

Workshop Comparative Mapping in Salicaceae

Methods

Véronique Jorge INRA Orléans, P1d

8-10 March 2010

Comparative Mapping - intro -

Definiton

Alignment of chromosomes of related species based on genetic mapping of common DNA markers

Goal

Identification of conserved/specific genomic regions

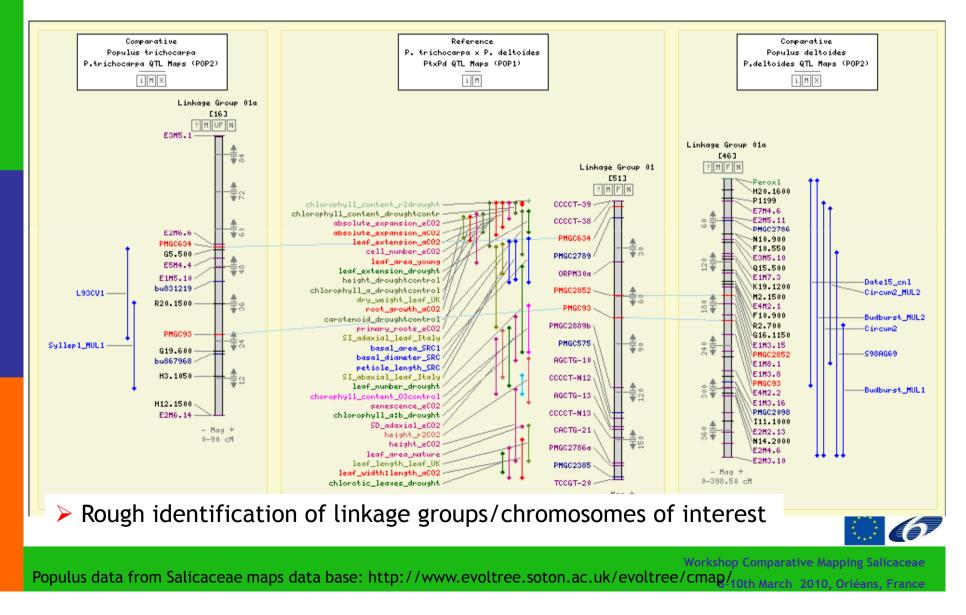
Question

Accumulation of QTL data based on heterogeneous mapping experiments (population types, sample sizes, evaluations methods, environments ...)

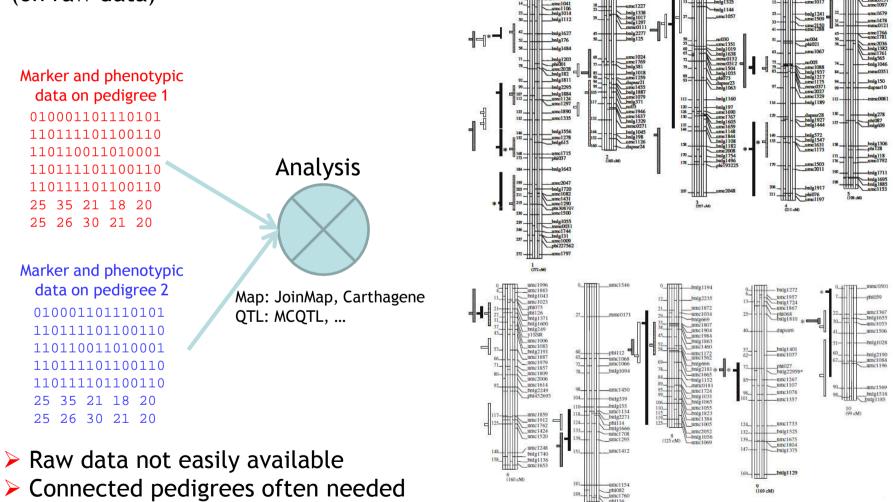
=>How many "real" QTLs are detected ?

Strategies

 \checkmark Simple graphical comparison


 ✓ Map construction and QTL analysis based on mutliple mapping experiment (on raw data)

 \checkmark Consensus and meta-analysis (on position data)


Simple graphical comparison: matching marker names (Cmap)

Comparative Mapping - Strategies -

Map construction and QTL analysis based on mutliple mapping experiment (on raw data)

Blanc et al. 2006 TAG 113:206-224

Comparative Mapping - Strategies -

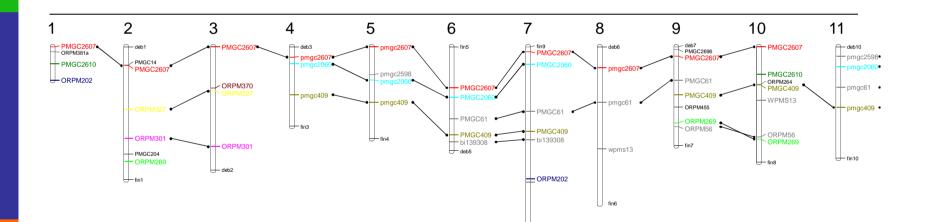
Consensus map and QTL meta-analysis based on position data

- > From elaborated data (maps, position and QTL confidence intervals)
- > Meta-analysis: combine data from different sources in a single study
- > Widely used in medical and social science

Advantages: elaborated data retrieved from published data

Steps for QTL meta-analysis

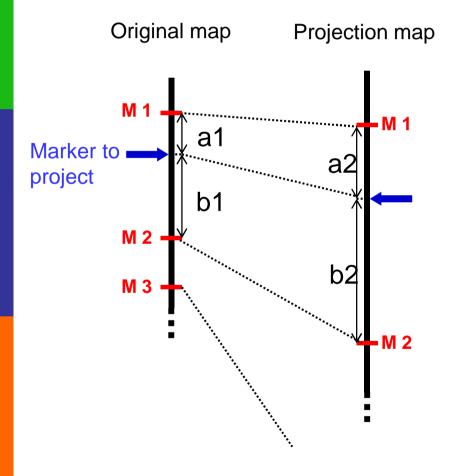
- > Create a consensus map
- Project QTL on the consensus map
- QTL meta-analysis



Create a consensus map

You need common markers

Example: case of a LG well covered by SSR (LG_VIII)



Workshop Comparative Mapping Salicaceae

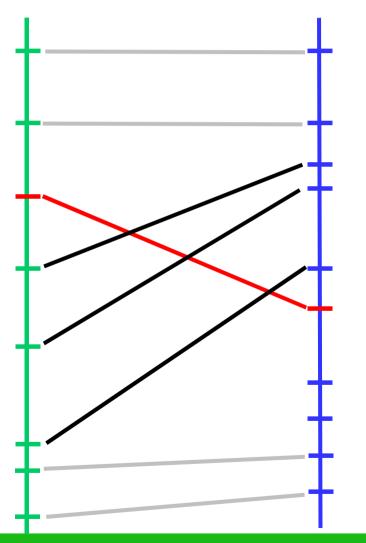
Biomercator

Projection approach: homothetic projection

$$R_{M1-M2} = \frac{a2 + b2}{a1 + b1}$$

$$a2 = R_{M1-M2} \times a1$$

For markers outside interval of common markers, a global ratio is computed



Biomercator Projection approach: homothetic projection

Resolution of inversions between markers shared between maps:

Majority criteria

-> red marker is discarded

Workshop Comparative Mapping Salicaceae

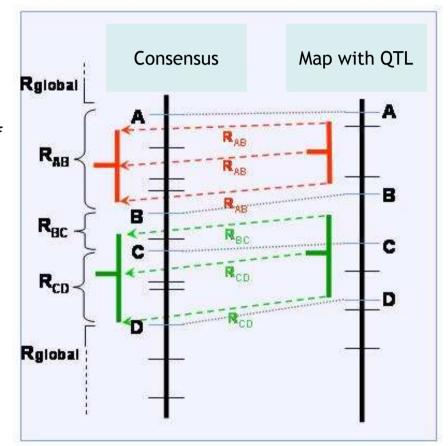
Biomercator Projection approach: homothetic projection

M 1 M 1. **Resolution of inversions** M 2 between two common -M 2 markers: M 3 The homogeneity criteria for the proportion coefficient R. -> marker M4 is discarded M 6 _M-6 M 5-_M_5

Biomercator Projection approach: homothetic projection

Well adapted when one of the genetic map is a reference
 -> all maps can be projected on the reference map

 \succ In the other cases, iterative projections could be possible, but not optimal because the all projection orders are not equivalent.


Map1 -> Map2 = Projected_Map1 Map3 -> Projected_Map1= consensus1 Map2 -> Projected_Map2= consensus2

Biomercator QTL projection on the consensus map

The **3 positions** describing the QTL (start/stop confidence intervals, position of the LOD peak) are projected on the consensus map using the **R** factor of the nearest marker interval

Workshop Comparative Mapping Salicaceae

Biomercator

QTL meta-analysis

Goffinet & Gerber (2004)

Assumptions:

Independence between QTL experiments

"These different experiments may represent several crosses, or several sires, or different traits, or different locations for the same trait, or different environmental conditions and experimental design"

"The quality of the results in these cases [non-independent observations] shows that the method is robust ..."

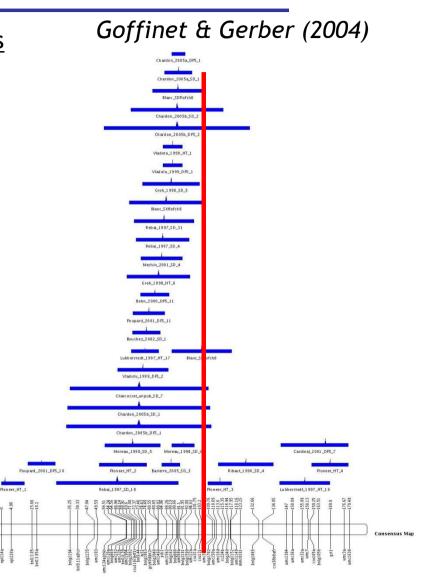
- > QTL data set = 10 to 40
- ➢ Size of the region analysed < 200 cM</p>

Biomercator

QTL meta-analysis

Analysis principle

Models tested:


number of "real" positions k = 1, 2, 3, 4 or n. (n = number of meta-QTL = number of initial QTLs). k = 1, all QTLs (n) located at a single position

k = 2, QTLs fall into 2 groups

•••

> For $k \ge 2$, all possible distributions of the n QTL in k groups are considered. The best distribution is chosen based on a maximum likelihood method (using estimated variances of initial QTL position).

To choose the best model (how many groups), a modified Akaike Information Criterion (AIC*) is used. The model giving the minimal value of the AIC* is the best model.

Biomercator

Data input format

Мар

mapname=POP2tricho
poptype=BC1

chromosome LGXIX

872	GCPM107	16.1 cM
434	E6M51.1.	11.9 cM
308	PMGC667	6.7 сМ
25	E4M2.7.T	9.4 cM
822	rClasTai	4.1 cM
433	E1M4.x.T	4.7 cM
30	E5M5.7.T	4.2 cM
871	GCPM104	5.0 cM
879	rE21M18.	10.3 cM
873	ORPM263	11.7 cM
870	GCPM79	

- Format analogous to Mapmaker output
- Distance between markers

QTL

mapName	name	chromosome	e trait	lodscore	r2	SIM	position	from	to
LGXIX	Rust3	LGXIX	MAX2_F	30.7	34.7	N	46.2	42.76	46.17
LGXIX	Rust4	LGXIX	MAX2_I	13.0	17.4	N	50.4	39.9	52.42
LGXIX	Rust5	LGXIX	MAX2_UK	15.0	24.2	N	41.9	39.9	45.88

1 map file and 1 QTL file for each map experiment
Data are converted in *.xml* files

Biomercator

How the program works

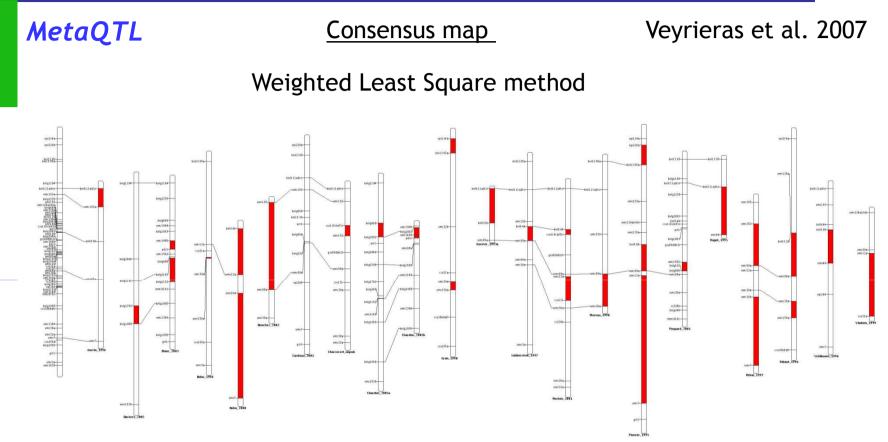
- Data included in the example: see « WS_Comp_Mapping_Salicaceae_DataSynthesis.ppt »
- Outputs
 - Map projection => XXXReport.out: a report of all LG comparisons
 - => XXXCommonMarkers.txt: list of common marker
 - => .txt and .xml files for all projection maps created

NB: note the order of map projection (not reported in the output files!)

• Meta-analysis =>

🕌 BioMercator v2.1								
<u>F</u> ile <u>D</u> isplay <u>T</u> ools								
→ MAP : Jorge_2010_D → MAP : map1 → MAP : map1bis → MAP : map2 → MAP : map3 → MAP : map4 ♥ → MAP : map5 ♦ ♥ → MAP : map5 ♦ ● → ↓ →						<u>I height2</u> , height1 SLA	deftaC s	UFLA 395 (0) =E1M37 (8) =CCCTC-32 (115) =CCCTC-32 (115) =CCCTC-32 (115) =CCCTC-32 (115) =CCCTC-32 (115) =CCMM376 (215) =CCMM376 (215)
MAP : k=	ta-analysis results							GCPM2637 (103) PMGC2709 (112)
		Model 1	Model 2	Model 3	Model 4	Model N		E3M1.10 (125.2)
	AIC value	1,146.68			83.07	95.37		PMGC456 (127.1 A16m1P (128)
Scale: 1	Mean position 1 (C.I.)	98.49 (95.57-101.4)			36.57 (31.82-41.32)			A16m1P (128) A13K4 (132) rL15.1200 (134)
	Mean position 2 (C.I.)		137.35 (133.62-141.07)					-rL15.1200 (134) -A5m4Kr (135.5)
QTL informations :	Mean position 3 (C.I.)		-	138.46 (134.66-142.26)	110.17 (86.91-124.47)			A13mP1r (140.4) E2M4.29 (140.8)
	Mean position 4 (C.I.)				138.46 (134.66-142.26)			E2M4.29 (140.8)
							ОК	-A3m1K (125.9) -PMoC456 (127.1) -A16m1P (128) -A13K4 (132) -L15.1200 (134) -A5m4Kr (135.5) -A13mP1r (140.4) -PMoC224 (140.4) -PMoC2249 (140.9) -PMoC2249 (143.1) -PMoC2266 (144.4) -PMoC2266 (144.4) -PMoC2266 (145.4) -ORPM40 (147.9) -ORPM250 (150.6) -A8mP6r (152.6) -B5M4.2 (154.7) -PMoC22523 (156.6) -PMoC2253 (156.6) -PMoC2253 (156.6) -PMoC2253 (156.6) -PMoC2253 (156.6) -PMoC22418 (163.7) -A3mP7 (166.4)

Steps for QTL meta-analysis


- Create a consensus map
- Project QTL on the consensus map
- > QTL meta-analysis

Workshop Comparative Mapping Salicaceae

8-10th March 2010. Orléans. France

Advantages:

- One step construction (vs iterative projection)
- Adjustment statistics for the consensus map (test for homogeneity between maps)
 - Possibility to set a reference map.

MetaQTL

Consensus map

Veyrieras et al. 2007

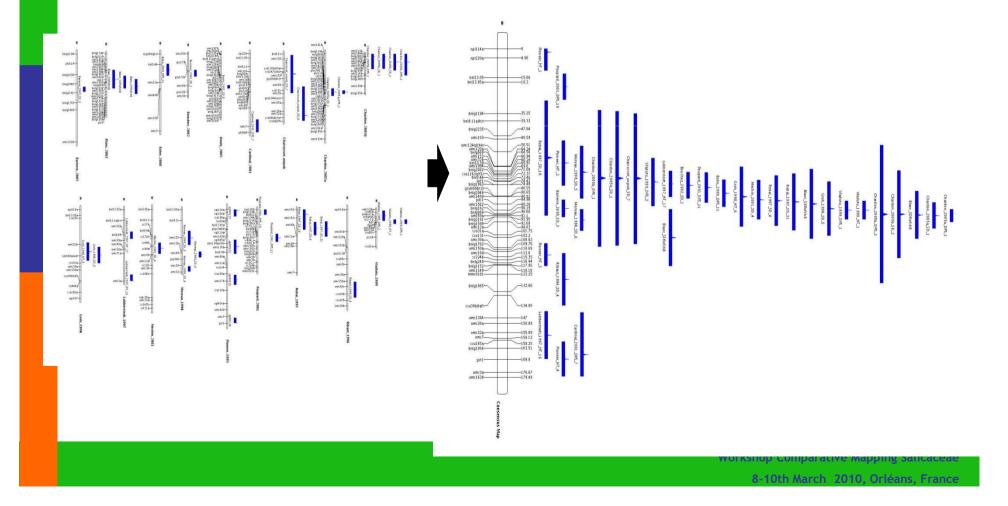
Evaluation of the method by simulations: *n* maps with a proportion *p* common markers

	n			2		5			10				
	р	0.15	0.25	0.50	0.75	0.15	0.25	0.50	0.75	0.15	0.25	0.50	0.75
BC	IMSE	0.28	0.44	0.82	1.24	0.33	0.52		1.62	0.43	0.64		1.65
	IMSEP	0.74	0.78	0.95	1.06	0.97	1.17	1.62	2.08	1.32	1.67	2.45	3.30
F2	IMSE	0.24	0.54	0.87	1.39	0.33	0.58	1.22	1.97	0.46	0.76	1.40	3.01
-	IMSEP	0.71	0.76	0.90	1.02	0.94	1.16	1.60	1.97	1.30	1.67	2.35	2.80

IMSE: Interval Mean Square Error, IMSEP: Interval Mean Square Error of prediction

A measure of the quality of the consensus map:

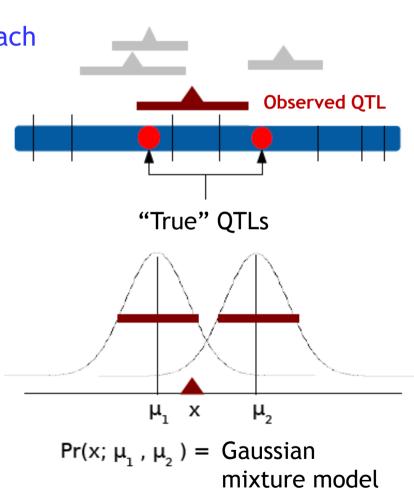
 \Rightarrow If >1, quality of the consensus map > quality of the individual map.


 \Rightarrow Increasing the number of maps (and the proportion of common markers) increase quality of the consensus map.

MetaQTL QTL projection on the consensus map Veyrieras et al. 2007

The simple homothetic rule + the ratio R is weighted by the probability that the QTL lies in the intervals of markers used for R calculation

MetaQTL

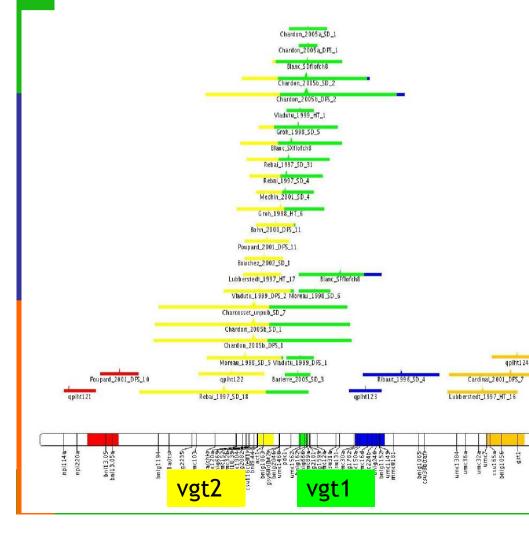

QTL meta-analysis

Vevrieras et al. 2007

Clustering based approach

k is the "true" number of QTL:

- Likelihood of observed QTL positions can be expressed as a Gaussian mixture model.
- Variances of observed QTL positions can be estimated using confidence intervals.
- Estimation of positions µ_k of the "true" QTLs by maximisation of the log-likelihood (EM algorithm)
- Criteria for choosing the "best"
 k: AIC*

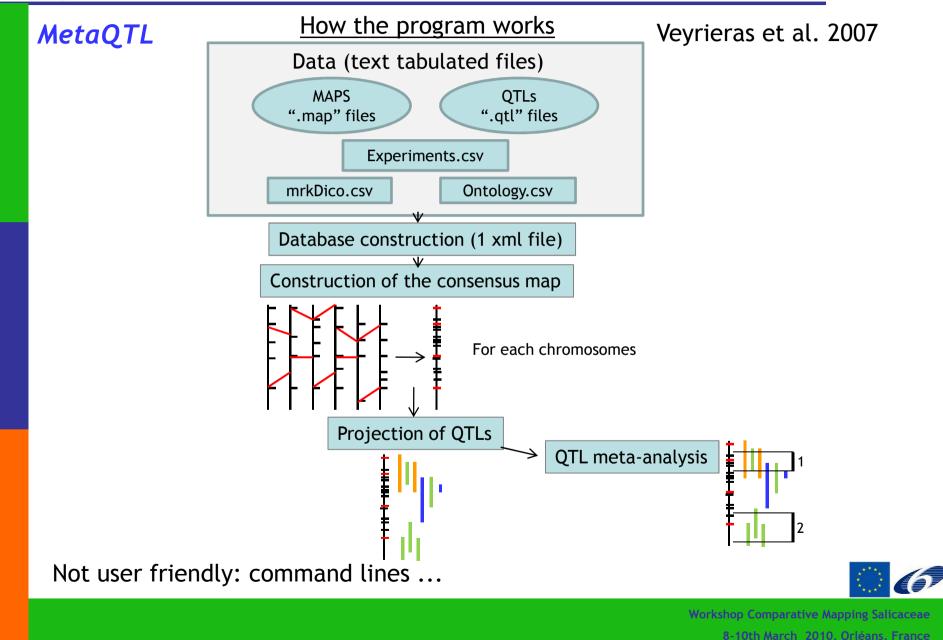


MetaQTL

QTL meta-analysis

Veyrieras et al. 2007

Simulations and analysis of real data sets showed that the confidence intervals of the meta-QTLs are considerably reduced compared to the observed QTL



Maize example:

- The best model **k** = 5 QTLs.
- Colors -> quantitative assignation of QTL -> 75% of observed QTLs correspond to vgt1 and/or vgt2.
- Confidence intervals reduced: vgt1 (~ 4cM) include a fine mapped QTL (Salvi et al., 2000).

MetaQTL

Data input format

Veyrieras et al. 2007

Experiments.csv

Tabulated text

map mapping.f	unction	mapping.unit	mapping.expansion	cross.type	cross.name	cross.size
Rae_2009	Kosambi	сM	0	BC	POP1	210
Jorge_2010_T	Kosambi	сM	0	BC	POP2	332
Jorge_2010_D	Kosambi	сM	0	BC	POP2	332
Novaes_2009	Kosambi	сM	0	BC	52-124	396
Paolucci_2010_6K3	Kosambi	сM	0	BC	POP4	140
Paolucci_2010_14P	11 Kosambi	сM	0	BC	POP4	140

mrkDico.csv

Tabulated text

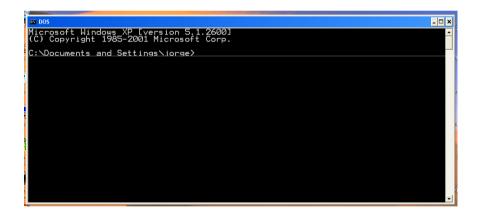
ORPM127	ORPM127a
ORPM15	ORPM015
ORPM16	ORPM016
ORPM23	ORPM023
ORPM26	ORPM026
ORPM276	ORPM276b
ORPM28	ORPM028a
ORPM29	ORPM029
ORPM30	ORPM030b
ORPM312	ORPM312a
ORPM49	ORPM049x
ORPM50	ORPM050
ORPM64	ORPM064
PMGC204	PMGC204a

Two columns Aliases or synonyms for a list of markers

evoltree

Meta-analysis - Methods -

MetaQTL	<u>Dat</u>	<u>ta input format</u> Ontology.csv	Veyrieras et al. 2007 Tabulated text
<pre>term_id term_name 1 my_ontology 2 growth 1 3 leaf_traits 1 4 height1 2 5 circum1 2 6 height2 2 7 circum2 2 10 syllep1 2 1 my_ontology 2 growth</pre>	Stem heigt Circumfere Stem heigt Circumfere Number of	nce at the end of h at the end of th nce at the end of	e first growing season the first growing season e second growing season the second growing season s at the end of the first growing season
	 height1 Circum1 height2 Circum2 syllep1 	Circumference at the stem heigth at the elements of the circumference at the stem of the s	end of the first growing season e end of the first growing season end of the second growing season e end of the second growing season s branches at the end of the first growing season

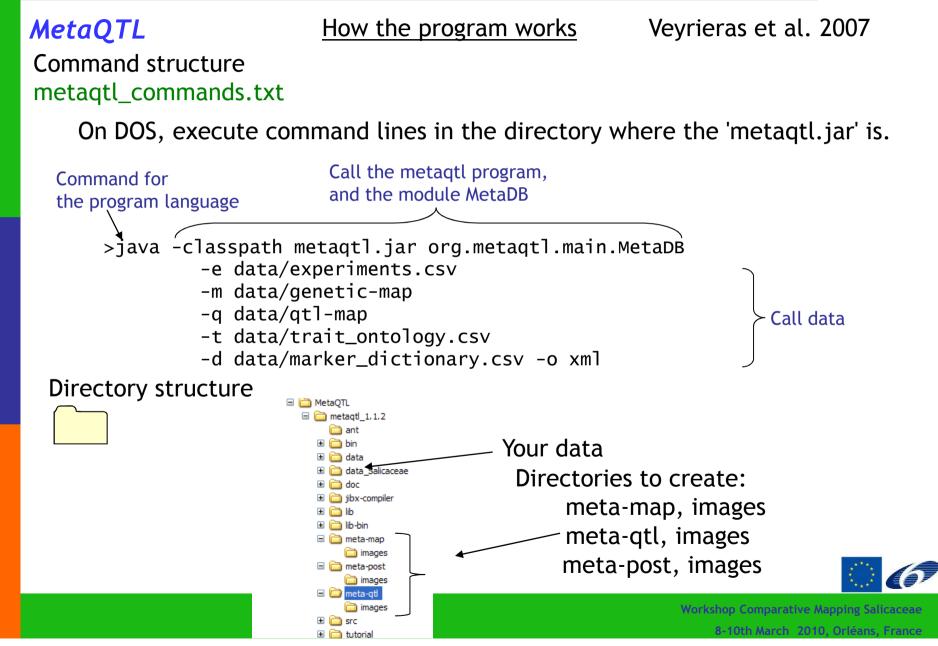

MetaQTL

How the program works

Veyrieras et al. 2007

On Windows

- Create the environment variable CLASSPATH
- > Launch a command line interface (MS-DOS):
 - Start > All programs > Accessories > Command Line Interface


Advise: save command lines in a txt file

Workshop Comparative Mapping Salicaceae

8-10th March 2010, Orléans, France

MetaQTL	How the program works	Veyrieras et al. 2007					
Modules							
MetaDB	Creating the database						
InfoMap MapView MMapView	Evaluations/basic compa Visualisation of one map Visualisation of several n						
ConsMap QTLProj QTLClust QTLTree	Construction of the conse Projection of the QTLs or Clustering of the QTLs						
Xml2A A2Xml	Converting files						

MetaQTL

How the program works

Veyrieras et al. 2007

Data included in the example: data from maize ~18 maps

map mapping.funct	tion r	mappin	g.unit	mappin	g.expansion n	mapping.cross	cross.name
Barierre_2005	haldane (сM	0	RI1	F838xF286	RI1	242
Blanc 2003	haldane (сM	0	SF2	DexF283xF810xF90	05 SF2	299
Bohn 1996	haldane (сM	0	SF2	CML131xCML67	SF2	215
Bohn 2000	haldane (сM	0	SF2	D06xD408	SF2	226
Bouchez 2002	haldane (сM	0	BC	F2xMBS847	BC	217
Cardinal 2001	haldane (сM	0	RI1	B73xB52	RI1	200
Charcosset unpub	haldane (сM	0	RI1	F2xF252	RI1	129
Chardon 2005a	haldane (сM	0	SF3	F7pxF2	SF3	150
Chardon 2005b	haldane (сM	0	SF3	F7pxGaspe	SF3	150
Groh 1998	haldane (сM	0	RI1	CML131xCML67	RI1	166
Lubberstedt 1997	haldane (сM	0	SF2	KW1265xD146	SF2	380
Mechin 2001	haldane (сM	0	SF5	F2xMBS847	SF5	100
Moreau 1998	haldane (сM	0	SF3	F2xF252	SF3	300
Pioneer 1995	haldane (сM	0	SF4	unknown	SF4	976
Poupard 2001	haldane (сM	0	SF6	F2xMBS847	SF6	86
Rebai 1997	haldane (сM	0	SF2	EuropeanxAmerica	n SF2	1200
Ribaut 1996	haldane (сM	0	SF2	Tropical	SF2	272
Vladutu 1999	haldane (сM	0	SF2	E20xN28	SF2	88

	Term_id	Term_name	Parent_id	Synonyms	Definition
	1	trait ontology			
Traits involved in	2	FT	1	Flowering Time	
	3	DPS	2	Days to pollen	shed
flowering time	4	SD	2	Silking date	
J	5	HT	2	Plant height	
	6	LN	2	Leaf number	***

Meta-analysis - Comparison of methods -

	Biomercator (Goffinet & Gerber, 2000)	MetaQTL (Veyrieras et al., 2007)
Assumptions	 Independent QTL experiments QTL data set = 10 to 40 Size of the region analysed < 200 cM 	- Independent QTL experiments
Construction of the consensus map	Homothetic projection Iterative	Weighted Least Square method One step
QTL projection	Homothetic projection	"Weighted" homothetic projection
QTL meta-analysis	Model tested: k = 1, 2, 3, 4 or n	Model tested: k = 1 to n Gaussian mixture model
Environment	Graphical interface	Command lines

Meta-analysis - Software improvements-

MetaQTL project

http://urgi.versailles.inra.fr/projects/MetaQTL/index.php

Objectives

ovoltree

Develop a new version of Biomercator

GENOPLANTE

- integrate powerful statistical methods from MetaQTL in a friendly user graphical interface
- implement methods for the integration of physical maps (genome sequence)
- visualisation of meta-QTLs in a genome browser (links to GnpMap: http://urgi.versailles.inra.fr/data/gnpMap/index.php)

Methodology and program references

- Arcade, A., A. Labourdette, M. Falque, B. Mangin, F. Chardon, A. Charcosset, and J. Joets. 2004. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324-2326.
- Goffinet, B., and S. Gerber. 2000. Quantitative Trait Loci: A Meta-analysis. Genetics 155:463-473.
- Veyrieras, J.-B., B. Goffinet, and A. Charcosset. 2007. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49.

Applications in crops with MetaQTL methodology

- Loffler, M., C.C. Schon, and T. Miedaner. 2009. Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Molecular Breeding 23:473-488.
- Marandel, G., J. Salava, A. Abbott, T. Candresse, and V. Decroocq. 2009. Quantitative trait loci meta-analysis of Plum pox virus resistance in apricot (Prunus armeniaca L.): new insights on the organization and the identification of genomic resistance factors. Molecular Plant Pathology 10:347-360.

References

Applications in crops with Goffinet & Gerber / Biomercator methodology

- Ballini, E., J.B. Morel, G. Droc, A. Price, B. Courtois, J.L. Notteghem, and D. Tharreau. 2008. A genome-wide metaanalysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Molecular Plant-Microbe Interactions 21:859-868.
- Chardon, F., B. Virlon, L. Moreau, M. Falque, J. Joets, L. Decousset, A. Murigneux, and A. Charcosset. 2004. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169-2185.
- Lanaud, C., O. Fouet, D. Clement, M. Boccara, A.M. Risterucci, S. Surujdeo-Maharaj, T. Legavre, and X. Argout. 2009. A meta-QTL analysis of disease resistance traits of Theobroma cacao L. Molecular Breeding 24:361-374.
- Hanocq, E., A. Laperche, O. Jaminon, A.L. Laine, and J. Le Gouis. 2007. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theoretical and Applied Genetics 114:569-584.
- Khowaja, F.S., G.J. Norton, B. Courtois, and A.H. Price. 2009. Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. Bmc Genomics 10.
- Shi, J., R. Li, D. Qiu, C. Jiang, Y. Long, C. Morgan, I. Bancroft, J. Zhao, and J. Meng. 2009. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851-861.
- Rong, J., E.A. Feltus, V.N. Waghmare, G.J. Pierce, P.W. Chee, X. Draye, Y. Saranga, R.J. Wright, T.A. Wilkins, O.L. May, C.W. Smith, J.R. Gannaway, J.R. Wendel, and A.H. Paterson. 2007b. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577-2588.

