Impact of terrain heterogeneities on coherent structures properties in the surface layer: experimental and numerical approaches
Clément Fesquet, Sylvain Dupont, Philippe Drobinski, Christian Barthlott, Thomas Dubos

To cite this version:
Clément Fesquet, Sylvain Dupont, Philippe Drobinski, Christian Barthlott, Thomas Dubos. Impact of terrain heterogeneities on coherent structures properties in the surface layer: experimental and numerical approaches. EGU General Assembly, Apr 2008, Vienna, Austria. n.p. hal-02817798

HAL Id: hal-02817798
https://hal.inrae.fr/hal-02817798
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Impact of terrain heterogeneities on coherent structures properties in the surface layer: experimental and numerical approaches

C. Fesquet(1), S. Dupont(2), P. Drobinski(1), C. Barthlott(3), T. Dubos(1)
(1) IPSL/LMD, (2) INRA; (3) IMK

This study investigates experimentally and numerically the impact of terrain complexity on the coherent structures properties using large-eddy simulation (LES) performed with and without forest canopy and turbulence data collected by two sonic anemometers at 10 and 30m height on the 30-m tower of the SIRTA observatory (Palaiseau, France). Using an objective detection technique based on wavelet transforms of fluctuations time series of atmospheric variables (vertical wind component or temperature) measured by the SIRTA and simulated by LES, the study shows that whatever the upstream complexity of the terrain, the coherent structures display turbulence properties which are independent of the complex nature of the terrain. Indeed, the frequency of occurrence, time duration of the coherent structures, the time separation between two structures and their relative contribution to the total fluxes (momentum and heat) appear to be independent from the upstream roughness. These results are fundamental since these coherent structures contribute significantly to the energy and matter transport between the surface and the atmosphere, and their “universal” properties may probably facilitate their parameterization in the numerical models even in presence of surface heterogeneities.