
HAL Id: hal-02817702
https://hal.inrae.fr/hal-02817702v2

Preprint submitted on 6 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamically consistent Choquet random walk and real
investments

Robert Kast, André Lapied

To cite this version:
Robert Kast, André Lapied. Dynamically consistent Choquet random walk and real investments.
2010. �hal-02817702v2�

https://hal.inrae.fr/hal-02817702v2
https://hal.archives-ouvertes.fr


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    « Dynamically consistent Choquet  

                    random walk and real investments » 

 

  

                Robert KAST 

                         André LAPIED 

 

DR n°2010-21 



 1 

Dynamically consistent Choquet random walk and real investments 

 

Robert Kast, CNRS, IFP Pondichéry, LAMETA Montpellier, IDEP Aix-Marseille. 

André Lapied, GREQAM, IDEP, Université Paul Cézanne Aix-Marseille. 

 

December, 30, 2010 

Abstract: In the real investments literature, the investigated cash flow is assumed to follow 

some known stochastic process (e.g. Brownian motion) and the criterion to decide between 

investments is the discounted utility of their cash flows. However, for most new investments 

the investor may be ambiguous about the representation of uncertainty. In order to take such 

ambiguity into account, we refer to a discounted Choquet expected utility in our model. In 

such a setting some problems are to dealt with: dynamical consistency, here it is obtained in a 

recursive model by a weakened version of the axiom. Mimicking the Brownian motion as the 

limit of a random walk for the investment payoff process, we describe the latter as a binomial 

tree with capacities instead of exact probabilities on its branches and show what are its 

properties at the limit.  We show that most results in the real investments literature are 

tractable in this enlarged setting but leave more room to ambiguity as both the mean and the 

variance of the underlying stochastic process are modified in our ambiguous model. 

 

JEL classification numbers: D 81, D 83, D 92, G 31.  

Key words: Choquet integrals, conditional Choquet integrals, random walk, Brownian 

motion, real options, optimal portfolio 

 

 

1. Introduction 

 

New investments are often decided in situations of uncertainty about the future states of the 

economy and future information arrivals. The real investments (or real options) literature 

(Pindyck and Dixit (1994) or Trigeorgis (1996)) assumes that uncertainty is described by 

known stochastic processes (e.g. Brownian motions), as does most of the literature in finance 

(derivative asset pricing, optimal portfolio choice, CAPM, etc.). In order to enlarge the scope 

of applications to uncertainty situations described by controversial probability distributions, or 

ambiguity about them, it is necessary to refer to new results in decision theory such as the 

multi-prior model of Gilboa and Schmeidler (1989) or the Choquet expected utility of 

Schmeidler (1989) that yield non-linear criteria. Non additivity of the criteria, or of the 

measure that express it, is the way to express ambiguity of the decision maker about what is 

the relevant representation of uncertainty. For instance, a convex measure, e.g. a capacity  

such that (A  B) + (A  B)  ≥ (A) + (B), for all events A and B, expresses aversion to 

ambiguity.  However many problems with non-linear models are still open. Notably, there is 

not a unique way to update non-additive measures such as Choquet capacities (see e.g. Kast, 
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Lapied and Toquebeuf, 2009). Furthermore, most models collapse to a linear one when 

dynamic consistency is required (Sarin and Wakker, 1998). Dynamics is central to investment 

problems, and the consistency of decisions with future decisions based on information arrivals 

is at the core of the real options theory. Epstein and Schmeidler (2003) propose a recursive 

multi-prior model that opens the way to applications: First, the multi-priors model is very 

close to the linear ones, so that the usual mathematics are (relatively) easy to adapt; Second, a 

recursive model, although not really dynamical (it only looks one period ahead), is sufficient 

to address most issues.  However, because of its similarity with classical models it may be the 

case that this recursive multi-prior model restricts the kind of ambiguity that one wants to 

address. In this paper, we propose another approach where a particular family of probability 

distributions is considered and is summarized by a non-additive measure: a Choquet capacity. 

Our approach is axiomatic and subjective (the measure derives from the decision maker’s 

preferences), there is no reference to an objective probability distribution that would be 

subjectively distorted (although it could be an interpretation). Furthermore we consider a 

discrete time dynamic model that we make converge toward a continuous time model, instead 

of the reverse. We address both the optimal portfolio choice of traded assets and the 

investment choice in a new non-traded asset (real investment).  

  

Valuing flexibilities and option values in consistence with information arrivals is dealt with 

linear valuation models derived from No Arbitrage conditions
1
 on equilibrium prices. Results 

are extended from the derivative assets valuation models when there exists an underlying 

traded asset. For situations where there are no such underlying assets, the real options 

literature uses an expected utility model representing the decision maker’s preferences.  In 

both cases, the underlying probability distribution is unambiguously known and the criterion 

is a linear form of future random cash flows (a Legesgue integral). Instead, we consider 

preferences could be represented by a non additive criterion: a Choquet integral with respect 

to a capacity, the core of which is a set of possible probability distributions over future states. 

In this setting, ambiguity about the underlying payoff process is taken into account, both at 

the descriptive and at the normative levels of the model. We keep close to the simplest models 

in the real options literature (Binomial processes and convergence to Brownian motions) so 

                                                 
1
 Most of this literature is based on no arbitrage conditions, however these do not necessarily imply that prices 

are defined by additive integrals if bid-ask spreads prevail : see Jouini and Kallal (1995) or Chateauneuf et al. 

(1996), and De Waegenaere et al. (2003) for an equilibrium model with bid-ask spreads where prices define a 

Choquet integral. 
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that we can concentrate on extending their well-known results to ambiguity and a Choquet 

valuation criterion. 

Similarly, in optimal portfolio choice it may be the case that one wants to consider some 

ambiguity about the assets underlying probability distribution. For instance, one may want to 

add an ambiguity premium to the risk premium to answer the equity premium puzzle. Or, if 

one considers that foreign investments distributions are more ambiguous than domestic ones, 

the home-bias puzzle may be addressed by a Choquet capacity, the core of which contains all 

possible ambiguous foreign asset underlying distributions. 

Such approaches have already been developed in finance and decision theory, they face a 

difficult problem: The models’ dynamic consistency. It is well known in dynamic decision 

theory (Sarin and Wakker 1998) that dynamic consistency is an axiom that implies criteria to 

be linear most of the time. However, another axiom called consequentialism
2
 interacts with 

dynamic consistency.  So, a number of results have been obtained to show how dynamic 

consistency can still hold in a non-linear model, if one or both axioms are weakened. On the 

basis of the Gilboa and Schmeidler (1989) Min-Epected-Utility static model, Epstein and 

Schneider (2003) developed a dynamic (recursive) model in discrete time. It satisfies both 

dynamic consistency and consequentialism and doesn’t collapse into a linear model under the 

(non light) condition that the set of priors is rectangular. Such a model has been extended to 

continuous time by Chen and Epstein (2002) on the basis of the Duffie and Epstein (1992) 

stochastic differential utility model. In the model, uncertainty is described by a vectorial 

Brownian process defined on a space (, F, P). Ambiguity is introduced by a set of density 

generators , that define a probability Q

 on (, F) equivalent to P. The set  of density 

generators defines the set of priors: P

 = {Q


:   } and under the condition that   is the 

product of its projections, P

 is rectangular. 

This  model has been applied to finance: Chen et Epstein (2002) study the portfolio choice 

and the problem of the continuous time CAPM; Asano (2005), Miao and Wang (2007), 

Trojanowska and Kort (2006), Nishimura and Ozaki (2007) consider the real options 

valuation and decision problem. In all these cases, ambiguity deforms the objective 

probability distribution by changing the drifts of the stochastic processes, it leaves however 

the standard deviation constant. 

In this paper, we address the same type of applications, however our model is constructed the 

other way around. First uncertainty is measured by the decision maker’s subjective 

                                                 
2
 (Hammond, 1989). Consequentialism expresses that events that couldn’t occur given future information should 

not be taken into account by the decision maker. 
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representation of preferences. Dynamics is described by a discrete time Brownian motion in 

which probability ½ is replaced by a constant c (the ambiguous weight that the decision 

maker is putting both on the event « up » and the event « down » instead of the unambiguous 

½). At the limit, we obtain a deformed Brownian motion where both the drift and the 

volatility are changed, in contrast with the Chen and Epstein (2002) model. 

In section 2, preferences on payoffs processes of an investor (or decision maker) are 

represented by a discounted Choquet expectation, under an axiomatic that avoids utilities on 

payoffs. Ambiguity is taken into account by the Core of the Choquet capacity. In order to take 

flexibilities (and options) into account, preferences must satisfy a weakened axiom of 

dynamic consistency (Karni and Schmeidler 1991, Nishimura and Osaki 2003) and of model 

consistency (Sarin and Wakker 1998) that rely future conditional valuations to the present 

criterion. 

 In section 3, we derive the joint capacity on the payoffs process in the case where uncertainty 

is described by a binomial tree. Then we investigate the limit behaviour of the joint capacity 

when the time intervals converge towards zero in order to obtain a “kind” of Brownian motion 

as the limit of the Choquet binomial random walk, in the following sections. We present some 

applications to real investments and portfolio choice in section 6. Section 7 relates our results 

to similar ones in the literature and concludes. 

 

2. Valuing uncertain cash payoffs processes 

 

In this part of the paper, we assume the DM oversees the future (i.e uncertain states at some 

future dates) as a finite set . A project, or a new investment, is formalised by its future cash 

flow, i.e. payoffs contingent on states  , say X() and the project is then represented by 

a measurable function X: (, 2


)  R. 

 

2.1 The basic model 

 

The DM has preferences on a given project payoffs, hence she is able to compare measurable 

functions. Under our simplifying assumptions that  is a finite set, measurable functions are 

vectors in R


. This set is endowed with a complete pre-order (of the DM’s preferences) and, 

under some axioms that’ll we present later on, this pre-order is represented by a real valued 

function V: R
 R such that V(X) is the net present certainty equivalent of the uncertain 

payoffs X for the DM’s preferences (i.e. in this case the decision criterion). 
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Given that, in the uncertain future, the project may be influenced by information arrivals, it is 

defined as a strategy contingent on information sets.  

Information is formalised by a measurable function on a finite set I, Y: , 2


)  (I, 2
I
) so 

that, for any i  I, [Y = i] defines a sub-algebra of 2


, ([Y = i]) = {A[Y = i] / A  2


}. 

When information [Y = i] is obtained, the DM has preferences on uncertain cash payoffs that 

are measurable functions from (, ([Y = i])) into R that are, or may be, different from her ex-

ante preferences. These preferences are represented by a function V
[Y = i]

: R

 R. 

Taking flexibilities into account amounts to integrate the value of the options to modify the 

project into its present value, in accordance with information arrivals of the type [Y = i], i  I. 

Indeed, when information [Y = i] obtains, the DM may modify her preferences over the 

project’s payoffs and hence its valuation. For instance, her aversion to uncertainty may be 

reduced, or increased depending on the type of information (“good” or “bad” news). Another 

example may be that, the DM learning she has more wealth available, her marginal utility on 

wealth may decrease with respect to what it was before information arrived
3
. 

 

In order to model future dates and uncertain states we can set:  = S  T, where S = {s1,…,sN} 

represents the set of uncertain states to whom the payoffs are contingent and T = {0,…,T}  is 

the set of dates at which the states may occur. A cash flow X:   R can be projected on both 

components and be considered whether as a random process or as a family of trajectories: 

X = (Xt)tT = (Xs)sS. 

 

A DM is usually aware of her preferences over payoffs contingent on uncertain states, i.e. 

measurable functions from S to R, i.e. vectors in R
S
 here. For instance, these preferences may 

satisfy Diecidue and Wakker (2002)
4
 axioms and be represented by a value function on the set 

of uncertain payoffs:  

Axiom1: Preferences define a complete pre-order on the set of measurable functions. 

Axiom 2: For any measurable function X, there exists a constant number (constant equivalent) 

for which the DM is indifferent to the function: X   E(X) (where   represents indifference). 

Axiom 3: Preferences allow no comonotonic Dutch Books. 

 

Let’s recall: 

                                                 
3
 This is excluded by the usual setting of Expected Utility theory where the utility of wealth is defined ex-ante. 

Here it is excluded because the subjective capacity captures the whole behaviour towards uncertainty. 
4
 Or its extension in Kast and Lapied (2003) where uncertainty aversion is more detailed. 
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Definition 2.1.1: Two uncertain payoffs X and X’ are comonotonic if they satisfy: 

’  , [X() – X(’)][X’() – X’(’)]  0. 

 

Definition 2.1.2: A comonotonic Dutch Book is a double sequence of comonotonic uncertain 

payoffs (Xj, X’j)jJ such that, for any j in J, Xj is weakly preferred to X’j but  



  , X j
' ()

jJ

  X j ()

jJ

  and 



  , X j
' ()

jJ

  X j ()

jJ

 . 

 

Theorem 2.1.1 (Diecidue and Wakker, 2002): 

For a preference relation on R
S
 satisfying axioms 1 and 2, for all X in R

S
 there exists a 

constant equivalent E(X)  R such that the following three statements are equivalent: 

 

(i) E(.): R
S
  R  is strictly monotonic, additive on comonotonic vectors (but non 

necessarily additive on non comonotonic vectors). 

(ii) There exists a unique capacity such that E(X) is the integral of X with respect to 

this measure.   

(iii) E(.) is such that axiom 3 is satisfied. 

 

Otherwise stated:   a unique capacity on (S, 2
S
), 



Xt  E(Xt )  Xtd
S

 . Notice that, in this 

representation theorem, the (subjective) capacity aggregates all of the DM’s behaviour: there 

is no need for a utility on payoffs, and the certainty equivalent is merely an expected 

(subjective) value. 



Similarly, a DM has preferences for present over future consumption (payoffs, here), i.e. 

preferences over payoffs contingent on dates. In this paper we assume that the DM’s 

preferences over certain future payoffs satisfy Koopman’s (1972) axioms and are represented 

by a linear form: 

Axiom1’: Preferences define a complete continuous pre-order on the set of measurable 

functions. 

Axiom 2’: Preferences are strictly monotonic. 

Axiom 3’: Preferences satisfy separability over dates. 
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Theorem 2.1.2 (Koopman 1972): 

For a preference relation on R
T
 satisfying axioms 1’ to 3’ for all X in R

T
 there exists a present 

equivalent D(X)  R such that: 

  a unique bounded additive measure on (T, 2
T
), 



Xs  D(Xs)  Xsd
T

 . 

As usual in the real options pricing literature, we shall define the decision maker’s criterion 

by the payoffs’ discounted expectation (here a Choquet expectation): 

X is preferred to X’ iff 



V (X)  DE(X)  [ Xtd]
S

 d 
T

 [ Xt
'd]

S

 d  DE(X ')
T

 . 

 

Notice however that this criterion is somewhat arbitrary as it introduces a hierarchy into the 

treatment of time and of uncertainty contingency. Another criterion would be ED(X) if the 

DM considered payoffs on a each trajectories and then integrated the discounted results. 

Because the Choquet expectation is not additive, it is not the case that ED(X) = DE(X) in 

general (for a general treatment of the double integral and a justification of one hierarchy over 

the other, see Kast and Lapied 2010). The hierarchy DE is the usual one and we choose it to 

keep our model close to the standard ones, this choice corresponds to a seventh axiom of the 

representation of preferences. 

 

Hierarchy axiom: Preferences of the DM over payoffs contingent on  = S  T, are 

represented by V = DE. The subjective product measure   on S  T captures the DM’s 

behaviour both on uncertainty and on time. 

 

Taking into account future information arrivals in the present valuation will require some 

consistency between the DM’s expected future behaviours and her present preferences, we 

shall express them by two more axioms. 

 

2.2 Consistency with information arrivals 

 

Dynamic consistency is supposed to answer the following question: Can we have X’ preferred 

to X ex-ante if, for any state of information i in I, V
[Y=i]

(X)  V
[Y=i]

(X’)? 

The answer is yes, there are cases where we could. For instance, assume the set [Y=i] 

excludes the set on which X  < X’, so that on any set in ([Y=i]), X  X’. Then, if preferences 

are monotonic we could have a contradiction between unconditional and conditional 
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valuations
5
. However we need not have one because all the information values in I are 

possible ex-ante (and not only those in [Y=i]) and the decision maker may still take into 

account payoffs for which X  < X’ and then not prefer X to X’. But if, for all i’s, we had 

X  = X’ on [Y=i]
c
, then, indeed consistency with information arrivals would imply that:  

i  I, V
[Y=i]

(X)  V
[Y=i]

(X’)  V(X)  V(X’). 

 

This equivalence is the way Karni and Schmeidler (1991)
6
, for instance, expressed Dynamic 

Consistency (they did it in terms of preferences instead of their representation by a value 

function as we did, and they limited information to the case where it could take one value 

only).  

We’ll require a similar but weaker condition, as expressed for example by Nishimura and 

Osaki (2003), so that the axiom of Dynamic Consistency will be stated as: 

 X, X’, [i  I, V
[Y=i]

(X)  V
[Y=i]

(X’)]  V(X)  V(X’). 

 

Or, in terms of preferences: 

 

Dynamic consistency axiom: 

t = 1,…, T–1, X, X' such that: X(s) = X'(s),  = 0,…, t, s  S, 



[it  It,X
 it

X '] X

X '. 

In order to explicit the notations and to figure out the results, some requirements about the 

future DM’s behaviour are usually imposed, namely that the future preferences (after 

information is released) satisfy the same axioms as the present ones (Sarin and Wakker 1998).  

 

Model consistency axiom : Preferences conditional on information satisfy axioms 1, 2, 3 and 

1’, 2’, 3’, and the hierarchy axiom between time and uncertainty. 

 

We can now state the following condition expressing consistency between conditional and 

unconditional expectations. 

 

Proposition 2.2.1: Under the representation of preferences satisfying our nine axioms, for any 

X  R
ST

,   {0,…, } i  I, [Y=i]  F, t,  ≤ t ≤ T, 



E (Xt )  E [E
[Y i](Xt )]. 

                                                 
5
 For instance it would be the case if the decision maker’s preferences satisfied consequentialism. 

6
 But see also : Sarin and Wakker (1998), Machina (1998) and Ghirardato (2002). 
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Proof: Under the nine axioms, preferences are represented by value functions V = DE  and 

V
[Y=i]

 = D
[Y=i]

E
[Y=i]

 such that for any X  R
ST

 we can write: 



V (X)  DE(X)  (t)E (X t )

t0

T

  and 



  {0,,T},i I,[Y  i] F ,V [Y i](X)  [Y i ](t)E
[Y i ](Xt )

t0

T

  

with: 



t  {0,, 1},[Y i](t)  0,[Y i]() 1,t  {,,T},(t) ()[Y i](t). 

Let the certainty equivalent payoffs process be : EC(X) = ((X0),…, (XT)) and  



EC
[Y i]

(X)  (X0,,X1,E
[Y i]

(X ),,E
[Y i]

(XT )), we have by definition:  

V(X) = V(EC(X)) and, 



i I,V[Y i](X) V[Y i](EC[Y i](X)). 

Under the dynamic consistency axiom the last equality implies:  



i I,V (X) V(EC[Y i](X)). 

Thanks the definition of 



[Y i] , this equality simplifies and yields
7
: 

  {0,…, } i  I, [Y=i]  F, t,  ≤ t ≤ T, 



E (Xt )  E [E
[Y i](Xt )]. QED 

 

Notice that this proposition says that dynamic consistency (together with all the other axioms) 

implies an implicit definition of conditional expectations (similar to its definition in the linear 

case): 



E (Xt )  E [E
[Y i]

(Xt )]. In the latter case, however, the definition implies that 

updating probabilities follows Bayes’ rule, whereas several updating rules are compatible 

with such an implicitly defined conditional Choquet expectation (Kast, Lapied and 

Toquebeuf, 2009).  

In this paper, we shall not rely on a particular updating rule, nor derive one, as if the decision 

maker had made up her mind, using for instance the Bayes’ rule, or the Dempster-Shafer’s 

one, or the Full Bayesian Updating rule, or any combination of these classical rules, or any 

more general one. As we shall see, our results do not rely on this choice. 

 

3. Dynamically Consistent Choquet Random Walk (DCCRW) 

 

                                                 
7
 Notice that this relies on preferences on time contingent payoffs are represented by a linear form. If D were 

another Choquet expectation (as in Kast and Lapied 2009) with the discount factor a non-additve measure 

instead of an additive one as in here, the result wouldn’t hold. 
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Consider an investment with payoffs contingent on future states according to a binomial type 

tree (no probabilities for up and down movements are given). 

 

3.1 Binomial tree 

 

Time is defined by: t = 0, 1,…, T. 

Uncertainty is described by a binomial tree so that the uncertain states, s1, …, sn in S are 

trajectories, i.e. sequences of nodes in the tree: for i = 1,…, N, 



si  (s0,s1
i1,,sT

iT ) with 

it = 1,…, t+1: 

 

     

         

 

       

       

          

   

 

         

    

         

 

 

A each t, the possible nodes are in 



St {st
1,,st

t1}. The information process is such that the 

DM knows, at time t, the state that is realised at this date. The set of parts of St is At. 

The preferences of the DM over payoff processes such that: X = (X0,…, XT) are represented by 

a discounted (by a discount factor )  Choquet expectation with respect to a capacity  on 

(S, 2
S
), as in section 2, so that the certainty equivalent of the process is: 



DE(X)   (t)E (X t )
t 0

T

 , 

s0
1
 

s1
1
 

 

s1
2
 

s2
1
 … 

s2
3
 … 

 

 

s2
2
 … 
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where: 



E (X t )  X t (st )(st )
st St

 , with the usual notation for a Choquet integral for which, if, 

for instance, Xt(s1)  ≤ … ≤  Xt(sN), (sn) = ({sn,…, sN}) – ({sn+1, …, sN}), with {sN+1} = , 

for notational convenience. 

 

In order to characterise a Choquet Random Walk, we impose that, for any node st at date t 

(0 ≤ t < T), if s
u
t+1 and s

d
t+1 are the two possible successors of st at date t+1 (for, respectively, 

an “up” or a “down” movement in the binomial tree), the conditional capacity is a constant: 



(st1
u /st) (st1

d /st )  c , with 0 < c < 1. The common value c expresses the DM’s 

ambiguity about the likelihood of the states to come. 

The conditional capacities are normalized in the following way: 



(/st)  0,({st1
u ,st1

d }/st ) 1,B At1,(B /st ) (B{st1
u ,st1

d }/st ). 

 

From proposition 2.2.1, dynamic consistency implies: 

  = 1,…,T–1,  t = ,…,T,



[ Xt (st )(st /s )]

stSt


s S

 (s )  Xt (st )(st )

stSt

       (3.1) 

 

 

3.2 Characterization of the subjective capacity 

 

Now that a Choquet random walk is characterised, we show that preferences that satisfy the 

dynamic consistency axiom don’t leave much choice for the subjective capacity that 

represents them. 

 

Proposition 3.2.1: A Dynamically Consistent Choquet Random Walk satisfying relation (3.1) 

is completely defined by a unique capacity  satisfying: 



(st1
u /st) (st1

d /st )  c .  

 

Proof: In the proof, we can concentrate wlog on the characteristic functions X+n of the sets in 

A+n, because any random variable has a unique decomposition into a non-negative linear 

combination of the characteristic functions in a cone containing X+n and Choquet expectation 

is linear on this cone (Kast and Lapied, 1997). 

Three cases are to be considered. 

(i) If t = , relation (3.1) is trivially satisfied. 
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(iii) If t = +1, relation (3.1) becomes: 

 t = 1,…,T–1, 



[ Xt1(st1)(st1 /st )]

st1St1


stSt

 (st )  Xt1(st1)(st1)

st1St1

      (3.2) 

For any t = 1,…,T–1, and any B  At+1, the conditional capacity (B/st) can only take three 

different values, because, if s
u

t+1 and s
d
t+1 are the two possible successors of st at date t+1, we 

have: 

(s
u

t+1  B and s
d

t+1  B)  (B/st) = 0. 

[(s
u
t+1  B and s

d
t+1  B) or (s

u
t+1  B and s

d
t+1  B)]  (B/st) = c. 

(s
u

t+1  B and s
d

t+1  B)  (B/st) = 1. 

For Xt+1 = 1B, relation (3.2) can be written as: 



(B)  c({st :[st1
u  B][st1

d  B]}) (1c)({st :[st1
u  B][st1

d  B]}) (3.3) 

All the capacities at date t+1 are then uniquely determined by capacities at date t. Going 

backward until date 1 where 



(s1
1) (s1

2)  c , the set function  is completely defined and 

hence unique. 

It remains to prove that set function  is a capacity, i.e. is an increasing measure: 



B D{st :[st1
u  B][st1

d  B]} {st :[st1
u  D][st1

d  D]}, 

then, from (3.3): 



B D(B) (D) . 

(ii) Finally, if t = +n, n > 1, relation (3.1) partially characterizes the conditional capacities 

(B/s), where B  A+n. We have, indeed 2
+n+1

 equations (the number of characteristic 

functions of the sets in A+n) for (+1)2
+n+1

 conditional capacities (one for each B in A+n and 

one for each node at date ). Then, these relations cannot constrain the capacity  defined by 

case (ii). QED 

 

Proposition 3.2.2: In a Dynamically Consistent Choquet Random Walk the capacity  is sub-

linear
8
 if and only if c ≤ ½. Moreover it does not reduce to a probability if and only if c ≠ ½. 

 

Proof: We only have to prove that: [ t = 1,…,T,  B  At, (B) + (B
C
) ≤ 1]  c ≤ ½, 

because non-additivity results from the same reasoning. 

First, if the capacity is sub-linear, at date 1, for B = s1
1
 and B

C
 = s1

2
, (B) + (B

C
) = 2c ≤ 1, 

implies c ≤ ½. 

The reciprocal obtains by induction and let’s assume that c ≤ ½ in the sequel: 

                                                 
8
 A sublinear  (or convex) capacity characterises aversion to ambiguity (Gilboa and Schmeidler 1993). 
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At the first stage, B  A1. B =  or B = S1, implies (B) + (B
C
) = 1, and B = s1

1
 or B = s1

2
 

yields: (B) + (B
C
) = 2c. The property is then established at date 1. 

Suppose that it is also true at date t and consider some B  At+1. From relation (3.3): 



(B)(BC )  c({st :[st1
u  B][st1

d  B]}) (1c)({st :[st1
u  B][st1

d  B]}) 

 



c({st :[st1
u  BC ][st1

d  BC ]}) (1c)({st :[st1
u  BC ][st1

d  BC ]}). 

With the following notations: 



D{st :[st1
u  D][st1

d  D]} and 



D{st :[st1
u  D][st1

d  D]}, it follows that: 



(B)(BC )  c[(B)(BC )] (1c)[(B)(BC )]. 

We have: 



BC  B
C

 and 



BC  B
C

 therefore: 



(B)(BC )  c[(B)(B)(B
C

)(B
C

)](B)(B
C

). 

With 



B B(B)(B)  0, and 



B
C
 BC  BC  B

C
(B

C
)(B

C
)  0, and because 

c ≤ ½, it follows that: 



(B)(BC ) 
1

2
[(B)(B)(B

C
)(B

C
)](B)(B

C
), or: 



(B)(BC ) 
1

2
[(B)(B

C
)(B)(B

C
)]. 

As 



D At1  [D At D At ], by hypothesis: 



(B)(B
C

) 1, 



(B)(B
C

) 1, and 

then:



(B)(BC ) 1. QED 

 

3.3 Symmetric Random Walk 

 

We call Symmetric Random Walk a binomial process for which the “up” and the “down” 

movements correspond to the same magnitude. Without loss of generality, we take this 

increment to be the unity, and the departure point to be zero. In the probabilistic model, i.e. 

the case where c = ½, this process is a discrete time Brownian motion. 
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To compute the Choquet expectation of such a process we need to characterize the 

decumulative distribution function of capacity . 

 

Proposition 3.3.1: The decumulative function of capacity  is obtained by iteration from: 

 t = 2,…,T,  n = 1,…, t, 



(st
1,,st

n )  c(st1
1 ,,st1

n ) (1c)(st1
1 ,,st1

n1)    (3.4) 

and 



(s1
1)  c . 

The closed form of the decumulative function is: 

 t = 1,…, T,  n = 1,…, t – 1, 



(st
1,st

n )  c tn1 j

t  n  j









(1 c)

j

j0

n1

  (3.5) 

 

Proof: We have: 



i 1,,n 1,(st
1,,st

n /st1
i ) 1,(st

1,,st
n /st1

n )  c,j  n 1,,t,(st
1,,st

n /st1
i )  0 

If we apply relation (3.2) to 



X 1
st
1st

n , it follows that: 



(st
1,,st

n )  c(st1
1 ,,st1

n ) (1c)(st1
1 ,,st1

n1) (3.4) 

If we put the expression of the decumulative function given by relation (3.5) in the right hand 

side of relation (3.4), we have: 



c(st1
1 ,,st1

n ) (1c)(st1
1 ,,st1

n1)  

0 

1 

-1 

2 … 

0 … 

 

-2 … 
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

 c[c tn
j

t  n  j 1









(1 c)

j

j0

n1

 ] (1 c)[c tn1 j

t  n  j









(1 c)

j

j0

n2

 ] 

 



 c tn1[
j

t  n  j 1









(1 c)

j

j0

n1

 
j

t  n  j









(1 c)

j1

j0

n2

 ] 

 



 c tn1[1
j

t  n  j 1









(1 c)

j

j1

n1

 
j 1

t  n  j 1









(1 c)

j

j1

n1

 ] 

 



 c tn1{1 [
(t  n  j 1)!

j!(t  n 1)!


(t  n  j 1)!

( j 1)!(t  n)!
]

j1

n1

 (1 c) j} 

 



 c tn1[
0

t  n









(1 c)

0 
(t  n  j)!

j!(t  n)!
j1

n1

 (1 c) j ] 

 



 c tn1 j

t  n  j











j0

n1

 (1 c) j  



(st
1,,st

n ) 

Therefore, relation (3.5) satisfies relation (3.4). QED 

 

Proposition 3.3.2: The Choquet Expectation of the payoffs at date t of a Symmetrical 

Choquet Random Walk is:  t = 0,…, T,  E(Xt) = t (2c – 1) (3.6). 

 

Proof: The payoffs of X at date t are: 



X(st
1)  t,X(st

2)  t 2,,X(st
t)  t  2,X(st

t1)  t . 

Then, their Choquet Expectation is: 



E(Xt ) t[1(st
1,,st

t )] (t 2)[(st
1,,st

t )(st
1,,st

t1)] 

  



 (t 2)[(st
1,st

2)(st
1)] t(st

1) 

 



t  2[(st
1,,st

t)(st
1,,st

t1)(st
1)]. 

Relation (3.4) in proposition 3.3.1 implies: 



(st
1,,st

t )(st
1,,st

t1)(st
1)  c[(st1

1 ,,st1
t )(st1

1 ,,st1
t1)] 

  



(st1
1 ,,st1

t1)(st1
1 ,,st1

t2)(st1
1 ,st1

2 )(st1
1 )(st1

1 )] 

  



(st1
1 ,,st1

t1)(st1
1 ) 

 



 c (st1
1 ,,st1

t1)(st1
1 ) . 

It follows that: 



E(Xt ) t  2[c (st1

1 ,,st1

t1)(st1

1 )] 

 



t  2[c  c (st2
1 ,,st2

t2)(st2
1 )] 
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 … 

 



t  2[(t 1)c (s1
1)] t(2c 1). QED 

 

Remark 1: c < ½  E(Xt) < 0. This is consistent with the DM’s aversion to ambiguity that 

makes her give a negative value to a fair game. 

Remark 2: Other Symmetric Random Walks can be obtained from this one by a positive 

affine transformation. The Choquet integral is linear with respect to this transformation. 

For  t = 0,…, T, Yt = a Xt + b, a > 0, we have: E(Yt) = a t (2c – 1) + b. 

As a result we can address the cases where the mean is non zero and we can make volatility 

vary. 

 

4. Independence 

 

We want to consider two “independent random variables” XT and YT that represent the final 

payoffs of two Symmetric Choquet Random Walks. Obviously, “independent random 

variables” have to be defined in the context of non-additive measures. We do it in the 

following, using a slightly more general definition than the one usually adopted (e.g. 

Marinacci, 1997). In the sequel, we omit the time index, which is useless because we assumed 

dynamic consistency. 

The possible values of Y are: T, T – 2,…, – T + 2, – T. For a real interval [a, b], which doesn’t 

contain all these values but at least one of them, let D be the information of the decision 

maker: D = {s  S / Y(s)  [a, b]}. Similarly, let us define: B = {s  S / X(s)  [a, b]}. 

In this framework, relation (3.1) becomes: 



[

iD,DC

 X(s) i (s)](i)

sS

  X(s)(s)

sS

   (4.1) 

As in section 3.1, the conditional capacities are normalised in the following way: 

 D  S, (/D) = 0, (S/D) = 1,  B  S, (B/D) = (BD/D). 

 

Whatever the updating rule used to define the conditional capacity, independence between 

two random variables expresses the idea that conditioning their joint distribution by any one 

of them yields the other’s marginal measure: 

 

Definition 4.1: The random variables X and Y are independent if and only if: 
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 D = {s  S / Y(s)  [a, b]}  S,  B = {s  S / X(s)  [a, b]}  S : (B/D) = (B). 

 

Notice that, most papers following Marinacci (1997) give a definition that is a particular case 

of this one: (BD) = (B) (D). Indeed, whatever the updating rule we have: 

 

Proposition 4.1: Under relation (4.1), if the random variables X and Y are independent: 

 D  S,  B  S, (BD) = (B).(D). 

 

Proof: 



1B(s)(s)

sS

 (B) (B /D) (BD /D)  1BD (s)D(s)

sS

 . 

On the one hand, we have: 



[ 1B (s)(s)].1D(s)(s)

sS


sS

 (B) 1D(s)(s)

sS

 (B).(D), 

and on the other hand: 



[ 1B (s)(s)].1D(s)(s)

sS


sS

  [ 1BD (s)D(s)].1D(s)(s)

sS


sS

  



 [ 1BD (s)D(s)

sS

 ].(D)  [ 1BD (s) i (s)](i)

sS


iD,DC

 , 

because: 



1BD(s)D
C

(s)

sS

 (BD /DC ) (/DC )  0. 

Relation (4.1), for  s  S, X(s) = 1BD(s), implies: 



[ 1BD(s) i (s)](i)

sS


iD,DC

  1BD(s)(s)

sS

 (BD), 

and then: (BD) = (B).(D). QED 

 

5. Convergence towards a Brownian motion 

 

We first characterise the variations of the decumulative function of the previous dynamically 

consistent Choquet random walk. 

 

Proposition 5.1:  t = 1,…, T,  n = 1,…, t +1, 



 t
n (st

1,st
n )(st

1,st
n1) 

n 1

t









c
tn1(1 c)n1 (5.1)   where we set: 



(st
0)  0 . 
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Proof: Relation (5.1) is true for t = 1 and we suppose that it holds true for a given t (t ≤ T). 

With relation (3.4), we have: 



 t1
n  c(st

1,st
n ) (1c)(st

1,st
n1)c(st

1,st
n1) (1c)(st

1,st
n2)  



 c[(st
1,st

n )(st
1,st

n1)] (1c)[(st
1,st

n1)(st
1,st

n2)] 



 c t
n  (1c) t

n1 



 c
n 1

t









c
tn1(1 c)n1  (1 c)

n 2

t









c
tn2(1 c)n2 




n 1

t











n 2

t



















c
tn2(1 c)n1 




n 1

t 1









c
tn2(1 c)n1 

Relation (5.1) is then satisfied for t + 1 and then for any t by induction.  QED. 

 

In order to interpret formula (5.1), recall that on a comonotonic cone, a capacity is represented 

by a particular probability distribution. Here it is a standard binomial distribution with 

parameters such that B(T, p) is in the core of capacity . Then, there’s an easy link with the 

multi-priors approach. 

For a convex capacity(c < ½), the core is given by: 

Core = {, probability distribution /  ≥ }, and, over one period: 



[p (st1
u /st ) (st1

u /st )  c,1 p (st1
d /st) (st1

d /st )  c] p [c,1c]. 

For a Symmetric Random Walk:



E[Xt1  Xt /st] 2p1, so that the MaxMin criterion 

yields: 



ArgMin
core( )

E (Xt1  Xt /st )  (c,1 c). This probability distribution, applied at each 

period, yields the binomial distribution corresponding to formula (5.1). 

 

Proposition 5.2: When the time interval converges toward 0, the Symmetric Random Walk 

defined by (5.1) converges towards a general Wiener process with mean m = 2c–1 and 

variance s
2
 = 4c(1–c). 

 

Proof: Recall that Xt is independent from Yt and the Yt’s are independent.  In the discrete time 

probabilistic model generated by (5.1), we have: Xt+1 = Xt + Yt, in which Yt takes the values: 1 

with probability c and –1 with probability 1–c.  

Then: E[Yt] = 2c–1 = m, Var[Yt] = 4c(1–c) = s
2
.  
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If we define a discrete time process Wt by: Wt = m h + s h
1/2

 Ut, where Ut takes values: 1 with 

probability ½ and –1 with probability ½, then E[Wt] = m h, Var[Wt] = s
2
 h.  

It is a standard result for Brownian motions that Wt converges toward a general Wiener 

process in continuous time: W(t) = m t + s B(t), where B(t) is the Brownian motion. QED 

 

Notice that if c < ½, then m < 0 and s
2
 < 1: both the mean and the variance are lower than in 

the probabilistic model. Indeed, ambiguity aversion yields lower weights on the ups and 

downs (c < ½) for given values (+1, –1), hence the variance is lower. 

 

6. Applications 

 

We can find possible applications of this approach to any model with ambiguity, for example 

macroeconomics “uncertainty models” where central banks are not aware of the “true” 

economic model. Another famous application would be a generalisation of the portfolio 

optimal choice under risk (Merton 1969, 1971, 1973). Here, let us consider a generalisation of 

the so called real option theory, i.e. a basic problem of optimal investment (cf. Dixit and 

Pindyck (1994)). 

A firm can use a patent to invest and, after that, develop a production. The investment is 

irreversible and the corresponding cost is totally sunk. Therefore, we face an optimal stopping 

problem: The firm has to choose the optimal date to exert its option to invest (if it is worth it). 

In the basic model, the profit obtained when the patent is used follows a geometric Brownian 

motion (t)0≤t≤T (where T is the expiration date of the patent after which there is no profits) 

such that: 

 dt =  t dt +  t dBt, (6.1) 

with 0  > 0, where Bt is the standard Brownian motion and  and  are some real numbers, 

with  > 0 and  < , where ,  > 0, is the firm discount rate. 

With the Choquet Random Walk, the profit is: 

 dt =  t dt +  t dWt, (6.2) 

where Wt is given by Proposition 5.2: 

 dWt = m dt + s dBt, (6.3) 

with: m = 2 c – 1, and s
2
 = 4 c (1 – c), and then: 

 dt = ( + m ) t dt + s  t dBt (6.4) 
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This relation is of the same type as (6.1), with ’ =  + m  and ’ = s  in place of  and . 

We can see that 0 < c < ½ implies – 1 < m < 0 and 0 < s < 1, and then  –  < ’ <  and 

0 < ’ < , a reduction of the instantaneous mean. But we also have the reduction of the 

volatility: an unexpected result! 

If we suppose that the horizon T is infinite, the value of the utilized patent V(t, t) does not 

depend on t directly and the model becomes stationary. The well known solution of the 

optimal stopping problem is then to invest at date t if and only if the value V(t) is larger than 

a reservation value V* such that: 

 



V*
 ' I

 '1
 (6.5) 

where I is the cost of the investment and the constant ’ is given by:
9
 

 



 '

('
1

2
 '2 ) ('

1

2
 '2 )2  2 '2

 '2
 (6.6) 

The effect of the Choquet distortion on the standard solution is equivocal, because it reduces 

at the same time the instantaneous mean and the volatility. It follows that the comparison 

between ’ and  (with parameters  and ) is a matter of empirical data. 

 

Consider now a stationary version of the Intertemporal Capital Asset Pricing Model (Merton 

(1969, 1971, 1973). 

Let (kt)0≤t≤T, the capital of the investor, which has to be allocated between a riskless asset with 

rate of return r, r > 0, and a risky asset the price of whom follows a geometric Brownian 

motion: 

 dPt =  Pt dt +  Pt dBt (6.7) 

with P0  > 0, where Bt is the standard Brownian motion and  and  are some real numbers, 

with  > 0 and  > 0. 

If (xt) is the part of the capital invested in the risky asset at date t, the program of the agent for 

a time horizon T is: 

 



Max
(xt )0tT

Et[u(kT )], k0 > 0 (6.8) 

where u(.) is an increasing and concave utility function. 

In the iso-elastic case: 

                                                 
9
 It is easy to check that  < ’ <  implies  >1 and then (6.5) is a solution of the problem. 
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

u(k) 
k1

1
,  > 0,  ≠ 1, 

the optimal solution is a constant: 

 



x *(t,k)  x 
1



 r

 2









 (6.9) 

With the Random Choquet Walk, this solution becomes: 

 



x *(t,k)  x'
1



'r

 '2








 (6.10) 

with ’ =  + m  , ’ = s  , m = 2 c – 1, and s
2
 = 4 c (1 – c). 

If 0 < c < ½, we have  –  < ’ <  and 0 < ’ < . It is easy to check that: 

 



x' x 
 r


 

m

1 s2


1

12c
. 

The value of the market price of risk  relatively to the ambiguity parameter c, gives the 

hierarchy between investment in the risky asset under ambiguity and under risk. 

Similarly: 

 



x'

c
 0 

 r




12c  2c2

12c
. 

The fact that investment in the risky asset is increasing with the reduction of ambiguity (when 

c increase towards ½, the ambiguity decreases) depends on the value of the market price of 

risk. 

 

In both applications, the effect of ambiguity is ambiguous! Our results differ from the ones 

obtained from applications of Epstein and Schneider (2003)’s recursive multi-priors model. 

As we shall see in the next section, results in both applications to real options (Nishimura and 

Osaki 2007) and to continuous time CAPM (Chen and Epstein 2002) are not modified 

because the effect of ambiguity is not straightforward. This is due to the deformations of both 

the mean and the variance in our model of Choquet expectations. 

 

7. Related literature and conclusions 

 

It may be useful to make more precise the link between Dynamically Consistent Choquet 

Random Walks and Recursive Multiple-priors in Epstein-Schneider (2003). In section 5, we 

have seen that, for a convex capacity, it was very simple to exhibit the possible conditional 

one-step-ahead priors, so that our model is recursive, indeed. But the Recursive Multiple-
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priors is based on a fundamental hypothesis: Rectangularity, and our model can be consistent 

with this approach only if this axiom is satisfied. We shall examine this point. 

Let us recall some notations briefly. 

The states space is , and the filtration is {Ft}0≤t≤T, (Ft is a finite partition). 

P is the set of priors, Pt() = {pt(): p  P} is the set of Bayesian updates, and 

Pt
+1

() = {pt
+1

(): p  P} is the set of conditional one-step-ahead measures. 

 

Definition 7.1: P is {Ft}-rectangular if for all t and , 



Pt() { pt1(')dm
 : pt1(') Pt1(')',m Pt

1()}, 

or 



Pt ()  Pt1dPt
1() . 

 

For a Dynamically Consistent Choquet Random Walk, the right hand side of the last equality 

is: 



Pt1dPt
1() { p( /st )m(st )

stSt

 : p,m core} {p( /st
i )m(st

i ) : p,m core}, 

for the state st
i
 such that  = {s0,…, st

i
,…, sT}. 

Under the assumption of independent random variables, wlog, we consider the state st
t+1

: 



Pt1dPt
1() {pTtmt : p,m [c,1c]} [cT ,(1c)T ]. 

p  core implies from relation (5.1) in which t = T, and n = T + 1: p() ≥ () = c
T
 and 

p(c
) = 1 – p() ≥ ( c

) = (1 – c)
T
. 

The left hand side in the definition of rectangularity is then: 



Pt ()  [cT ,(1c)T ], and this 

property is satisfied. As a consequence, all results obtained by the Multi-priors apply to the 

Choquet approach when the capacity is convex (c ≤ ½). However, the models differ and 

applications may not coincide. 

 

In order to emphasise the parallels and differences between the Dynamically Consistent 

Choquet Random Walk and the Recursive Multiple-priors, we can consider the continuous 

time model in Chen and Epstein (2002). 

In this last approach, we start from an “objective” distribution P, and a Brownian motion (Bt) 

with respect to P. The possible priors are the measures Q

 such that: 



dQ

dP
 zT

 , where zT

 is a P-martingale. 
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From the Girsanov theorem, it follows that a Brownian motion (Bt

) with respect to Q


 

satisfies: 



dBt
 tdt  dBt , where (t) is a stochastic process adapted to the filtration 

generated by (Bt). In this equation, the variance is not affected, this differs from the 

Dynamically Consistent Choquet Random Walk where, indeed: dWt = m dt + s dBt. 

We can see how close our approach is to the ones obtained under Epstein and Schneider 

(2003) recursive multi-priors model, however there are some important differences in the 

results. For instance in our Choquet model, the continuous time Brownian motion is 

deformed, in contrast with what happens in Chen and Epstein (2002). 

The literature on Dynamic risk measures is very close to this method. Risk is measured, at 

time t, by the maximum of the expectations of minus the sum of discounted cash-flows, with 

respect to probabilities in a close and convex set, conditionally to the information at time t. 

This result is obtained under some properties: coherence, dynamically consistency and 

relevancy
10

. The crucial one, consistency, is equivalent to the rectangularity of Epstein and 

Schneider (2003), as noted by Riedel (2004)
11

. 

 

Dynamically consistent Choquet random walks are a generalization of the classical approach 

when some ambiguity of the decision maker about the payoff processes is taken into account. 

It has been seen that it is manageable and yields results that can extend the usual results in the 

real option literature. The effects of ambiguity is perceived both in the deformation of the 

mean and of the variance at the limit, when time intervals converge toward zero, in contrast 

with what happens in the probabilistic case. Because the random walk is defined step by step, 

the dynamic valuation is, indeed recursive. It is tempting, in the case when the capacity is 

convex, to refer to the literature on the Gilboa and Schmeidler (1989) multi-priors approach, 

following works and applications proposed by Epstein and Schneider (2003) and Epstein and 

Chen (2002) for example. Their results rely on the property they dubbed “rectangularity” that 

is satisfied by a DCCRW. However the ambiguity on the limiting variance that appears in the 

DCCRW is absent in the multi-Prior, so that DCCRW offer some other practical perspectives 

in applications. 
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