Changes in pasta protein networks induced by drying and their relationship to protein digestibility and allergenicity
Chantal Brossard, Maud Petitot, Cecile Barron, Marie-Anne Legoux, Evelyne Paty, Sandra Denery-Papini, Valérie Micard

To cite this version:
Chantal Brossard, Maud Petitot, Cecile Barron, Marie-Anne Legoux, Evelyne Paty, et al.. Changes in pasta protein networks induced by drying and their relationship to protein digestibility and allergenicity. 4. International Symposium on Molecular Allergology, Oct 2010, Munich, Germany. 2010. hal-02818282

HAL Id: hal-02818282
https://hal.inrae.fr/hal-02818282
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pasta is a popular food which possesses interesting nutritional quality but may trigger allergic reaction in sensitized people. Many questions remain open for research area, including the relationship between pasta processing, pasta structure and resulting nutritional properties. The purpose of this study was to characterise the structure of pasta dried at different conditions and to relate it to the in vitro digestibility and allergenicity of proteins. Four drying profiles were studied: Low Temperature 55°C (LT), High Temperature 70°C (HT), Very High Temperature 90°C applied either from the beginning of the cycle, when the moisture content of spaghetti was high (20%) (VHT) or at the end of the drying cycle, when the moisture content of pasta was low (12%) (VHT_LM).

Methods

Proteins: Size Exclusion HPLC (SE-HPLC) after protein extraction with SDS (detergent), then with DTE (reducer) in dried and cooked pasta (Fig.1).

Microstructure: Confocal Laser Scanning Microscope of cross sectioned cooked pasta after protein staining with luchesin acid (Fig. 2).

Protein digestibility: In vitro digestion of cooked pasta composed of a buccal phase (α-amylase, pH7), a gastric phase (pepsin, PH2) and an intestinal phase (pancreatin, pH7). Protein hydrolysis was evaluated by measuring the increase in free amino groups in protein extracts (Fig. 3).

Protein allergenicity: Juices from in vitro bucco-gastric or pancreatic digests were used to inhibit recognition of wheat proteins by IgE from a pool of allergic patients (table 1).

Microstructure of cooked Pasta

![Microstructure of cooked Pasta](image)

Allergenicity of Digests from Cooked Pasta

Table 1. Competitive ELISA with digestion juices from cooked pasta and a pool of sera from allergic patients to wheat. Percentage of inhibition obtained with digestion juices at the end of the gastric phase (5 minutes by α-amylase and 3 hours by pepsin) and at the end of the intestinal phase (end of gastric phase + 3 hours by pancreatin) are presented. Distinct letters by parameter (SDS, DTE or Insoluble) within each graph (A or B) indicate significant difference between mean values (p<0.05).

<table>
<thead>
<tr>
<th>Digestion juice from the end of</th>
<th>LT</th>
<th>HT</th>
<th>VHT</th>
<th>VHT_LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-gliadin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gastric phase</td>
<td>66</td>
<td>64</td>
<td>44</td>
<td>40</td>
</tr>
<tr>
<td>intestinal phase</td>
<td>16</td>
<td>14</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>γ-gliadin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gastric phase</td>
<td>88</td>
<td>79</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>intestinal phase</td>
<td>78</td>
<td>75</td>
<td>72</td>
<td>77</td>
</tr>
<tr>
<td>Low MW glutenins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gastric phase</td>
<td>93</td>
<td>91</td>
<td>90</td>
<td>87</td>
</tr>
<tr>
<td>intestinal phase</td>
<td>51</td>
<td>66</td>
<td>46</td>
<td>63</td>
</tr>
<tr>
<td>Albumin/ glutelin fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gastric phase</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>intestinal phase</td>
<td>14</td>
<td>16</td>
<td>14</td>
<td>21</td>
</tr>
</tbody>
</table>

- Wheat fraction IgE reactive peptides from different wheat fractions are present in all tested digestion juices.
- Digestion step: digests from gastric phase are richer in IgE reactive peptides than those from intestinal phase, difference depends on wheat fraction.
- Drying process: compared to LT process, increasing the drying temperature led to a reduction in gastric digests and an increase in intestinal digests of IgE reactive peptides, specially for VHT_LM.

Protein digestibility in Cooked Pasta

![Protein digestibility in Cooked Pasta](image)

VHT_LM decreased significantly protein digestibility (by 10%) and increased allergenicity of intestinal digests. This could not be explained by a different protein spatial distribution at a microscopic level. VHT_LM cooked pasta presented a higher proportion a high molecular weight protein aggregates (data not shown) which may have contributed to this lower digestibility and higher allergenicity. Both gluten and soluble proteins seemed to be involved. It appears that applying VHT at the end of the drying cycle led to the formation of specific protein aggregates.
d3 remplacer 20 ppm gluten par 20 ppm
dj161659; 01/09/2009