti (s2, σc). Right: heterosedasti (s3, σpc,3). All urveshave been estimated from N = 10 000 independent samples; error bars are all negligible in front ofvisible di�erenes (the larger ones are smaller than 8.10−5 on the left, and smaller than 2.10−4 onthe right). The urves D 7→
∥∥s − ŝ bmP(D)

∥∥2

n
behave similarly to their expetations.regression funtions s and noise-level funtions σ, is given in the seond authors' thesis [21,Chapter 7℄; see also Setion 3 of the supplementary material.3.3.2 Results: Comparison of segmentations for eah dimensionThe segmentations of eah dimension D ∈ Dn obtained by empirial risk minimization(`ERM', Proedure 1) and Lpop (Proedure 2) for several values of p are ompared on Fig-ure 3, through the expeted values of the quadrati loss E

[∥∥∥s − ŝ bmP (D)

∥∥∥
2

n

] for proedure
P. On the one hand, when data are homosedasti (Figure 3, left), all proedures yieldsimilar performanes for all dimensions up to twie the best dimension; Lpop performssigni�antly better for larger dimensions. Therefore, unless the dimension is strongly over-estimated (whatever the way D is hosen), all proedures are equivalent with homosedastidata.On the other hand, when data are heterosedasti (Figure 3, right), ERM yields signi�-antly worse performane than Lpo for dimensions larger than half the true dimension. Asexplained in Setions 3.1 and 3.2.4, m̂ERM(D) often puts breakpoints inside pure noise fordimensions D smaller than the true dimension, whereas Lpo does not have this drawbak.Therefore, whatever the hoie of the dimension (exept D ≤ 4, that is for deteting theobvious jumps), Lpo should be prefered to empirial risk minimization as soon as data areheterosedasti.

14
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s
·

σ
·

ERM Loo Lpo20 Lpo502  2.88 ± 0.01 2.93 ± 0.01 2.93 ± 0.01 2.94 ± 0.01p,1 1.31 ± 0.02 1.16 ± 0.02 1.14 ± 0.02 1.11 ± 0.01p,3 3.09 ± 0.03 2.52 ± 0.03 2.48 ± 0.03 2.32 ± 0.033  3.18 ± 0.01 3.25 ± 0.01 3.29 ± 0.01 3.44 ± 0.01p,1 3.00 ± 0.01 2.67 ± 0.02 2.68 ± 0.02 2.77 ± 0.02p,3 4.41 ± 0.02 3.97 ± 0.02 4.00 ± 0.02 4.11 ± 0.02Table 1: Average performane Cor (JP, IdK) for hange-point detetion proedures P among
ERM, Loo and Lpop with p = 20 and p = 50. Several regression funtions s and noise-levelfuntions σ have been onsidered, eah time with N = 10000 independent samples. Nextto eah value is indiated the orresponding empirial standard deviation divided by √

N ,measuring the unertainty of the estimated performane.3.3.3 Results: Comparison of the �best� segmentationsThis setion fouses on the segmentation obtained with the best possible hoie of D, thatis the one orresponding to the minimum of D 7→
∥∥∥s − ŝ bmP (D)

∥∥∥
2

n
(plotted on Figure 3)for proedures P among ERM, Loo, and Lpop with p = 20 and p = 50. Therefore, theperformane of a proedure P is de�ned by

Cor (JP, IdK) :=

E

[
inf1≤D≤n

{∥∥∥s − ŝ bmP (D)

∥∥∥
2

n

}]

E

[
infm∈Mn

{
‖s − ŝm‖2

n

}] ,whih measures what is lost ompared to the orale when seleting one segmentation
m̂P(D) per dimension. Even if the hoie of D is a real pratial problem�whih willbe takled in the next setions�, Cor (JP, IdK) helps to understand whih is the bestproedure for seleting a segmentation of a given dimension. The notation Cor (JP, IdK)has been hosen for onsisteny with notation used in the next setions (see Setion 5.1).Table 1 on�rms the results of Setion 3.3.2. On the one hand, when data are ho-mosedasti, ERM performs slightly better than Loo or Lpop. On the other hand, whendata are heterosedasti, Lpop often performs better than ERM (whatever p), and theimprovement an be large (more than 20% in the setting (s2, σpc,3)). Overall, when ho-mosedastiity of the signal is questionable, Lpop appears muh more reliable than ERMfor loalizing a given number of hange-points of the mean.The question of hoosing p for optimizing the performane of Lpop remains a widelyopen problem. The simulation experiment summarized with Table 1 only shows that Lpopimproves ERM whatever p, the optimal value of p depending on s and σ.4 Estimation of the number of breakpointsIn this setion, the number of breakpoints is no longer �xed or known a priori. The goalis preisely the estimation of this number, as often needed with real data.Two main proedures are onsidered. First, a penalization proedure introdued byBirgé and Massart [15℄ is analyzed in Setion 4.1; this proedure is suessful for hange-15
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point detetion when data are homosedasti [28, 30℄. On the basis of this analysis, V -fold ross-validation (VFCV) is then proposed as an alternative to Birgé and Massart'spenalization proedure (BM) when data an be heterosedasti.In order to enable the omparison between BM and VFCV when fousing on the ques-tion of hoosing the number of breakpoints, VFCV is used for hoosing among the samesegmentations as BM, that is {m̂ERM(D)}D∈Dn
. The ombination of VFCV for hoosing

D with the new proedures proposed in Setion 3 will be studied in Setion 5.4.1 Birgé and Massart's penalizationFirst, let us de�ne preisely the penalization proedure proposed by Birgé and Massart[15℄ suessfully used for hange-point detetion in [28, 30℄.Proedure 3 (Birgé and Massart [15℄).1. ∀m ∈ Mn, ŝm := ERM(Sm;Pn) .2. m̂BM := arg minm∈Mn, Dm∈Dn {Pnγ(ŝm) + penBM(m)} , where for every m ∈ Mn,the penalty penBM(m) only depends on Sm through its dimension:
penBM(m) = penBM(Dm) :=

ĈDm

n

(
5 + 2 log

(
n

Dm

))
, (11)where Ĉ is estimated from data using Birgé and Massart's slope heuristis [16, 8℄, asproposed by Lebarbier [30℄ and by Lavielle [28℄. See Setion 1 of the supplementarymaterial for a detailed disussion about Ĉ.3. s̃BM := ŝ bmBM

.All m ∈ Mn(D) are penalized in the same way by penBM(m), so that Proedure 3atually selets a segmentation among {m̂ERM(D)}D∈Dn
. Therefore, Proedure 3 an bereformulated as follows, as notied in [16, Setion 4.3℄.Proedure 4 (Reformulation of Proedure 3).1. ∀D ∈ Dn, ŝ bmERM(D) := ERM

(
S̃D;Pn

) where S̃D :=
⋃

m∈Mn(D) Sm .2. D̂BM := arg minD∈Dn

{
Pnγ( ŝ bmERM(D)) + penBM(D)

} where penBM(D) is de�ned by(11).3. s̃BM := ŝ
bmERM( bDBM) .In the following, `BM' denotes Proedure 4 and

critBM(D) := Pnγ( ŝ bmERM(D)) + penBM(D)is alled the BM riterion.Proedure 4 lari�es the reason why penBM must be larger than Mallows' Cp penalty.Indeed, for every m ∈ Mn, Lemma 1 shows that when data are homosedasti, Pnγ( ŝ m)+
pen(m) is an unbiased estimator of ‖s − ŝm‖2

n when pen(m) = 2σ2Dmn−1, that is Mallows'16
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Figure 4: Comparison of the expetations of ∥∥s − ŝ bm(D)

∥∥2

n
(`Loss'), critVFV

(D) (`VF5')and critBM(D) (`BM'). Data are generated as explained in Setion 3.3.1. Left: ho-mosedasti (s2, σc). Right: heterosedasti (s2, σpc,3). Expetations have been estimatedfrom N = 10 000 independent samples; error bars are all negligible in front of visible di�erenes(the larger ones are smaller than 5.10−4 on the left, and smaller than 2.10−3 on the right). Similarbehaviours are observed for every single sample, with slightly larger �utuations for critVFV
(D)than for critBM(D). The urves `BM' and `VF5' have been shifted in order to make omparisonwith `Loss' easier, without hanging the loation of the minimum.

Cp penalty. When Card(Mn) is at most polynomial in n, Mallows' Cp penalty leads to ane�ient model seletion proedure, as proved in several regression frameworks [41, 31, 10℄.Hene, Mallows' Cp penalty is an adequate measure of the �apaity� of any vetor spae
Sm of dimension Dm, at least when data are homosedasti.On the ontrary, in the hange-point detetion framework, Card(Mn) grows exponen-tially with n. The formulation of Proedure 4 points out that penBM(D) has been builtso that critBM(D) estimates unbiasedly ∥∥s − ŝ bmERM(D)

∥∥2

n
for every D, where ŝ bmERM(D) isthe empirial risk minimizer over S̃D. Hene, penBM(D) measures the �apaity� of S̃D,whih is muh bigger than a vetor spae of dimension D. Therefore, penBM should belarger than Mallows' Cp, as on�rmed by the results of Birgé and Massart [16℄ on minimalpenalties for exponential olletions of models.Simulation experiments support the fat that critBM(D) is an unbiased estimator of∥∥s − ŝ bm(D)

∥∥2

n
for every D (up to an additive onstant) when data are homosedasti(Figure 4 left). However, when data are heterosedasti, theoretial results proved byBirgé and Massart [15, 16℄ no longer apply, and simulations show that critBM(D) doesnot always estimate ∥∥s − ŝ bmERM(D)

∥∥2

n
well (Figure 4 right). This result is onsistent withLemma 1, as well as the suboptimality of penalties proportional to Dm for model seletionamong a polynomial olletion of models when data are heterosedasti [6℄.Therefore, penBM(D) is not an adequate apaity measure of S̃D in general when dataare heterosedasti, and another apaity measure is required.4.2 Cross-validationAs shown in Setion 3.2.2, CV an be used for estimating the quadrati loss ‖s −A(Pn)‖2

nfor any algorithm A. In partiular, CV was suessfully used in Setion 3 for estimating17
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the quadrati risk of ERM(Sm; ·) for all segmentations m ∈ Mn(D) with a given number
(D − 1) of breakpoints (Proedure 2), even when data are heterosedasti.Therefore, CV methods are natural andidates for �xing BM's failure. The proposedproedure�with VFCV�is the following.Proedure 5.1. ∀D ∈ Dn, ŝ bmERM(D) := ERM

(
S̃D;Pn

) ,2. D̂VFV
:= arg minD∈Dn {critVFV

(D)}where critVFV
(D) := R̂VFV

(
ERM

(
S̃D(·); ·

)
, ·

) and R̂VFV
is de�ned by (9).Remark 3. In algorithm (ti, Yi)1≤i≤n 7→ ERM

(
S̃D;Pn

), the model S̃D depends on thedesign points. When the training set is (ti, Yi)i/∈Bk
, the model S̃D is the union of the

Sm suh that ∀λ ∈ Λm, Iλ ontains at least two elements of {ti s.t. i /∈ Bk}. Suh an mexists as soon as D ≤ (n−maxk {Card(Bk)})/2 and two onseutive design points ti, ti+1always belong to di�erent bloks Bk, whih is always assumed in this paper. Note that thedynami programming algorithms [13℄ quoted in Setion 3.2.3 an straightforwardly takeinto aount suh onstraints when minimizing the empirial risk over S̃D.The dependene of S̃D on the design explains why critVFV
(D) dereases for D lose to

n(V − 1)/(2V ), as observed on Figure 4. Indeed, when D is lose to nt/2 (where nt is thesize of the design), only a few {Sm}m∈Mnt (D) remain in S̃D; for instane, when D = nt/2,
S̃D is equal to one of the {Sm}m∈Mnt (D). Therefore, the �apaity� of S̃D dereases in theneighborhood of D = nt/2.Similar proedures an be de�ned with Loo and Lpop instead of VFCV. The interestof VFCV is its reasonably small omputational ost�taking V ≤ 10 for instane�, sineno losed-form formula exists for CV estimators of the risk of ERM

(
S̃D;Pn

).4.3 Simulation resultsA simulation experiment was performed in the setting presented in Setion 3.3.1, for om-paring BM and VFV with V = 5 bloks. A representative piture of the results is given byFigure 4 and by Table 2 [see 21, Chapter 7, and Setion 3 of the supplementary materialfor additional results℄.As illustrated by Figure 4, critVFV
(D) an be used for measuring the apaity of S̃D.Indeed, VFCV orretly estimates the risk of empirial risk minimizers over S̃D for every

D and for both homosedasti and heterosedasti data; critVFV
(D) only underestimates∥∥s − ŝ bm(D)

∥∥2

n
for dimensions D lose to n(V − 1)/(2V ), for reasons explained at the endof Remark 3. On the ontrary, critBM(D) is a poor estimate of ∥∥s − ŝ bm(D)

∥∥2

n
when dataare heterosedasti.Subsequently, VFCV yields a muh smaller performane index

Cor (JERM,PK) :=

E

[∥∥∥s − ŝ
bmERM( bDP )

∥∥∥
2

n

]

E

[
infm∈Mn

{
‖s − ŝm(Pn)‖2

n

}]18
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s· σ· Orale VF5 BM2  2.88 ± 0.01 4.51 ± 0.03 5.27 ± 0.03p,2 2.88 ± 0.02 6.58 ± 0.06 19.82 ± 0.07s 3.01 ± 0.01 5.21 ± 0.04 9.69 ± 0.403  3.18 ± 0.01 4.41 ± 0.02 4.39 ± 0.01p,2 4.06 ± 0.02 5.99 ± 0.02 7.86 ± 0.03s 4.02 ± 0.01 5.97 ± 0.03 7.59 ± 0.03Table 2: Performane Cor (JERM,PK) for P = Id (that is, hoosing the dimension D⋆ :=

arg minD∈Dn

{∥∥s − ŝ bmERM(D)

∥∥2

n

}), P = VFV with V = 5 or P = BM. Several regressionfuntions s and noise-level funtions σ have been onsidered, eah time with N = 10000independent samples. Next to eah value is indiated the orresponding empirial standarddeviation divided by √
N , measuring the unertainty of the estimated performane.than BM when data are heterosedasti (Table 2); see also the supplementary material(Setion 1) for details about the performanes of BM and possible ways to improve them.When data are homosedasti, VFCV and BM have similar performanes (maybe with aslight advantage for BM), whih is not surprising sine BM uses the knowledge that dataare homosedasti. Moreover, BM has been proved to be optimal in the homosedastisetting [15, 16℄.Overall, VFCV appears to be a reliable alternative to BM when no prior knowledgeguarantees that data are homosedasti.5 New hange-point detetion proedures via ross-validationSetions 3 and 4 showed that when data are heterosedasti, CV an be used suessfullyinstead of penalized riteria for deteting breakpoints given their number, as well as forestimating the number of breakpoints. Nevertheless, in Setion 4, the segmentations om-pared by CV were obtained by empirial risk minimization, so that they an be suboptimalaording to the results of Setion 3.The next step for obtaining reliable hange-point detetion proedures for heterosedas-ti data is to ombine the two ideas, that is, to use CV twie. The goal of the presentsetion is to properly de�ne suh proedures (with various kinds of CV) and to assess theirperformanes.5.1 De�nition of a family of hange-point detetion proeduresThe general strategy used in this artile for hange-point detetion relies on two steps:First, detet where (D − 1) breakpoints should be loated for every D ∈ Dn; seond,estimate the number (D − 1) of breakpoints. This strategy an be summarized with thefollowing proedure:Proedure 6 (General two-step hange-point detetion proedure).19



 
Version définitive du manuscrit publié dans / Final version of the manuscript 
published in :  

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 
Statistics and Computing, 2010, vol. 21, n° 4, 613-632, 10.1007/s11222-010-9196-x 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. ∀D ∈ Dn, AD(Pn) := ŝ bm(D) = arg minm∈Mn(D) {crit1(Sm, Pn)} where for everymodel S, crit1(S,Pn) ∈ R estimates ‖s − ERM(S;Pn)‖2
n and ŝm = ERM(Sm;Pn) isde�ned as in Setion 3.1.2. D̂ = arg minD∈Dn {crit2(AD, Pn)}, where for every algorithm AD, crit2(AD, Pn) ∈ Restimates ‖s −AD(Pn)‖2

n.3. Output: the segmentation m̂(D̂) and the orresponding estimator ŝ
bm( bD)

of s.Let us now detail whih are the andidate riteria crit1 and crit2 for being used inProedure 6. For the �rst step:
• The empirial risk (`ERM') is

crit1,ERM(S,Pn) := Pnγ (ERM(S;Pn))

• The Leave-p-out estimator of the risk (`Lpop') is, for every p ∈ {1, . . . , n − 1},
crit1,Lpo(S,Pn, p) := R̂Lpop

(ERM(S; ·), Pn)

• For omparison, the ideal riterion (`Id') is de�ned by crit1,Id(S,Pn) :=
‖s − ERM(S;Pn)‖2

n.As in Setion 3, Loo denotes Lpo1. The VFCV estimator of the risk R̂VFV
ould also beused as crit1; it will not be onsidered in the following beause it is omputationally moreexpensive and more variable than Lpo (see Setion 3.2).For the seond step:

• Birgé and Massart's penalization riterion (`BM') is
crit2,BM(AD, Pn) := Pnγ (AD (Pn)) + penBM(D) ,where penBM(D) is de�ned by (11) with c1 = 5, c2 = 2 and Ĉ is hosen by the slopeheuristis (see Setion 1 of the supplementary material).

• The V -fold ross-validation estimator of the risk (`VFV ') is, for every V ∈ {1, . . . , n},
crit2,VFV

(AD, Pn) := R̂VFV
(AD, Pn) ,where R̂VFV

is de�ned by (9) and the bloks B1, . . . , BV are hosen as in Proedure 5(see Remark 3).
• For omparison, the ideal riterion (`Id') is de�ned by crit2,Id(AD, Pn) :=

‖s −AD(Pn)‖2
n.Remark 4. For crit2, de�nitions using Lpo ould theoretially be onsidered. They are notinvestigated here beause they are omputationally intratable.In the following, the notation Jα, βK is used as a shortut for �Proedure 6 with crit1,αand crit2,β�, and the outputs of Jα, βK are denoted by m̂Jα,βK ∈ Mn and s̃Jα,βK ∈ S∗. Forinstane, BM oinides with JERM,BMK; Proedures Jα, IdK are ompared for several αin Setion 3; Proedures JERM, βK are ompared for β ∈ {Id,BM,VF5} in Setion 4.20
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s· σ· JERM,VF5K JLoo,VF5K JLpo20,VF5K JERM,BMK1  5.40 ± 0.05 5.03 ± 0.05 5.10 ± 0.05 3.91 ± 0.03p,1 11.96 ± 0.03 10.25 ± 0.03 10.28 ± 0.03 12.85 ± 0.04p,3 4.96 ± 0.05 4.82 ± 0.04 4.79 ± 0.05 13.08 ± 0.04s 7.33 ± 0.06 6.82 ± 0.05 6.99 ± 0.06 9.41 ± 0.042  4.51 ± 0.03 4.55 ± 0.03 4.50 ± 0.03 5.27 ± 0.03p,1 11.67 ± 0.09 10.26 ± 0.08 10.29 ± 0.08 19.36 ± 0.07p,3 6.66 ± 0.06 5.81 ± 0.06 5.74 ± 0.06 20.12 ± 0.06s 5.21 ± 0.04 5.19 ± 0.03 5.17 ± 0.03 9.69 ± 0.043  4.41 ± 0.02 4.54 ± 0.02 4.62 ± 0.02 4.39 ± 0.01p,1 4.91 ± 0.02 4.40 ± 0.02 4.44 ± 0.02 6.50 ± 0.02p,3 6.32 ± 0.02 5.74 ± 0.02 5.81 ± 0.02 8.47 ± 0.03s 5.97 ± 0.02 5.72 ± 0.02 5.86 ± 0.02 7.59 ± 0.03Table 3: Performane Cor(P) for several hange-point detetion proedures P in severalsettings (s, σ). Eah time, N = 10000 independent samples have been generated. Next toeah value is indiated the orresponding empirial standard deviation divided by √
N .5.2 Simulation studyA simulation experiment ompares proedures Jα,VF5K for several α and JERM,BMK, inthe setting desribed in Setion 3.3.1. A representative piture of the results is given byTable 3 [see 21, Chapter 7, for additional results℄. The (statistial) performane of eahompeting proedure P is measured by

Cor(P) :=
E

[
‖s − s̃P(Pn)‖2

n

]

E

[
infm∈Mn

{
‖s − ŝm(Pn)‖2

n

}] ,both expetations being evaluated by averaging over N = 10000 independent samples.Remark 5. Birgé and Massart's penalization proedure is the only lassial hange-pointdetetion proedure onsidered in this experiment for two reasons. First, hange-pointdetetion proedure looking for hanges in the distribution of Yi would learly fail todetet hanges in the mean of the signal, as soon as the noise-level σ varies inside areaswhere the mean is onstant. Seond, among proedures deteting hanges in the mean of asignal in a setting omparable to the setting of the paper (that is, frequentist, parametri,o�-line, with no information on the number of hange-points), BM appears to be the mostreliable proedure aording to reent papers [28, 30℄. The question of the alibration of
Ĉ is addressed in Setion 1 of the supplementary material.First, BM is onsistently outperformed by the other proedures, exept in the ho-mosedasti settings in whih it on�rms its strength.Seond, empirial risk minimization (ERM) slightly outperforms CV (Loo and Lpo20)when data are homosedasti. On the ontrary, when data are heterosedasti, Loo and
Lpo20 learly outperform ERM, often by a margin larger than 10% (for instane, when
σ = σpc,1). Therefore, the results of Setion 3 are on�rmed when using VF5 (instead of
Id) for hoosing the dimension. 21
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Framework A B C
JERM,BMK 6.82 ± 0.03 7.21 ± 0.04 13.49 ± 0.07
JERM,VF5K 4.78 ± 0.03 5.09 ± 0.03 7.17 ± 0.05
JLoo,VF5K 4.65 ± 0.03 4.88 ± 0.03 6.61 ± 0.05

JLpo20,VF5K 4.78 ± 0.03 4.91 ± 0.03 6.49 ± 0.05
JLpo50,VF5K 4.97 ± 0.03 5.18 ± 0.04 6.69 ± 0.05Table 4: Performane C

(R)
or (P) of several model seletion proedures P in frameworks A,B, C with sample size n = 100. In eah framework, N = 10, 000 independent sampleshave been onsidered. Next to eah value is indiated the orresponding empirial standarddeviation divided by √

N .Third, the omparison between JLpop,VF5K for several values of p is less lear. Eventhough p = 1 (that is, Loo) mostly outperforms p = 20 (as well as p = 50, see thesupplementary material), di�erenes are small and often not signi�ant despite the largenumber of samples generated. The onlusion of the simulation experiment on this questionis that all values of p between 1 and n/2 all perform almost equally well, with a smalladvantage to p = 1 whih may not be general. Let us mention here that the hoie of p for
Lpop is usually related to overpenalization [see for instane 5, 19, 21℄, but it seems di�ultto haraterize the settings for whih overpenalization is needed for deteting hange-pointsgiven their number.5.3 Random frameworksIn order to assess the generality of the results of Table 3, the proedures onsidered inSetion 5.2 have been ompared in three random settings. The following proess has beenrepeated N = 10, 000 times. First, pieewise onstant funtions s and σ are randomlyhosen (see Setion 2 of the supplementary material for details). Then, given s and σ, adata sample (ti, Yi)1≤i≤n is generated as desribed in Setion 3.3.1, and the same olletionof models is used. Finally, eah proedure P is applied to the sample (ti, Yi)1≤i≤n, and itsloss ‖s − s̃P(Pn)‖2

n is measured, as well as the loss of the orale infm∈Mn

{
‖s − ŝm‖2

n

}.To summarize the results, the quality of eah proedure is measured by the ratio
C(R)

or (P) =
Es,σ,ǫ1,...,ǫn

[
‖s − s̃P(Pn)‖2

n

]

Es,σ,ǫ1,...,ǫn

[
infm∈Mn

{
‖s − ŝm‖2

n

}] .The notation C
(R)
or (P) di�ers from Cor(P) to emphasize that eah expetation inludes therandomness of s and σ, in addition to the one of (ǫi)1≤i≤n.The results of this experiment�whih are reported in Table 4�mostly on�rm theresults of the previous setion (exept that all the frameworks are heterosedasti here),that is, whatever p, JLpop,VF5K outperforms JERM,VF5K, whih strongly outperforms

JERM,BMK. Similar results�not reported here�have been obtained with a sample size
n = 200 and N = 1000 samples. 22
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Moreover, the di�erene between the performanes of JLpop,VF5K and JERM,VF5K isthe largest in setting C and the smallest in setting A. This fat on�rms the interpretationgiven in Setion 3 for the failure of ERM for loalizing a given number of hange-points.Indeed, the main di�erenes between frameworks A, B and C�whih are preisely de�nedin Setion 2 of the supplementary material� an be skethed as follows:A the partitions on whih s is built is often lose to regular, and σ is hosen indepen-dently from s.B the partitions on whih s is built are often irregular, and σ is hosen independentlyfrom s.C the partitions on whih s is built are often irregular, and σ depends on s, so that thenoise-level is smaller where s jumps more often.In other words, frameworks A, B and C have been built so that for any D ∈ Dn, thelargest variations over Mn(D) of V (m) (de�ned by (7)) our in framework C, and thesmallest variations our in framework A. As a onsequene, variations of the performaneof JERM,VF5K ompared to JLpop,VF5K aording to the framework ertainly ome fromthe loal over�tting phenomenon presented in Setion 3.6 Appliation to CGH miroarray dataIn this setion, the new hange-point detetion proedures proposed in the paper areapplied to CGH miroarray data.6.1 Biologial ontextThe purpose of Comparative Genomi Hybridization (CGH) miroarray experiments is todetet and map hromosomal aberrations. For instane, a piee of hromosome an beampli�ed, that is appear several times more than usual, or deleted. Suh aberrations areoften related to aner disease.Roughly, CGH pro�les give the log-ratio of the DNA opy number along the hromo-somes, ompared to a referene DNA sequene [see 35�37, for details about the biologialontext of CGH data℄.The goal of CGH data analysis is to detet abrupt hanges in the mean of a signal (thelog-ratio of opy numbers), and to estimate the mean in eah segment. Hene, hange-pointdetetion proedures are needed.Moreover, assuming that CGH data are homosedasti is often unrealisti. Indeed,hanges in the hemial omposition of the sequene are known to indue hanges in thevariane of the observed CGH pro�le, possibly independently from variations of the trueopy number. Therefore, proedures robust to heterosedastiity, suh as the ones proposedin Setion 5, should yield better results�in terms of deteting hanges of opy number�than proedures assuming homosedastiity.The data set onsidered in this setion is based on the Bt474 ell lines, whih denoteepithelial ells obtained from human breast aner tumors of a sixty-year-old woman [36℄.A test genome of Bt474 ell lines is ompared to a normal referene male genome. Even23
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though several hromosomes are studied in these ell lines, this setion fouses on hromo-somes 1 and 9. Chromosome 1 exhibits a putative heterogenous variane along the CGHpro�le, and hromosome 9 is likely to meet the homosedastiity assumption. Log-ratios ofopy numbers have been measured at 119 loations for hromosome 1 and at 93 loationsfor hromosome 9.6.2 Proedures used in the CGH literatureBefore applying Proedure 6 to the analysis of Bt474 CGH data, let us reall the de�nitionof two hange-point detetion proedures, whih were the most suessful for analyzing thesame data aording to the literature [36℄.The �rst proedure is a simpli�ed version of BM proposed by Lavielle [28, Setion 2℄and �rst used on CGH data in [36℄. Note that BM would give similar results on the dataof Figure 5.The seond proedure�denoted by `PML' for penalized maximum likelihood�aims atdeteting hanges in either the mean or the variane, that is breakpoints for (s, σ). Theseleted model is de�ned as the minimizer over m ∈ Mn of
critPML(m) :=

∑

λ∈Λm

nλ log


 1

nλ

∑

ti∈Iλ

(Yi − ŝm(ti;Pn))2


 + Ĉ ′′Dm ,where nλ = Card {ti ∈ Iλ} and Ĉ ′′ is estimated from data by the slope heuristis algorithm[28, 30℄.6.3 ResultsResults obtained with BMsimple, PML, JERM,VF5K and JLpo20,VF5K on the Bt474 dataset are reported on Figure 5.For hromosome 9, BMsimple and PML yield (almost) the same segmentation, so thatthe homosedastiity assumption is ertainly not muh violated. As expeted, JERM,VF5Kand JLpo20,VF5K also yield very similar segmentations, whih on�rms the reliability ofthese proedures for homosedasti signal [see 21, Setion 7.6 for details℄.The piture is quite di�erent for hromosome 1. Indeed, as shown by Figure 5 (right),BMsimple selets a segmentation with 7 breakpoints, whereas PML selets a segmentationwith only one breakpoint. The major di�erene between BMsimple and PML supports atleast the idea that these data must be heterosedasti.Nevertheless, none of the segmentations hosen by BMsimple and PML are entirelysatisfatory: BMsimple relies on an assumption whih is ertainly violated; PML may usea hange in the estimated variane for explaining several hanges in the mean.CV-based proedures JERM,VF5K and JLpo20,VF5K yield two other segmentations,with a medium number of breakpoints, respetively 4 and 3. In view of the simulationexperiments of the previous setions, the segmentation obtained via JLpo20,VF5K shouldbe the most reliable one sine data are heterosedasti. Therefore, the right of Figure 5an be interpretated as follows: The noise-level is small in the �rst part of hromosome 1,then higher, but not as high as estimated by PML. In partiular, the opy number hanges24



 
Version définitive du manuscrit publié dans / Final version of the manuscript 
published in :  

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 
Statistics and Computing, 2010, vol. 21, n° 4, 613-632, 10.1007/s11222-010-9196-x 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.58 1.6 1.62 1.64 1.66

x 10
6

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(a) BMsimple
1.58 1.6 1.62 1.64 1.66

x 10
6

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(b) PML
1.58 1.6 1.62 1.64 1.66

x 10
6

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

() JERM,VF5K

1.58 1.6 1.62 1.64 1.66

x 10
6

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(d) JLpo20,VF5K

0.5 1 1.5 2

x 10
5

−1

−0.5

0

0.5

1

1.5

(e) BMsimple
0.5 1 1.5 2

x 10
5

−1

−0.5

0

0.5

1

1.5

(f) PML
0.5 1 1.5 2

x 10
5

−1

−0.5

0

0.5

1

1.5

(g) JERM,VF5K

0.5 1 1.5 2

x 10
5

−1

−0.5

0

0.5

1

1.5

(h) JLpo20,VF5KFigure 5: Change-points loations along Chromosome 9 (Left) and Chromosome 1 (Right).The mean on eah homogeneous region is indiated by plain horizontal lines.25
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twie inside the seond part of hromosome 1 (as de�ned by the segmentation obtainedwith PML), indiating that two putative ampli�ed regions of hromosome 1 have beendeteted.Note however that hoosing among the segmentations obtained with JERM,VF5K and
JLpo20,VF5K is not an easy task without additional data. A de�nitive answer would needfurther biologial experiments.7 Conlusion7.1 Results summaryCross-validation (CV) methods have been used to build reliable proedures (Proedure 6)for deteting hanges in the mean of a signal whose variane may not be onstant.First, when the number of breakpoints is given, empirial risk minimization has beenproved to fail for some heterosedasti problems, from both theoretial and experimentalpoints of view. On the ontrary, the Leave-p-out (Lpop) remains robust to heterosedas-tiity while being omputationally e�ient thanks to losed-form formulas given in Se-tion 3.2.3 (Theorem 1).Seond, for hoosing the number of breakpoints, the ommonly used penalization pro-edure proposed by Birgé and Massart in the homosedasti framework should not beapplied to heterosedasti data. V -fold ross-validation (VFCV) turns out to be a reliablealternative�both with homosedasti and heterosedasti data�, leading to muh bettersegmentations in terms of quadrati risk when data are heterosedasti. Furthermore, un-like usual deterministi penalized riteria, VFCV e�iently hooses among segmentationsobtained by either Lpo or empirial risk minimization, without any spei� hange in theproedure.To onlude, the ombination of Lpo (for hoosing a segmentation for eah possi-ble number of breakpoints) and VFCV yields the most reliable proedure for detetinghanges in the mean of a signal whih is not a priori known to be homosedasti. Theresulting proedure is omputationally tratable for small values of V , sine its omputa-tional omplexity is of order O(V n2), whih is similar to many omparable hange-pointdetetion proedures. The in�uene of V on the statistial performane of the proedureis not studied spei�ally in this paper; nevertheless, onsidering V = 5 only was su�ientto obtain a better statistial performane than Birgé and Massart's penalization proedurewhen data are heterosedasti. When applied to real data (CGH pro�les in Setion 6),the proposed proedure turns out to be quite useful and e�etive, for a data set on whihexisting proedures highly disagree beause of heterosedastiity.7.2 ProspetsThe general form of Proedure 6 ould be used with several other riteria, at both steps ofthe hange-point detetion proedure. For instane, resampling penalties [5℄ ould be usedat the �rst step, for loalizing the hange-points given their number. At the seond step,
V -fold penalization [6℄ ould also be used instead of VFCV, with the same omputationalost and possibly an improved statistial performane.26
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Comparing preisely these resampling-based riteria for optimizing the performane ofProedure 6 would be of great interest and deserves further works. Simultaneously, severalvalues of V should be ompared for the seond step of Proedure 6, and the preise in�ueneof p when Lpop is used at the �rst step should be further investigated. Preliminary resultsin this diretion an already be found in [21, Chapter 7℄.Referenes[1℄ F. Abramovih, Y. Benjamini, D. Donoho, and I. Johnstone. Adapting to UnknownSparsity by ontrolling the False Disovery Rate. The Annals of Statistis, 34(2):584�653, 2006.[2℄ H. Akaike. Statistial preditor identi�ation. Ann. Inst. Statisti. Math., 22:203�217,1969.[3℄ Hirotugu Akaike. Information theory and an extension of the maximum likelihoodpriniple. In Seond International Symposium on Information Theory (Tsahkadsor,1971), pages 267�281. Akadémiai Kiadó, Budapest, 1973.[4℄ David M. Allen. The relationship between variable seletion and data augmentationand a method for predition. Tehnometris, 16:125�127, 1974.[5℄ Sylvain Arlot. Model seletion by resampling penalization, 2008. hal-00262478.[6℄ Sylvain Arlot. Suboptimality of penalties proportional to the dimension for modelseletion in heterosedasti regression, Deember 2008. arXiv:0812.3141.[7℄ Sylvain Arlot. V -fold ross-validation improved: V -fold penalization, February 2008.arXiv:0802.0566v2.[8℄ Sylvain Arlot and Pasal Massart. Data-driven alibration of penalties for least-squares regression. J. Mah. Learn. Res., 10:245�279 (eletroni), 2009.[9℄ Yannik Baraud. Model seletion for regression on a �xed design. Probab. TheoryRelated Fields, 117(4):467�493, 2000.[10℄ Yannik Baraud. Model seletion for regression on a random design. ESAIM Probab.Statist., 6:127�146 (eletroni), 2002.[11℄ A. Barron, L. Birgé, and P. Massart. Risk bounds for model seletion via penalization.Probab. Theory and Relat. Fields, 113:301�413, 1999.[12℄ M. Basseville and N. Nikiforov. The Detetion of Abrupt Changes - Theory and Ap-pliations. Prentie-Hall: Information and System Sienes Series, 1993.[13℄ R. E. Bellman and S. E. Dreyfus. Applied Dynami Programming. Prineton, 1962.[14℄ L. Birgé and P. Massart. From model seletion to adaptive estimation. In D. Pollard,E. Torgensen, and G. Yang, editors, In Festshrift for Luien Le Cam: ResearhPapers in Probability and Statistis, pages 55�87. Springer-Verlag, New York, 1997.27
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[15℄ L. Birgé and P. Massart. Gaussian model seletion. J. European Math. So., 3(3):203�268, 2001.[16℄ Luien Birgé and Pasal Massart. Minimal penalties for Gaussian model seletion.Probab. Theory Related Fields, 138(1-2):33�73, 2007.[17℄ B. Brodsky and B. Darkhovsky. Methods in Change-point problems. Kluwer AademiPublishers, Dordreht, The Netherlands, 1993.[18℄ P. Burman. Comparative study of Ordinary Cross-Validation, v-Fold Cross-Validationand the repeated Learning-Testing Methods. Biometrika, 76(3):503�514, 1989.[19℄ A. Celisse. Density estimation via ross-validation: Model seletion point of view.Tehnial report, arXiv, 2008.[20℄ A. Celisse and S. Robin. Nonparametri density estimation by exat leave-p-out ross-validation. Computational Statistis and Data Analysis, 52(5):2350�2368, 2008.[21℄ Alain Celisse. Model seletion via ross-validation in density estimation, regressionand hange-points detetion. PhD thesis, University Paris-Sud 11, Deember 2008.oai:tel.arhives-ouvertes.fr:tel-00346320_v1.[22℄ S. Dudoit and M. van der Laan. Asymptotis of ross-validated risk estimation inestimator seletion and performane assessment. Statistial Methodology, 2(2):131�154, 2005.[23℄ S. Geisser. A preditive approah to the random e�et model. Biometrika, 61(1):101�107, 1974.[24℄ Seymour Geisser. The preditive sample reuse method with appliations. J. Amer.Statist. Asso., 70:320�328, 1975.[25℄ Xavier Gendre. Simultaneous estimation of the mean and the variane in heterosedas-ti gaussian regression, 2008.[26℄ M. Kearns, Y. Mansour, A. Y. Ng, and D. Ron. An Experimental and TheoretialComparison of Model Seletion Methods. Mahine Learning, 27:7�50, 1997.[27℄ P. A. Lahenbruh and M. R. Mikey. Estimation of Error Rates in DisriminantAnalysis. Tehnometris, 10(1):1�11, 1968.[28℄ M. Lavielle. Using penalized ontrasts for the hange-point problem. Signal Proes.,85:1501�1510, 2005.[29℄ M. Lavielle and G. Teyssière. Detetion of Multiple Change-Points in MultivariateTime Series. Lithuanian Mathematial Journal, 46:287�306, 2006.[30℄ E. Lebarbier. Deteting multiple hange-points in the mean of a Gaussian proess bymodel seletion. Signal Pro., 85:717�736, 2005.[31℄ K.-C. Li. Asymptoti Optimality for Cp, CL, Cross-Validation and Generalized Cross-Validation: Disrete Index Set. The Annals of Statistis, 15(3):958�975, 1987.28
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Supplementary material for Segmentation of the mean ofheterosedasti data via ross-validationSylvain Arlot and Alain CelisseApril 8, 20091 Calibration of Birgé and Massart's penalizationBirgé and Massart's penalization makes use of the penalty
penBM(D) :=

ĈD

n

(
5 + 2 log

( n

D

))
.In a previous version of this work [6, Chapter 7℄, Ĉ was de�ned as suggested in [7, 8℄,that is, Ĉ = 2K̂max.jump with the notation below. This yielded poor performanes, whihseemed related to the de�nition of Ĉ. Therefore, alternative de�nitions for Ĉ have beeninvestigated, leading to the hoie Ĉ = 2K̂thresh. throughout the paper, where K̂thresh. isde�ned by (2) below. The present appendix intends to motivate this hoie.Two main approahes have been onsidered in the literature for de�ning Ĉ in thepenalty penBM:

• Use Ĉ = σ̂2 any estimate of the noise-level, for instane,
σ̂2 :=

1

n

n/2∑

i=1

(Y2i − Y2i−1)
2 , (1)assuming n is even and t1 < · · · < tn.

• Use Birgé and Massart's slope heuristis, that is, ompute the sequene
D̂(K) := arg min

D∈Dn

{
Pnγ( ŝ bmERM(D)) +

KD

n

(
5 + 2 log

( n

D

))}
,�nd the (unique) K = K̂jump at whih D̂(K) jumps from large to small values, andde�ne Ĉ = 2K̂jump.The �rst approah follows from theoretial and experimental results [4, 8℄ whih showthat Ĉ should be lose to σ2 when the noise-level is onstant; (1) is a lassial estimatorof the variane used for instane by Baraud [3℄ for model seletion in a di�erent setting.The optimality (in terms of orale inequalities) of the seond approah has been provedfor regression with homosedasti Gaussian noise and possibly exponential olletions of1

http://arXiv.org/abs/0902.3977v2
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s· σ· 2K̂max.jump 2K̂thresh. σ̂2 σ2
true1  6.85 ± 0.12 3.91 ± 0.03 1.74 ± 0.02 2.05 ± 0.02p,3 17.56 ± 0.15 13.08 ± 0.04 4.42 ± 0.04 10.43 ± 0.05s 20.07 ± 0.31 9.41 ± 0.04 2.18 ± 0.03 1.66 ± 0.022  6.02 ± 0.03 5.27 ± 0.03 3.58 ± 0.02 3.54 ± 0.02p,3 17.76 ± 0.10 20.12 ± 0.07 10.58 ± 0.07 16.64 ± 0.08s 10.17 ± 0.05 9.69 ± 0.04 5.28 ± 0.03 10.95 ± 0.023  4.97 ± 0.02 4.39 ± 0.01 4.62 ± 0.01 4.21 ± 0.01p,3 8.66 ± 0.03 8.47 ± 0.03 6.64 ± 0.02 8.00 ± 0.03s 8.50 ± 0.04 7.59 ± 0.03 5.94 ± 0.02 15.50 ± 0.04A 7.52 ± 0.04 6.82 ± 0.03 4.86 ± 0.03 5.55 ± 0.03B 7.89 ± 0.04 7.21 ± 0.04 5.18 ± 0.03 5.77 ± 0.03C 12.81 ± 0.08 13.49 ± 0.07 8.93 ± 0.06 12.44 ± 0.07Table 1: Performane Cor(BM) with four di�erent de�nitions of Ĉ (see text), in some ofthe simulation settings onsidered in the paper. In eah setting, N = 10000 independentsamples have been generated. Next to eah value is indiated the orresponding empirialstandard deviation divided by √

N .models [5℄, as well as in a heterosedasti framework with polynomial olletions of models[2℄. In the ontext of hange-point detetion with homosedasti data, Lavielle [7℄ andLebarbier [8℄ showed that Ĉ = 2K̂max.jump an even perform better than Ĉ = σ2 when
K̂max.jump orresponds to the highest jump of D̂(K).Alternatively, it was proposed in [2℄ to de�ne Ĉ = 2K̂thresh. where

K̂thresh. := min

{
K s.t. D̂(K) ≤ Dthresh. :=

⌊
n

ln(n)

⌋}
. (2)These three de�nitions of Ĉ have been ompared with Ĉ = σ2

true := n−1
∑n

i=1 σ(ti)
2 inthe settings of the paper. A representative part of the results is reported in Table 1. Themain onlusions are the following.

• 2K̂thresh. almost always beats 2K̂max.jump, even in homosedasti settings. This on-�rms some simulation results reported in [2℄.
• σ2

true often beats slope heuristis-based de�nitions of Ĉ, but not always, as previouslynotied by Lebarbier [8℄. Di�erenes of performane an be huge (in partiular when
σ = σs), but not always in favour of σ2

true (for instane, when s = s3).
• σ̂2 yields signi�antly better performane than σ2

true in most settings (but not all),with huge margins in some heterosedasti settings.The latter result atually omes from an artefat, whih an be explained as follows.First,
E

[
σ̂2

]
=

1

n

n∑

i=1

σ(ti)
2 +

1

n

n∑

i=1

(s(t2i) − s(t2i−1))
2 ≥ 1

n

n∑

i=1

σ(ti)
2 = σ2

true .2
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The di�erene between these expetations is not negligible in all the settings of the paper.For instane, when n = 100, ti = i/n and s = s1, n−1
∑

i(s(t2i)−s(t2i−1))
2 = 0.04 whereas

σ2
true varies between 0.015 (when σ = σpc,1) to 0.093 (when σ = σpc,3). Nevertheless, σ̂2would not overestimate σ2

true at all in a very lose setting: Shifting the jumps of s1 by
1/100 is su�ient to make n−1

∑
i(s(t2i) − s(t2i−1))

2 equal to zero, and the performanesof BM with Ĉ = σ̂2 would then be very lose to the performanes of BM with Ĉ = σtrue.Seond, overpenalization turns out to improve the results of BM in most of the het-erosedasti settings onsidered in the paper. The reason for this phenomenon is illustratedby the right panel of Figure 4. Indeed, penBM is a poor penalty when data are het-erosedasti, underpenalizing dimensions lose to the orale but overpenalizing the largestdimensions (remember that Ĉ = 2K̂thresh. on Figure 4). Then, in a setting like (s2, σpc,3)multiplying penBM by a fator Cover > 1 helps dereasing the seleted dimension; the sameause has di�erent onsequenes in other settings, suh as (s1, σs or (s3, σc). Neverthe-less, even hoosing Ĉ using both Pn and s, (critBM(D))D>0 remains a poor estimate of(∥∥s − ŝ bmERM(D)

∥∥2

n

)
D>0

in most heterosedasti settings (even up to an additive onstant).To onlude, penBM with Ĉ = σ̂2 is not a reliable hange-point detetion proedure,and the apparently good performanes observed in Table 1 ould be misleading. This leadsto the remaining hoie Ĉ = 2K̂thresh. whih has been used throughout the paper, althoughthis alibration method may ertainly be improved.Results of Table 1 for Ĉ = σ2
true indiate how far the performanes of penBM ouldbe improved without overpenalization. Aording to Tables 4 and 5, BM with Ĉ = σ2

trueonly has signi�antly better performanes than JERM,VF5K or JLoo,VF5K in the threehomosedasti settings and in setting (s1, σs).Finally, overpenalization ould be used to improve BM, but hoosing the overpenaliza-tion fator from data is a di�ult problem, espeially without knowing a priori whetherthe signal is homosedasti or heterosedasti. This question deserves a spei� extensivesimulation experiment. To be ompletely fair with CV methods, suh an experiment shouldalso ompare BM with overpenalization to V -fold penalization [1℄ with overpenalization,for hoosing the number of hange-points.2 Random frameworks generationThe purpose of this appendix is to detail how pieewise onstant funtions s and σ havebeen generated in the frameworks A, B and C of Setion 5.3. In eah framework, s and σare of the form
s(x) =

Ks−1∑

j=0

αj1[aj ;aj+1) + αKs1[aKs ;aKs+1] with a0 = 0 < a1 < · · · < aKs = 1

σ(x) =

Kσ−1∑

j=0

βj1[bj ;bj+1) + βKσ1[bKσ ;bKσ+1] with b0 = 0 < b1 < · · · < bKσ = 1for some positive integers Ks,Kσ and real numbers α0, . . . , αKs ∈ R and β0, . . . , βKσ > 0.3
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Remark 1. The frameworks A, B and C depend on the sample size n, through the distri-bution of Ks, Kσ, and of the size of the intervals [aj; aj+1) and [bj; bj+1). This ensuresthat the signal-to-noise ratio remains rather small, so that the quadrati risk remains anadequate performane measure for hange-point detetion.When the signal-to-noise ratio is larger (that is, when all jumps of s are muh largerthan the noise-level, and the number of jumps of s is small ompared to the sample size),the hange-point detetion problem is of di�erent nature. In partiular, the number ofhange-points would be better estimated with proedures targeting identi�ation (suh asBIC, or even larger penalties) than e�ieny (suh as VFCV).2.1 Framework AIn framework A, s and σ are generated as follows:
• Ks, the number of jumps of s, has uniform distribution over {3, . . . , ⌊√n⌋}.
• For 0 ≤ j ≤ Ks,

aj+1 − aj = ∆s
min +

(1 − (Ks + 1)∆s
min)Uj∑Ks

k=0 Ukwith ∆s
min = min {5/n, 1/(Ks + 1)} and U0, . . . , UKs are i.i.d. with uniform distri-bution over [0; 1].

• α0 = V0 and for 1 ≤ j ≤ Ks, αj = αj−1 + Vj where V0, . . . , VKs are i.i.d. withuniform distribution over [−1;−0.1] ∪ [0.1; 1].
• Kσ, the number of jumps of σ, has uniform distribution in {5, . . . , ⌊√n⌋}.
• For 0 ≤ j ≤ Kσ,

bj+1 − bj = ∆σ
min +

(1 − (Kσ + 1)∆σ
min)U ′

j∑Ks

k=0 U ′
kwith ∆σ

min = min {5/n, 1/(Kσ + 1)} and U ′
0, . . . , U

′
Kσ

are i.i.d. with uniform distri-bution over [0; 1].
• β0, . . . , βKσ are i.i.d. with uniform distribution over [0.05; 0.5].Two examples of a funtion s and a sample (ti, Yi) generated in framework A are plottedon Figure 1.2.2 Framework BThe only di�erene with framework A is that U0, . . . , UKs are i.i.d. with the same distri-bution as Z = |10Z1 + Z2| where Z1 has Bernoulli distribution with parameter 1/2 and Z2has a standard Gaussian distribution. Two examples of a funtion s and a sample (ti, Yi)generated in framework B are plotted on Figure 2.
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Figure 1: Random framework A: two examples of a sample (ti, Yi)1≤i≤100 and the orre-sponding regression funtion s.
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Figure 2: Random framework B: two examples of a sample (ti, Yi)1≤i≤100 and the orre-sponding regression funtion s.
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2.3 Framework CThe main di�erene between frameworks C and B is that [0; 1] is split into two regions:
aKs,1+1 = 1/2 and Ks = Ks,1 + Ks,2 + 1 for some positive integers Ks,1,Ks,2, and thebounds of the distribution of βj are larger when bj ≥ 1/2 and smaller when bj < 1/2. Twoexamples of a funtion s and a sample (ti, Yi) generated in framework C are plotted onFigure 3. More preisely, s and σ are generated as follows:

• Ks,1 has uniform distribution over {2, . . . ,Kmax,1} with Kmax,1 = ⌊√n⌋−1−⌊(⌊√n−
1⌋)/3⌋.

• Ks,2 has uniform distribution over {0, . . . ,Kmax,2} with Kmax,2 = ⌊(⌊√n − 1⌋)/3⌋.
• Let U0, . . . , UKs be i.i.d. random variables with the same distribution as Z =

|10Z1 + Z2| where Z1 has Bernoulli distribution with parameter 1/2 and Z2 hasa standard Gaussian distribution.
• For 0 ≤ j ≤ Ks,1,

aj+1 − aj = ∆s,1
min +

(1 − (Ks,1 + 1)∆s,1
min)Uj∑Ks,1

k=0 Ukwith ∆s,1
min = min {5/n, 1/(Ks,1 + 1)}.

• For Ks,1 + 1 ≤ j ≤ Ks,
aj+1 − aj = ∆s,2

min +
(1 − (Ks,2 + 1)∆s,2

min)Uj∑Ks

k=Ks,1+1 Ukwith ∆s,2
min = min {5/n, 1/(Ks,2 + 1)}.

• α0 = V0 and for 1 ≤ j ≤ Ks, αj = αj−1 + Vj where V0, . . . , VKs are i.i.d. withuniform distribution over [−1;−0.1] ∪ [0.1; 1].
• Kσ, (bj+1 − bj)0≤j≤Kσ are distributed as in frameworks A and B.
• β0, . . . , βKσ are independent.When bj < 1/2, βj has uniform distribution over [0.025; 0.2].When bj ≥ 1/2, βj has uniform distribution over [0.1; 0.8].3 Additional results from the simulation studyIn the next pages are presented extended versions of the Tables of the main paper, as wellas an extended version of Table 1 (Table 7).

6
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Figure 3: Random framework C: two examples of a sample (ti, Yi)1≤i≤100 and the orre-sponding regression funtion s.Referenes[1℄ Sylvain Arlot. V -fold ross-validation improved: V -fold penalization, February 2008.arXiv:0802.0566v2.[2℄ Sylvain Arlot and Pasal Massart. Data-driven alibration of penalties for least-squaresregression. J. Mah. Learn. Res., 10:245�279 (eletroni), 2009.[3℄ Yannik Baraud. Model seletion for regression on a random design. ESAIM Probab.Statist., 6:127�146 (eletroni), 2002.[4℄ L. Birgé and P. Massart. Gaussian model seletion. J. European Math. So., 3(3):203�268, 2001.[5℄ Luien Birgé and Pasal Massart. Minimal penalties for Gaussian model seletion.Probab. Theory Related Fields, 138(1-2):33�73, 2007.[6℄ Alain Celisse. Model seletion via ross-validation in density estimation, regressionand hange-points detetion. PhD thesis, University Paris-Sud 11, Deember 2008.oai:tel.arhives-ouvertes.fr:tel-00346320_v1.[7℄ M. Lavielle. Using penalized ontrasts for the hange-point problem. Signal Proes.,85:1501�1510, 2005.[8℄ E. Lebarbier. Deteting multiple hange-points in the mean of a Gaussian proess bymodel seletion. Signal Pro., 85:717�736, 2005.
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s
·

σ
·

ERM Loo Lpo20 Lpo501  1.59 ± 0.01 1.60 ± 0.02 1.58 ± 0.01 1.58 ± 0.01p,1 1.04 ± 0.01 1.06 ± 0.01 1.06 ± 0.01 1.06 ± 0.01p,2 1.89 ± 0.02 1.87 ± 0.02 1.87 ± 0.02 1.87 ± 0.02p,3 2.05 ± 0.02 2.05 ± 0.02 2.05 ± 0.02 2.07 ± 0.02s 1.54 ± 0.02 1.52 ± 0.02 1.52 ± 0.02 1.51 ± 0.022  2.88 ± 0.01 2.93 ± 0.01 2.93 ± 0.01 2.94 ± 0.01p,1 1.31 ± 0.02 1.16 ± 0.02 1.14 ± 0.02 1.11 ± 0.01p,2 2.88 ± 0.02 2.24 ± 0.02 2.19 ± 0.02 2.13 ± 0.02p,3 3.09 ± 0.03 2.52 ± 0.03 2.48 ± 0.03 2.32 ± 0.03s 3.01 ± 0.01 3.03 ± 0.01 3.05 ± 0.01 3.13 ± 0.013  3.18 ± 0.01 3.25 ± 0.01 3.29 ± 0.01 3.44 ± 0.01p,1 3.00 ± 0.01 2.67 ± 0.02 2.68 ± 0.02 2.77 ± 0.02p,2 4.06 ± 0.02 3.63 ± 0.02 3.64 ± 0.02 3.78 ± 0.02p,3 4.41 ± 0.02 3.97 ± 0.02 4.00 ± 0.02 4.11 ± 0.02s 4.02 ± 0.01 3.82 ± 0.01 3.85 ± 0.01 3.98 ± 0.01Table 2: Average performane Cor (JP, IdK) for hange-point detetion proedures P among
ERM, Loo and Lpop with p = 20 and p = 50. Several regression funtions s and noise-levelfuntions σ have been onsidered, eah time with N = 10000 independent samples. Nextto eah value is indiated the orresponding empirial standard deviation divided by √

N ,measuring the unertainty of the estimated performane.
s· σ· Orale VF5 BM1  1.59 ± 0.01 5.40 ± 0.05 3.91 ± 0.03p,1 1.04 ± 0.01 11.96 ± 0.03 12.85 ± 0.04p,2 1.89 ± 0.02 6.43 ± 0.05 13.03 ± 0.04p,3 2.05 ± 0.02 4.96 ± 0.05 13.08 ± 0.04s 1.54 ± 0.02 7.33 ± 0.06 9.41 ± 0.042  2.88 ± 0.01 4.51 ± 0.03 5.27 ± 0.03p,1 1.31 ± 0.02 11.67 ± 0.09 19.36 ± 0.07p,2 2.88 ± 0.02 6.58 ± 0.06 19.82 ± 0.07p,3 3.09 ± 0.03 6.66 ± 0.06 20.12 ± 0.07s 3.01 ± 0.01 5.21 ± 0.04 9.69 ± 0.403  3.18 ± 0.01 4.41 ± 0.02 4.39 ± 0.01p,1 3.00 ± 0.01 4.91 ± 0.02 6.50 ± 0.02p,2 4.06 ± 0.02 5.99 ± 0.02 7.86 ± 0.03p,3 4.41 ± 0.02 6.32 ± 0.02 8.47 ± 0.03s 4.02 ± 0.01 5.97 ± 0.03 7.59 ± 0.03Table 3: Performane Cor (JERM,PK) for P = Id (that is, hoosing the dimension D⋆ :=

arg minD∈Dn

{∥∥s − ŝ bmERM(D)

∥∥2

n

}), P = VFV with V = 5 or P = BM. Several regressionfuntions s and noise-level funtions σ have been onsidered, eah time with N = 10000independent samples. Next to eah value is indiated the orresponding empirial standarddeviation divided by √
N , measuring the unertainty of the estimated performane.8
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s· σ· JERM,VF5K JLoo,VF5K JLpo20,VF5K JLpo50,VF5K JERM,BMK1  5.40 ± 0.05 5.03 ± 0.05 5.10 ± 0.05 5.24 ± 0.05 3.91 ± 0.03p,1 11.96 ± 0.03 10.25 ± 0.03 10.28 ± 0.03 10.66 ± 0.04 12.85 ± 0.04p,2 6.43 ± 0.05 5.83 ± 0.05 5.99 ± 0.05 6.20 ± 0.05 13.03 ± 0.04p,3 4.96 ± 0.05 4.82 ± 0.04 4.79 ± 0.05 5.02 ± 0.05 13.08 ± 0.04s 7.33 ± 0.06 6.82 ± 0.05 6.99 ± 0.06 6.91 ± 0.06 9.41 ± 0.042  4.51 ± 0.03 4.55 ± 0.03 4.50 ± 0.03 4.73 ± 0.03 5.27 ± 0.03p,1 11.67 ± 0.09 10.26 ± 0.08 10.29 ± 0.08 10.45 ± 0.09 19.36 ± 0.07p,2 6.58 ± 0.06 5.85 ± 0.06 5.85 ± 0.06 5.49 ± 0.06 19.82 ± 0.07p,3 6.66 ± 0.06 5.81 ± 0.06 5.74 ± 0.06 5.66 ± 0.06 20.12 ± 0.06s 5.21 ± 0.04 5.19 ± 0.03 5.17 ± 0.03 5.51 ± 0.04 9.69 ± 0.043  4.41 ± 0.02 4.54 ± 0.02 4.62 ± 0.02 4.94 ± 0.02 4.39 ± 0.01p,1 4.91 ± 0.02 4.40 ± 0.02 4.44 ± 0.02 4.69 ± 0.02 6.50 ± 0.02p,2 5.99 ± 0.02 5.34 ± 0.02 5.42 ± 0.02 5.75 ± 0.02 7.86 ± 0.03p,3 6.32 ± 0.02 5.74 ± 0.02 5.81 ± 0.02 6.24 ± 0.02 8.47 ± 0.03s 5.97 ± 0.02 5.72 ± 0.02 5.86 ± 0.02 6.07 ± 0.02 7.59 ± 0.03Table 4: Performane Cor(P) for several hange-point detetion proedures P. Severalregression funtions s and noise-level funtions σ have been onsidered, eah time with
N = 10000 independent samples. Next to eah value is indiated the orrespondingempirial standard deviation.

Framework A B C
JERM,BMK 6.82 ± 0.03 7.21 ± 0.04 13.49 ± 0.07
JERM,VF5K 4.78 ± 0.03 5.09 ± 0.03 7.17 ± 0.05
JLoo,VF5K 4.65 ± 0.03 4.88 ± 0.03 6.61 ± 0.05

JLpo20,VF5K 4.78 ± 0.03 4.91 ± 0.03 6.49 ± 0.05
JLpo50,VF5K 4.97 ± 0.03 5.18 ± 0.04 6.69 ± 0.05Table 5: Performane C

(R)
or (P) of several model seletion proedures P in frameworks A,B, C with sample size n = 100. In eah framework, N = 10, 000 independent sampleshave been onsidered. Next to eah value is indiated the orresponding empirial standarddeviation divided by √

N .
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Framework A B C
JERM,BMK 9.04 ± 0.12 11.62 ± 0.14 21.21 ± 0.31
JERM,BMbσK 5.34 ± 0.10 6.24 ± 0.11 11.48 ± 0.22
JERM,VF5K 5.10 ± 0.11 5.92 ± 0.11 7.31 ± 0.14
JLoo,VF5K 4.90 ± 0.11 5.63 ± 0.11 6.89 ± 0.16

JLpo20,VF5K 4.88 ± 0.10 5.55 ± 0.10 6.82 ± 0.15
JLpo50,VF5K 5.11 ± 0.11 5.49 ± 0.10 7.14 ± 0.15Table 6: Performane C

(R)
or (P) of several model seletion proedures P in frameworks A,B, C with sample size n = 200. In eah framework, N = 1, 000 independent samples havebeen onsidered. Next to eah value is indiated the orresponding empirial standarddeviation divided by √

N .
s· σ· 2K̂max.jump 2K̂thresh. σ̂2 σ2

true1  6.85 ± 0.12 3.91 ± 0.03 1.74 ± 0.02 2.05 ± 0.02p,1 70.97 ± 1.18 12.85 ± 0.04 1.13 ± 0.02 10.20 ± 0.05p,2 23.74 ± 0.26 13.03 ± 0.04 3.55 ± 0.04 10.43 ± 0.05p,3 17.56 ± 0.15 13.08 ± 0.04 4.42 ± 0.04 10.43 ± 0.05s 20.07 ± 0.31 9.41 ± 0.04 2.18 ± 0.03 1.66 ± 0.022  6.02 ± 0.03 5.27 ± 0.03 3.58 ± 0.02 3.54 ± 0.02p,1 17.83 ± 0.10 19.36 ± 0.07 8.52 ± 0.06 15.62 ± 0.08p,2 17.63 ± 0.10 19.82 ± 0.07 10.77 ± 0.07 16.56 ± 0.08p,3 17.76 ± 0.10 20.12 ± 0.07 10.58 ± 0.07 16.64 ± 0.08s 10.17 ± 0.05 9.69 ± 0.04 5.28 ± 0.03 10.95 ± 0.023  4.97 ± 0.02 4.39 ± 0.01 4.62 ± 0.01 4.21 ± 0.01p,1 7.18 ± 0.03 6.50 ± 0.02 4.52 ± 0.02 6.70 ± 0.03p,2 8.14 ± 0.03 7.86 ± 0.03 6.22 ± 0.02 7.55 ± 0.03p,3 8.66 ± 0.03 8.47 ± 0.03 6.64 ± 0.02 8.00 ± 0.03s 8.50 ± 0.04 7.59 ± 0.03 5.94 ± 0.02 15.50 ± 0.04A 7.52 ± 0.04 6.82 ± 0.03 4.86 ± 0.03 5.55 ± 0.03B 7.89 ± 0.04 7.21 ± 0.04 5.18 ± 0.03 5.77 ± 0.03C 12.81 ± 0.08 13.49 ± 0.07 8.93 ± 0.06 12.44 ± 0.07Table 7: Performane Cor(BM) with four di�erent de�nitions of Ĉ (see text), in some ofthe simulation settings onsidered in the paper. In eah setting, N = 10000 independentsamples have been generated. Next to eah value is indiated the orresponding empirialstandard deviation divided by √
N .
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