Changes in pasta protein networks induced by drying and their relationship to protein digestibility and allergenicity
Chantal Brossard, Maud Petitot, Cecile Barron, Marie-Anne Legoux, Evelyne Paty, Sandra Denery-Papini, Valérie Micard

To cite this version:
Chantal Brossard, Maud Petitot, Cecile Barron, Marie-Anne Legoux, Evelyne Paty, et al.. Changes in pasta protein networks induced by drying and their relationship to protein digestibility and allergenicity. 4. International Symposium on Molecular Allergology, Oct 2010, Munich, Germany. 2010. hal-02818282

HAL Id: hal-02818282
https://hal.inrae.fr/hal-02818282
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pasta is a popular food which possesses interesting nutritional quality but may trigger allergic reaction in sensitized people. Many questions remain open for research area, including the relationship between pasta processing, pasta structure and resulting nutritional properties. The purpose of this study was to characterise the structure of pasta dried at different conditions and to relate it to the in vitro digestibility and allergenicity of proteins. Four drying profiles were studied: Low Temperature 55°C (LT), High Temperature 70°C (HT), Very High Temperature 90°C applied either from the beginning of the cycle, when the moisture content of spaghetti was high (20%) (VHT) or at the end of the drying cycle, when the moisture content of pasta was low (12%) (VHT_LM).

Proteins: Size Exclusion HPLC (SE-HPLC) after protein extraction with SDS (detergent), then with DTE (reducer) in dried and cooked pasta (Fig.1).

Microstructure: Confocal Laser Scanning Microscope of cross sectioned cooked pasta after protein staining with rhodamine acid (Fig. 2).

Protein digestibility: In vitro digestion of cooked pasta composed of a buccal phase (α-amylase, pH7), a gastric phase (pepsin, PH2) and an intestinal phase (pancreatin, pH7). Protein hydrolysis was evaluated by measuring the increase in free amine groups in protein extracts (Fig. 3).

Protein allergenicity: Juices from in vitro bucco-gastric or pancreatic digestes were used to inhibit recognition of wheat proteins by IgE from a pool of allergic patients (table 1).

Methods

Proteins

<table>
<thead>
<tr>
<th>Digestion juice from the end of</th>
<th>LT</th>
<th>HT</th>
<th>VHT</th>
<th>VHT_LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-gliadin gastric phase</td>
<td>66</td>
<td>64</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td>α-gliadin intestinal phase</td>
<td>16</td>
<td>14</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>α-gliadin gastric phase</td>
<td>88</td>
<td>79</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>α-gliadin intestinal phase</td>
<td>78</td>
<td>75</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td>Low MW glutenins gastric phase</td>
<td>93</td>
<td>91</td>
<td>90</td>
<td>87</td>
</tr>
<tr>
<td>Low MW glutenins intestinal phase</td>
<td>51</td>
<td>66</td>
<td>46</td>
<td>63</td>
</tr>
<tr>
<td>Albumin/glutelin fraction</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Protein Solubility

- **Dried pasta are different but cooked pasta are similar**
 - Increasing drying temperatures led to increased protein aggregation (lower protein solubility in SDS).
 - Aggregation probably occurred through disulphide bonds (increased DTE-soluble fraction) and through other covalent bonds (presence of insoluble proteins) with VHT drying profiles.

Allergenicity of Digests from Cooked Pasta

- **Bucco-gastric phase**: no significant effect of the drying profile (data not shown)
- **Intestinal phase**: VHT LM drying profile significantly decreased protein digestibility (by 10%) compared to other drying processes.

Acknowledgement

PASTALEG was carried out within the framework of Programme National de la Recherche and financially supported by the Agence Nationale de la Recherche.
d3 remplace 20 ppm
 gluten par 20 ppm