The observation of genetic data on individuals gives us information about the history of the populations the individuals are sampled from and enables us to estimate related meaningful parameters. One parameter of interest is selection, which increases the probability of being transmitted to the next generation. The detection of genes that have been under strong selective pressure could have very important biological consequences. For example, this type of genes are frequently related to disease's resistance or in the case of livestock, to interesting agronomical characteristics.

Statistics tests are needed to separate neutral from adaptative effects along the genome. Their null hypothesis is that the considered locus has evolved under neutrality and the alternative hypothesis is that it has been target of selection (natural or artificial). Various tests have been proposed.

In our case, we want to test the signatures of selection in populations whose evolutionary divergence time is short. The history of the populations have a tree based evolution with heterogeneous effective population sizes and correlations between populations. A test for detecting selection that takes into account this particular population history has recently been published, but treat loci independently. However, data consists in relatively dense markers. Capturing the information given by the correlation between sites would thus be very helpful as well, in order to detect signatures of selection.

The objective of this work is to derive a new exploratory test that takes into account the historical background of the populations as well as the linkage disequilibrium. To do this, we mixed two ideas developed in two separate works. One considers the history of the population, but tests the loci one by one and the other one is an haplotype clustering model. We establish an interaction between both works by proposing a new test.

We run some simulations to get an idea of the performance of this new test. After applying the test, we saw that its distribution is proportional to a χ 2 and that the power is not the highest as we expected. We also applied it to a real data set and saw that the test detected whole genomic regions, while point wise tests were only significant at 1 to 3 dispersed SNP, but detected also other regions that are not detected by point wise methods. We do not know if they are selected loci or false positives at this time.

Although the very first simulated results were not the best, they gave us different lines to continue the research as: testing if the clusters are well constructed, calculating its "initial" distribution or building two clusters, from the information given by K clusters in order to reduce the bias. And applying the local score theory to detect the magnitude of the selected rei gion.
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Introduction

The transmission of genetic material from one generation to another is a stochastic phenomenon, that depends on various biological parameters, like the mutation rate of the DNA, the migration rate of individuals between populations and the intensity of selection. The observation of genetic data on individuals enables us to estimate these parameters and gives us information about the history of the populations the individuals are sampled from. The parameter of interest here is selection (natural or artificial), which increases the probability of being transmitted of some individuals. The genes that have been under strong selective pressure are relatively rare on the genome. Their detection could have very important biological consequences. For example, this type of genes are frequently related to disease's resistance or in the case of livestock, to interesting agronomical characteristics.

Statistics tests are needed to separate neutral from adaptative effects along the genome. In these type of test the null hypothesis (H 0 ) is that the considered locus has evolved under neutrality and the alternative hypothesis (H 1 ) is that the locus has been the target of selection. Various tests have been proposed, in this context, depending on the selection model, and the design of the collected data. In our case, we want to test the signatures of selection in breeds (populations) within the same species, i.e. the evolutionary divergence time is short. The history of the populations have a tree based evolution with heterogeneous effective population sizes and correlations between populations. A test for detecting selection that takes into account this particular population history has recently been published [START_REF] Bonhomme | Detecting selection in population trees: The lewontin and krakauer test extended[END_REF]). However, loci are considered independently from each other. Moreover, data consists in relatively dense markers. Capturing the information given by the correlation between sites would thus be very helpful as well, in order to detect signatures of selection.

The objective of this work is to derive a new exploratory test that takes into account the historical background of the populations as well as the linkage disequilibrium. v In order to do this, we mixed two ideas developed in two separate works. The first one considers the history of the population, but tests the loci one by one. The second one is an haplotype clustering model. Here we establish an interaction between both works by proposing a new test. We run some simulations to get an idea of the performance of this new test. We also applied it to a real data set.

In the next chapter we present some models of evolutionary forces and we define a way of measuring the relationships between different populations. In the third chapter we present the two models the new test is based on. In the first part of this chapter we show the principal characteristics of the F -LK test, which is the test that considers the history of the populations. And in the second part we present a classification model based on a Hidden Markov model. In the final chapter we put the two ideas together and propose a new test. To understand how the test works we show results obtained by simulation and by applying the test to real data. Finally we propose some future work. vi Chapter 1 A short introduction to population genetics modeling.

In this chapter we define the important notions of population genetics, that we are going to work with, and the evolution forces that act on populations.

Alleles and genotypes.

A locus is a fixed position on the genome composed of one or several DNA bases. This can be a gene, but does not have to be. If several variants of this locus exist, we call them alleles. In diploid populations the loci are associated by pairs in the individuals, one inherited from the father and one from the mother. Here, since our focus is at the population level, we are going to see the population as a genetic pool and the individuals as transitory genetic carriers.

Considering a locus that has two possible alleles, A and a, a diploid individual can have three possible genotypes: AA, Aa, aa. The amount of possible genotypes increase very much with the number of alleles and makes calculations more complicated. So, in the following we will assume only two alleles per locus in the populations, unless otherwise specified.

To describe the genetic composition at a locus in a population, there are two different measures: the allele frequencies and genotype frequencies. The first one forgets that the loci are paired, so is the frequency of allele A (or allele a). The second one takes the pairs of alleles into account, i.e. the frequencies of AA, Aa, aa. If we know the genotype frequencies, it is direct to calculate the allele frequencies, as follows:

let p be the frequency of the (arbitrary) first allele, A and q = 1 -p the frequency of the other allele, a then,

p = f req(AA) + 1 2 f req(Aa) q = f req(aa) + 1 2 f req(Aa) (1.1)
If we had m alleles, we would have C m 2 = m(m-1) 2 genotypes, reasoning in the same way as we did in the 2-alleles-case, it is easy to deduce the same type of laws. Calling A i , i = 1, . . . m the m alleles and p i , i = 1, . . . m their respective frequencies, we have:

p i = f req(A i A i ) + 1 2 j =i f req(A i A j ) ∀i = 1, . . . m.

The Hardy-Weinberg Equilibrium

The model developed by Hardy and Weinberg is a purely theoretical model, but it illustrates very well how the genetic structure is transmitted from one generation to another and it is useful as an initial model.

The hypothesis of the model are:

H1:

• diploid population

• autosomal chromosomes

• generations do not overlap

• panmixia

• same allele frequencies in gametes of both sexes H2:

• infinite population

• lack of mutation

• lack of migration from other populations

• lack of natural selection on any gene.

The model: As we have an infinite population, in the gametic phase, we are going to have an infinite number of gametes, some of them are A and some a. We can imagine that we have an urn with two types of "balls", whose frequencies are p and q and that to build the next generation we choose balls randomly from this urn. As the parental population is infinite, we choose with replacement, with a probability p of choosing A, and probability q of choosing a. As the next generation is also infinite, applying the large numbers law, we have f req(A) = p and f req(a) = q in the next generation.

The Hardy-Weinberg equilibrium (HWE): In an isolated population of infinite size, which is not under selection or mutation, the allele frequencies are constant across generations. Besides, if we suppose that the population is panmictic, i.e., its mating regime is at random, and the allele frequencies do not change between maternal and parental gametes, then computing the genotype frequencies from the allele frequencies is possible according to the following table:

gametes paternal A a maternal frequencies p q A p f req(AA) = p 2 f req(Aa) = pq a q f req(Aa) = pq f req(aa) = q 2
Table 1.1: Link between allelic and genotypic frequencies

Note that when we sample from a population, the calculated frequencies from the sample are unbiased estimators of the population's frequencies.

Although the infinite size hypothesis is unrealistic, in populations with really large sizes and in short periods of time this equilibrium holds. Besides, if a population has non equally distributed frequencies between sexes, the population will reach the equilibrium in one generation. So, whatever the composition of the parental population, random mating will produce a genotypic distribution approximately stationary.

When the frequencies do not remain constant we say that the population evolves, this evolution can be due mainly to four different forces, which we will describe in the next section.

1.3 The four evolutionary forces.

Genetic drift

As real populations have a finite size, every time a new generation is born, gametes from the parental population are only a finite sample. Although we can apply the large numbers law and the expected frequency does not vary over generations, the frequencies are going to change due to this sampling. This phenomenon is called genetic drift.

Suppose that we have a population like the one in the HWE section, but we change the infinite size hypothesis for constant size N , i.e., the population has exactly N diploid individuals per generation. The resulting model is known as the Wright-Fisher model.

Let X t be the number of A alleles present in the population at generation t and p t = Xt 2N the corresponding frequency. Let p 0 denote the frequency of allele A at the first generation. If N is large enough to consider that we sample with replacement, the probability of choosing an A is always p 0 . So the random variable X 1 has a binomial distribution with parameters 2N and p 0 . Reasoning in the same way for every t and conditioning on the previous generation, i.e. conditioning on p t-1 :

X t |p t-1 ∼ Bin(2N, p t-1 ) So, E(X t |p t-1 ) = 2N p t-1 V ar(X t |p t-1 ) = 2N p t-1 (1 -p t-1 )
For t = 1, we have:

E(p 1 ) = E(E(p 1 |p 0 )) = 1 2N E(2N p 0 ) = p 0 and V ar(p 1 ) = E(V ar(p 1 |p 0 )) + V ar(E(p 1 |p 0 )) = 1
2N p 0 (1 -p 0 ). If N remains constant through generations, it can be shown recursively that after t generations we will have:

E(p t ) = p 0 (1.2) V ar(p t ) = p 0 (1 -p 0 ) 1 -1 - 1 2N t (1.3)
As t increases, although the expected value of p t remains constant, the variance of p t increases, which means that, the departure of p t of the mean increases with t. This shows, that the allele frequency fluctuates a lot between generations. It can be shown that eventually either the allele disappears, either it gets fixed. This means that for some t, p t = 0 or p t = 1.

If an allele gets fixed or disappears the genetic drift cannot change his frequency anymore. If we want evolution to continue, we need a source of variation. This source can be either mutation or migration.

The inbreeding coefficient F Definition 1.1. We call inbreeding coefficient the probability of sampling two identical alleles that descend from the same ancestral allele at a given generation. We call such alleles Identical By Descent (IBD).

We can decompose the probability of sampling two IBD alleles by (1) sampling the same allele twice (prob = 1 2N ) or (2) sampling two different alleles IBD (prob = (1-1 2N )IBD (t-1) ), with IBD (t) the probability of being IBD at generation t. Under genetic drift, we have:

IBD (t) = 1 2N + 1 -1 2N IBD (t-1) = 1 -1 -1 2N 1 -IBD (t-1)
By recurrence,

IBD (t) = 1 -1 - 1 2N t 1 -IBD (0)
and by definition IBD (0) = 0. So, the notion of identity by descent is always related to the founder generation. For simplicity we note F t instead of IBD (t) and call it the inbreeding coefficient.

Replacing 1 -1 -1

2N

t by F t in equation 1.3, the variance of the frequency p t can be written in terms of the inbreeding coefficient as:

V ar(p t ) = F t p 0 (1 -p 0 ) (1.4)
The kinship matrix

In the previous subsection we calculated the variance of the frequency p in terms of the inbreeding coefficient, taking as reference an ancestral population. In this section we will calculate the covariance of the frequencies of two populations given the history of these populations. The next figure shows the population model we are going to consider. Consistent with [START_REF] Bonhomme | Detecting selection in population trees: The lewontin and krakauer test extended[END_REF] we use the following notation:

δ U V : the variation of the inbreeding coefficient corresponding to the branch from U (an internal node or the root of the tree) to V (an internal node or a leaf of the tree) For i = 3, as we calculated before, we have:

f ij : kinship coefficient between populations i and j 0 1 2 3 0 1 2 3 δ 0x δ x1 δ x2 δ 03 F 1 F 2 F 3 f 12 x x
E(p 3 ) = p 0 V ar(p 3 ) = δ 03 • p 0 (1 -p 0 ) For i = 1, 2 we have: E(p i |p X ) = p X V ar(p i |p X ) = δ Xi • p X (1 -p X )
By deconditioning:

E(p i ) = p 0 V ar(p i ) = V ar(E(p i |p X )) + E(V ar(p i |p X )) = V ar(p X ) + E(δ Xi • p X (1 -p X )) = V ar(p X ) + δ Xi (E(p X ) -E 2 (p X )) -V ar(p X ) = δ X0 • p 0 (1 -p 0 ) + δ Xi [p 0 (1 -p 0 ) -δ 0X p 0 (1 -p 0 )] = p 0 (1 -p 0 )[1 -(1 -δ 0X )(1 -δ Xi )]
cov(p 1 , p 2 |p X ) = 0 because conditional on p X , the two populations evolve independently, so:

cov(p 1 , p 2 ) = cov(E(p 1 |p X ), E(p 2 |p X )) + E(cov(p 1 , p 2 |p X )) = cov(p X , p X ) = V ar(p X ) = δ 0X p 0 (1 -p 0 )
In summary, we can write:

Cov(p i , p j ) = f ij p 0 (1 -p 0 ) (1.5) V ar(p i ) = f ii p 0 (1 -p 0 ) (1.6)
and the f s are given by:

f 11 = 1 -(1 -δ X1 )(1 -δ 0X ) f 22 = 1 -(1 -δ X2 )(1 -δ 0X ) f 33 = δ 03 f 12 = δ 0X f 13 = 0 f 23 = 0 (1.7)
The covariance matrix of p = (p 1 , p 2 , p 3 ) is thus given by Fp 0 (1 -p 0 ), where F is

F =   f 11 f 12 f 13 f 12 f 22 f 23 f 13 f 23 f 33   (1.8)
In the following, we are going to call F i the diagonal elements f ii (1.4).

In this section we are going to see how equilibrium disappears, as soon as we take one of the hypotheses of the second group (H2) out.

Mutation

Mutations are errors that occur in the transmission of the genetic information from one generation to the other. A mutation transforms an allele in another, that can be either new or already existing, which leads to different models.

Definition 1.2. We call mutation rate the probability that an allele mutates per individual and per generation.

A simple model: At each generation the A allele mutates to the a allele with probability µ and the probability that allele a mutates to allele A is negligible. If the population is infinite, we have:

p t = (1 -µ)p t-1
Thus, the variation in frequency from one generation to the next one is ∆p = p t -p t-1 = -µp t-1 , and after t generations from the beginning p t = (1 -µ) t p 0 . This implies that we can calculate, for example, how many generations are needed before half of A alleles disappear:

(1 -µ) t p 0 = 1 2 p 0 So, t = ln 2 ln(1-µ) ≈ ln 2 µ ≈ 0.7
µ And if, for example, µ = 10 -7 , then t = 700.000. This illustrates that mutations alone do not change the frequency of an allele significantly.

The infinite site model: In the infinite site model we suppose that every time a mutation occurs, it hits a new site and creates a new allele. This assumption is reasonable because the number of bases in a genome is very large and because the mutation rate is very small. This model is in particular widely used for modeling the evolution of a particular type of locus: SNP (Single Nucleotide Polymorphism).

Definition 1.3. A SNP is a locus on the genome that consists of a single DNA base for which different alleles, usually two, are observed in a population.

Migration

Migration is the transmission of genes from one population to another. This means that the genes flow between populations through their carriers, the individuals. This evolution force will impact the frequencies of the receiving population, if the allele frequencies are very different between populations.

The island model: This is a standard model to study how migration acts. It consists in the study of a population, which will be called the island population and another population, that provides the migrants. Let p i be the frequency of the A allele in the island and p e be frequency of the A allele in the continent population, called continent population. If t indicates the generation and m indicates the proportion of individuals that are immigrants, we have:

p i,t = (1 -m)p i,t-1 + mp e,t-1
The difference between the populations' genetic frequencies becomes smaller:

p i,t -p e,t = (1 -m)(p i,t-1 -p e,t-1 )
Assuming that the size of the continent population is large enough, p e,t = p e,t-1 = p e , and the frequency's variation due to migration is:

∆p i,t = p i,t -p i,t-1 = m(p e -p i,t-1 )
Because of that, an equilibrium is going to be reached when p i = p e . As we could imagine, migration tends to homogenize different populations, when they exchange genes. So, while genetic drift and mutation tend to differentiate populations, migration is a force that tends to homogenize allele frequencies between them.

Another evolutionary force that can differentiate population frequencies is selection, which we now introduce.

Selection

To quantify the amount of selection, a new parameter is needed.

Definition 1.4. The genotype's selective value or fitness, denoted w, is a parameter that indicates the probability of each genotype to be transmitted to the next generation.

The model: We assign the selection parameters to the genotypes: w 1 to AA, w 2 to Aa and w 3 to aa. We saw that under panmixia the probabilities of producing a new genotype are P(AA) = p 2 , P(Aa) = 2pq and P(aa) = q 2 . Under selection this probability is affected by the fitness. Because of this, we have to multiply each probability by its corresponding normalized factor, w i /w, i = 1, 2, 3, where w = w 1 • p 2 + 2w 2 • pq + w 3 • q 2 . So the probability p t of choosing an A from generation t -1 is:

p t = w 1 p 2 t-1 + 1 2 w 2 • 2p t-1 q t-1
w As our population is infinite, the frequency of A equals the probability of choosing an A, so, we can calculate the difference of the A allele frequencies between 2 consecutive generations.

∆p t = p t-1 q t-1 (w 1 -w 2 )p t-1 + (w 2 -w 3 )q t-1 w If w 1 > w 2 > w 3 then ∆p t > 0,
which means that the A allele frequency will increase through generations. This is usually called positive selection.

In our case we are going to use w 1 = (1 + s) 2 , w 2 = 1 + s and w 3 = 1, which means that the fitness of the A allele is (1 + s) and of the a allele is 1, and that the genotype fitness is the product of the fitness of their alleles. So, if s > 0 we will have positive selection as explained above.

Evolutionary forces considered in our model

In this study, we are going to analyze data arising from SNPs. Although Single Nucleotide Polymorphism were generated due to mutation, we will consider that they do not mutate anymore. We can make this supposition, because we are working within a short period of time, so that mutation events, which are rare, can be neglected. We consider isolated populations so migration is not taken into account as an evolutionary force. This leads to consider only genetic drift and selection. Our goal is to derive tests indicating whether selection has been acting at a SNP or not.

Introduction to multilocus models

In diploid individuals the genetic information is organized in pairs of chromosomes, one coming from the mother, and the other from the father. We call haplotype the successive combination of alleles at multiple loci that are transmitted together on the same chromosome.

Until now, we described models for the evolution of the allele frequency for only one locus. When we take more than one locus into account, models become complicated, because most of the time the allele frequencies of two different loci are not independent. Consider two loci. Let A and a be the alleles of the first locus, and B and b of the second. When we observe that the product of the frequencies of alleles A and B is different from the frequency of the pair AB, we call it linkage disequilibrium.

Under the hypothesis of the HW model the disequilibrium is caused by the common segregation of the loci. This means that if two loci are on the same chromosome, most of the times they will segregate together, and sometimes, they will combine with the alleles of the other chromosome. When this happens, we call it a recombination event. The next figure illustrates the consequences of a recombination event.

When looking at loci close on the genome, their allele frequencies are not independent and the formula p AB = p A • p B does not hold anymore. To measure the departure from equilibrium we can define the factor D AB as the difference between p AB and p A p B . 

D AB = p AB -p A • p B = p AB p ab -p Ab p aB
Besides it can be easily shown that D AB = -D aB = -D Ab = D ab . So, if we consider absolute values it is always well defined, regardless the names we put to the alleles.

But the linkage between loci is not the only reason for the disequilibrium. Recent mixing of two previously distinct populations with different genetic composition or continuous migration between this kind of populations causes disequilibrium because the allele combination are in different proportions. Some types of selection can cause the disequilibrium, too. For example, supposing that we have two loci that are close, so that the recombination rate between them is neglected. Suppose that the first locus only contains a and the second contains B and b. If a new mutation from a to A, with advantageous selection fitness occurs in an haplotype that contains a b, on next generations there will be an excess of Ab combinations. The sampling could also introduce some linkage disequilibrium. Because of these types of disequilibriums we rather work with populations that are under the Hardy-Weinberg hypotheses.

Evolution of linkage disequilibrium under the H-W hypotheses

Consider a population with an initial linkage disequilibrium D 0 at generation 0. We know that under H-W hypotheses, the allele frequencies are going to remain constant, but it does not say that the frequencies of the pairs have to stay fixed as well. We will show the evolution of the frequency of the pair AB and the linkage disequilibrium. But to do this, the notion of recombination rate is needed. Definition 1.5. We call the recombination rate the probability that a recombination event occurs between two loci during one meiosis.

To sample a pair AB in generation t either we choose a pair AB from generation t -1, that segregate together, or there was a recombination event that put an A and a B together. Conditional on the frequency of the pair AB in the generation t -1 and the recombination rate, we have:

p (t) AB = (1 -r)p (t-1) AB + rp A p B p (t) AB = (1 -r)p (t-1) AB + (r -1)p A p B + p A p B ⇒ p (t) AB -p A p B = (1 -r)(p (t-1) AB -p A p B ) ⇒ D t = (1 -r)D t-1 hence D t = (1 -r) t D 0 (1.9)
The recombination rate varies from complete linkage (r = 0) to independent segregation (r = 1 2 ). If r = 0, then p

(t) AB = p (0)
AB ∀t, so p AB remains constant. And, if r = 0 , as 1 -r < 1, D decreases with t to 0, the equilibrium. If r = 1 2 , the disequilibrium decreases to the half of its value at each generation,as D t = 1 2 D t-1 , so D becomes negligible very fast, and loci are in linkage equilibrium.

In this chapter we saw the principal characteristics of the evolution of populations. Now we are able to explain the models behind the tools we are going to use to propose the new test: a multi locus test, and a classification computational program.

Chapter 2

Theoretical framework

In the previous chapter we saw the main evolution forces that act on a population. Here, it is of our interest to develop statistics to test if a locus has been selected. One of the most commonly used this statistics is the F ST . However, its null distribution is complex. So, different tests were developed based on the allele frequencies in different populations, such as the Lewontin and Krakauer test, which we are going to describe in the following. There are other tests that include also the kinship matrix information, such as the F -LK test [START_REF] Bonhomme | Detecting selection in population trees: The lewontin and krakauer test extended[END_REF], see §2.1). But they do not consider the information that is given by the linkage disequilibrium. The aim of the new test we have developed for detecting selection is a combination between the F -LK test and a cluster model for haplotypes [START_REF] Scheet | A fast and flexible statistical model for largescale population genotype data: Applications to inferring missing genotypes and haplotypic phase[END_REF]). In this chapter we are going to describe the probability models they are based on.

2.1 The Lewontin and Krakauer test and extensions.

LK-test

Assume that we have a population subdivided in n subpopulations and let p = (p 1 , . . . , p i , . . . , p n ) ′ be the vector of the A allele frequencies per subpopulation for one locus. If we note p and s 2 p the sampling estimates of the mean and variance of the p i 's, we can write the Fisher's fixation index, F ST , at this locus as:

F ST = s 2 p p(1 -p) = 1 n-1 n i=1 (p i -p) 2 p(1 -p) (2.1)
This means that F ST is defined as the ratio of the variance of the allele frequency between subpopulations, divided by the maximum possible variance that can be reached when alleles have gone to fixation in all subpopulations. [START_REF] Lewontin | Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms[END_REF] developped a test to detect selection at a locus based on these F ST values.

Distribution of the test: If we have genotyped L SNPs, the LK test statistics at locus l is defined as:

T (l) LK = n -1 F ST F (l) ST , (2.2)
where F ST is the average of the F (l)

ST over the L loci. In the following, we are going to omit the subscript l in order to simplify the notations.

As described in subsection 1.3.1, under genetic drift, we have:

E(p) = p 0 1 n V ar(p) = Fp 0 (1 -p 0 ), (2.3) 
where p 0 is the founder allele frequency, 1 n is a n-vector of 1's and F is the kinship matrix defined in (1.8).

In [START_REF] Bonhomme | Detecting selection in population trees: The lewontin and krakauer test extended[END_REF] it is shown that under normality assumption for allele frequencies and with a star like evolution with equal branch lengths (the non diagonal elements on F are 0, and elements in the diagonal are all the same), if the number of populations is large enough, we have

E(T LK ) ≈ n -1 V ar(T LK ) ≈ 2(n -1),
(2.4) Thus, if the p i 's are assumed to be i.i.d., i.e., F = F I n , and normal, then T LK follows approximately the distribution of a chi square with (n -1) degrees of freedom. This is the basic version of the test. But there are other cases to be studied:

• Different F i values and independence (f ij = 0 ∀i, j).

• The set of populations is structured, i.e. not all f ij equal 0.

• The departure from normality is strong, so that the distribution of the test may depart much from a chi-square.

In [START_REF] Bonhomme | Detecting selection in population trees: The lewontin and krakauer test extended[END_REF] the first two cases were studied. The authors extended the LK-test using the F matrix.

F-LK-test

The idea of this test is to take into account the variance of the allele frequencies p among populations, through the kinship matrix F ( §1.3.1).

If p were normal, it follows immediately from 2.3 that the quadratic form in p, T F -LK (p 0 ) = (p -p 0 1 n ) ′ V ar(p) -1 (p -p 0 1 n ), follows a chi-square distribution with n degrees of freedom. If the ancestral allele frequency p 0 were known, this would be an interesting statistic for testing if the p's evolve under neutrality. But, since p 0 is unknown, we are going to use an estimator, p0 and re-write the statistic as:

T F -LK = (p -p0 1 n ) ′ V ar(p) -1 (p -p0 1 n ) (2.5)
Since the p i 's are not i.i.d., the p is no longer an optimal estimate of p 0 . Consequently we are going to use the linear unbiased estimator with minimal variance :

p0 = 1 ′ n F -1 p 1 ′ n F -1 1 n (2.6)
Note that this estimate is not the maximum likelihood estimate, even under the normality assumption.

For simplicity, we write:

p0 = w ′ p, (2.7) 
where

w = F -1 1 n 1 ′ n F -1 1 n (2.8)
The first two moments of this estimator are:

E(p 0 ) = w ′ E(p) = p 0 V ar(p 0 ) = w ′ V ar(p)w = p 0 (1-p 0 ) E(p 0 (1 -p0 )) = p 0 (1 -p 0 ) 1 - 1 1 ′ n F -1 1 n (2.9)
As V ar(p) = Fp 0 (1 -p 0 ), to estimate the variance we have to estimate p 0 (1-p 0 ). Due to the equation (2.9), we estimate it by p0 (1 -p0 ) 1 -

1 1 ′ n F -1 1n -1
. Now, we can re-write the statistic as:

T F -LK = (p -p0 1 n ) ′ F -1 (p -p0 1 n ) p0 (1 -p0 ) 1 - 1 1 ′ n F -1 1n -1
(2.10)

Writing Q = (p -p0 1 n ) ′ F -1 (p -p0 1 n
) and calculating its two first moments it can be shown that for T F L K we have approximately:

E(T F -LK ) ≈ E(Q) E p0 (1-p 0 ) 1- 1 1 ′ n F -1 1n -1 = n -1 V ar(T F -LK ) ≈ V ar(Q) E 2 p0 (1-p 0 ) 1- 1 1 ′ n F -1 1n -1 = 2(n -1)
(2.11) so that, under genetic drift, T F -LK also follows approximately a χ 2 n-1 . This means that if there is a significant departure from this distribution , there might be another evolution force acting, besides the genetic drift. In our case, as we only consider genetic drift and selection, departures from a chisquare distribution with n -1 degrees of freedom, indicate that selection has been acting on that locus.

Multiallelic versions

In this section we are going to describe the multiallelic versions of the two test presented above. We consider a locus with A ≥ 2 alleles.

Multiallelic version of T LK

Due to the definition of T LK , to find its multiallelic version, we only need to find a multiallelic version of the F ST . Following [START_REF] Bonhomme | Properties of bias and variance of two multiallelic estimators of f ST[END_REF] we decided to use the F ST defined in [START_REF] Weir | Estimating f -statistics for the analysis of population structure[END_REF], because the estimator is nearly unbiased in all cases. [START_REF] Bonhomme | Properties of bias and variance of two multiallelic estimators of f ST[END_REF] also shows that when F ST is high, the estimator has the lowest variance.

F ST = A a=1 s 2 a A a=1 p a (1 -p a ) ,
(2.12)

where a indicates the a th allele of the locus.

In the applied case to livestock, we expect to have large values of the estimator, because the breeds are well differentiated.

Multiallelic version of T F-LK

Let p a be the n-vector of the frequencies of the allele a in the n subpopulations, with a ∈ {1, . . . , A} and p 0 the A-vector of founder allele frequencies. And let P be the nA-vector that contains all allele frequencies, P0 a nA-vector which contains the estimated founder frequencies but repeated n times, for each a. They can be written as:

P = (p ′ 1 , . . . , p ′ A ) ′ = (p 11 , . . . , p 1n allele 1 , . . . , p A1 , . . . , p An allele A ) ′ p0 = (w ′ p 1 , . . . , w ′ p A ) ′ P0 = (1 ′ n w ′ p 1 , . . . , 1 ′ n w ′ p A ) ′ , where w = F -1 1n 1 ′ n F -1 1n as in (2.8). Then V ar(P ) =    V ar(p 1 ) • • • cov(p 1 , p A ) . . . V ar(p a ) . . . cov(p A , p 1 ) • • • V ar(p A )    =    Fp 10 (1 -p 10 ) • • • -Fp 10 p A0 . . . Fp a0 (1 -p a0 ) . . . -Fp A0 p 10 • • • Fp A0 (1 -p A0 )    = B 0 ⊗ F,
where ⊗ denotes the Kronecker product and B 0 = diag(p 0 ) -p 0 p ′ 0 . The matrix diag(p 0 ) is a diagonal A × A matrix, whose diagonal terms are given by p 0 . Reasoning the same way as in the biallelic case, the diagonal blocks of V ar(P ) are the same and the extra diagonal blocs arise from the covariance terms from a multinomial distribution (-p i0 p j0 ) and the covariance of the populations.

Using these notations, we can write the multiallelic version of the quadratic form from equation (2.5):

T F -LK (P 0 ) = (P -P 0 ) ′ (B 0 ⊗ F) -(P -P 0 )
= (P -P 0 ) ′ (B - 0 ⊗ F -1 )(P -P 0 ) where the minus exponents, means that we are using the Moore-Penrose generalized inverse of the considered matrix [START_REF] Tanabe | An exact cholesky decomposition and the generalized inverse of the variance-covariance matrix of the multinomial distribution, with applications[END_REF]). We have to do so, because B 0 is not invertible, so neither is (B 0 ⊗ F). B - 0 can explicitly be written as:

B - 0 = (I A -1 A 1 ′ A )diag -1 (p 0 )(I A -1 A 1 ′ A ) (2.13)
Replacing p 0 by its estimate p0 in both P 0 and B 0 , the statistic can be written as:

TF -LK = (P -P0 ) ′ ( B0 ⊗ F) -(P -P0 ) = P ′ (I nA -I A ⊗ (1 n w ′ )) ′ ( B- 0 ⊗ F -1 )(I nA -I A ⊗ (1 n w ′ ))P
(2.14) From the calculation of the moments of TF -LK (see Appendix 1) we get:

E( TF -LK ) ≈ (n -1)(A -1) V ar( TF -LK ) ≈ 2(n -1)(A -1) (2.15)
So the multiallelic version of T F -LK follows approximatively a chi square distribution with (n -1) × (A -1) degrees of freedom.

Note that if we replace A by 2, we will be in the 2-alleles case. But the multialleic test described here is not exactly equivalent to the biallelic test. Indeed, in this multiallelic version we get a biased version of the T F -LK , because the estimator of p 0 (1 -p 0 ) is biased. However we note that the correction factor 1 -

1 1 ′ n F -1 1n
in the biallelic case is very close to 1, so that the difference between the two tests is small even for moderate n. Thus we do not correct the bias in the multiallelic version, where calculations become quite complex.

Estimation of the kinship matrix

An estimation of F is based on the Reynolds distance matrix DR.

Let M be the matrix shown in Table 2.1.4, whose rows are the populations, and the columns are the frequencies of all alleles at all loci.

If l denotes the locus and a the alleles, the Reynolds distance can be calculated as:

M = pop 1 . . . pop n       locus 1 p (1) 11 . . . p (1) 1A • • • locus L p (1) L1 . . . p (1) LA . . . . . . . . . p (n) 11 . . . p (n) 1A • • • p (n) L1 . . . p (n) LA      
Table 2.1: Data organization

d ij = 1 2 l a (p i la -p j la ) 2
l (1a p i la p j la ) In order to speed up the calculations we can re-write the formula. Let a be the matrix a = M M ′ . It can be easily shown, that the distance d i j between population i and j becomes:

d ij = 1 2 a ii + a jj -2a ij L -a ij ,
where L is the number of loci. We define de matrix DR as the matrix whose elements are the

d ij , DR = (d ij )
To build the F matrix we used the lengths of the branches of the phylogenetic tree built using the neighbor joining method [START_REF] Saitou | The neighbor-joining method: a new method for reconstructing phylogenetic trees[END_REF]). This method is based on clustering principles and requires knowledge of the distance between each pair of populations (d ij 's). In order to be able to root the tree, an outgroup is also needed. Now, that we have all the tools defined, it only rests describe to propose the new test and test its performance.

A multilocus model for linkage disequilibrium

In the first chapter we saw how we can measure the linkage disequilibrium between a pair of loci. However, the measures do not inform us about the multilocus dependencies. In some regions of the genome the haplotype diversity is limited, there are only a few haplotypes which represent a large proportion of the sample of haplotypes present in the whole population.

In 1982, Kingman first introduced a stochastic model for the variation observed in a set of homologous DNA sequences, and known as the coalescent. This model was extended by Hudson in 1983 to take the recombination into account. This model describes the genealogy of the sequences up to their common ancestor. There are two central parameters, ρ = 4N c and Θ = 4N µ, where c and µ are respectively the recombination and the mutation rate per generation per base pair and N is the effective diploidpopulation size.

If we consider homologous haplotypes, we will observe that many of them look similar and vary only in a few sites, while others vary considerably in their sequence of allelic patterns. Thinking in terms of the coalescent, the observed similarity is due to shared ancestry of the collection of haplotypes.

Recombination implies that the ancestry of the sample changes continuously along the chromosome. Consequently, two haplotypes can be very similar in a given chromosome region, due to shared ancestry, and be very different at an other position on the chromosome, due to recombination.

A cluster model.

In what follows we will first describe a cluster model for haplotypes without recombination [START_REF] Scheet | A flexible computationally tractable model for patterns of population genetic variation[END_REF]). In a second step, we will introduce the recombination to the model and adjust it.

Cluster model for haplotypes: Assume we have n haplotypes with M markers each. Let h im be the allele of individual i at marker m, h i = (h i1 , . . . , h iM ) be i -th haplotype and h = (h 1 , . . . , h n ) be the set of the n haplotypes. The markers are SNP's with arbitrary 0-1 labels for the alleles.

Let us assume that each haplotype comes from one of K clusters, labeled k = 1, . . . , K. Let z i be the cluster of haplotype h i , α k be the relative frequency of cluster k, θ km be the allele 1 frequency at marker m in cluster k. We introduce the matrix θ = (θ km ) with k = 1, . . . , K and m = 1, . . . , M .

Taking α = (α 1 , . . . , α K ),

P(z i = k|α) = α k (2.16)
Conditional on the cluster of origin of each haplotype, the alleles observed on each marker are independent Bernoulli variables, whose distribution is determined by the allele frequencies matrix. Consequently,

P(h i |z i = k, θ) = M m=1 θ h im km (1 -θ km ) h im
(2.17) But the haplotype cluster membership are actually unknown (they are latent variables), we have to sum over the distribution of the z i 's. Thus:

P(h i |α, θ) = K k=1 P(z i = k|α)P(h i |z i = k, θ) = K k=1 α k M m=1 θ h im km (1 -θ km ) h im (2.18)
Ideally the θ's are 0's or 1's, so that clusters are essentially haplotypes but with little uncertainty about the alleles at some positions.

Local clustering of haplotypes. Assuming that there are non recombination events, each haplotype comes from a single cluster. But if there is recombination, the cluster-membership must be allowed to change along the chromosome. Due to linkage disequilibrium, cluster membership between close loci will be correlated. Now, as z not only depends on the individual, but also on the locus, we have to re-arrange our notation. We have z im the cluster membership at marker m for individual i. For each individual, z i is modeled as a Markov Chain with states {1, . . . , K}, with initial probabilities

P(z i1 = k) = α k1 (2.19)
and transition probabilities at each marker

P(k → k ′ ) := P(z im = k ′ |z i(m-1) = k, α, r) = e -βm + (1 -e -βm )α k ′ m k ′ = k (1 -e -βm )α k ′ m k ′ = k (2.20)
where, for m = 2, . . . M , β m and α m , are parameters to be estimated. β m could be seen as the product between d m , the physical distance between markers m -1 and m and a parameter r m related to the recombination rate.

The Markov Chain could be interpreted as the discretized version of a continuous Markov jump process, with jump rate β m and transition probabilities α k ′ m , knowing a jump occurred. So, when k = k ′ , either the process does not jump, either it jumps but to the same state. When k = k ′ the process has to jump and to choose the state k ′ .

As before, if we know the cluster membership, the alleles are independently determined by the allele frequencies from each marker in each cluster, so we have: where This model is called a Hidden Markov Model (HMM), because of the latent variables representing the cluster membership from a Markov Chain (see Figure 2.2.1). Standard estimation and prediction procedures have been developed for this class of models. [START_REF] Scheet | A flexible computationally tractable model for patterns of population genetic variation[END_REF] developed a program, based on the EM algorithm, that estimates the parameters α, β and θ.

P(h i |z i , θ) = M m=1 P(h im |z im , θ), (2.21) hidden observed β m-1 z m-1 z m h m-1 h m θ z m-1 θ zm
P(h im |z im = k) = θ h im km (1 -θ km ) h im .
An example of cluster assignment is illustrated in Figure 2.2. Chapter 3

A new haplotype-based test for detecting signatures of selection.

When the F -LK test was applied to real populations, it was observed that detected SNPs were generally isolated, as shown in Figure 3.1. But, although only one SNP is selected, due to linkage, a neighborhood has to be selected as well. This motivates the development of a multipoint test for detecting selection. To develop this new test, our idea is to combine the fastPHASE program, to assign clusters to the haplotypes, and the multiallelic version of the F -LK test, taking the clusters as alleles.

To apply this idea we wrote a function, which performs the F -LK test and the LK test in their multiallelic versions. To test how this idea works, we did some simulations, taking the simplest population structure of two subpopulations.

The test implementation

As a result of the parameter estimation of fastPHASE we get the cluster frequencies at each marker for each population. Subpopulation 1 Subpopulation 2

α 1 11 • • • α 1 M 1 . . . . . . . . . α 1 1K • • • α 1 M K
α 2 11 • • • α 2 M 1 . . . . . . . . . α 2 1K • • • α 2 M K . . . Subpopulation n α n 11 • • • α n M 1 . . . . . . . . . α n 1K • • • α n M K
With this information, the allele frequency vector, for the marker m will be:

P m =                α 1 m1 . . . α n m1 α 1 m2 . . . α 1 mK . . . α n mK               
After building the F matrix, the application of the F -LK test in its mulitallelic version is straightforward. When analyzing real data, F needs to be estimated. For the simulations, we will assume that it is known.

The test implementation consisted in programing the two equations, (2.14) and (2.2), given in the Multiallelic Versions section 2.1.3.

These were:

TF -LK = (P -P0 ) ′ ( B0 ⊗ F) -(P -P0 ) = P ′ (I nA -I A ⊗ (1 n w ′ )) ′ ( B- 0 ⊗ F -1 )(I nA -I A ⊗ (1 n w ′ ))P
and

T LK = (n -1) F ST F ST ,
where the multiallelic version of F ST equals A a=1 s 2 a A a=1 pa(1-pa)

.

The program we wrote, takes as input a file where the haplotypes are given. They can be given as 0's and 1's, or as A, C, G, T 's. Then it builds the clusters calling fastPHASE, applies the tests and returns the test values for all markers. The program was finally implemented in the Python language, because of some tools that where needed, like the simuPOP library.

Simulations

After implementing the test, we applied it to simulated populations in order to understand its behaviour.

To simulate the populations, we proceeded as in [START_REF] Bonhomme | Detecting selection in population trees: The lewontin and krakauer test extended[END_REF] and will detail this process further. Instead of simulating different scenarios, we only simulated a two subpopulation case for simplicity. We note however that part of the future work will be to see how the test works with more subpopulations.

The populations were simulated as samples of haplotypes of partially linked loci. The first subpopulation evolved under neutrality (H 0 ). In the second subpopulation, the locus on the middle of the haplotype was under positive selection (H 1 ). The recombination and fitness parameters were given different values in order to observe this influence on the test.

The subpopulations diverge from an ancestral population in equilibrium with constant size. The haplotypes of this ancestral population were simulated by coalescent simulations using the MS software [START_REF] Hudson | Generating samples under the wright-fisher neutral model of genetic variation[END_REF]). The generated haplotypes had between 300 and 350 SNPs almost equally distributed in 1 Mb. We did some simulations with 2Mb, but as results were not different, we will not discuss this case.

A forward evolution of the two subpopulations after their divergence was simulated with the simuPOP library for Python, under the Wright-Fisher model with an effective population size of 1000 individuals. The selection occurred at a single locus. The less frequent allele of the SNP had the fitness 1 + s, as explained in section 1.3.4.

We ran 200 generations of forward evolution. At the end, we selected 50 individuals from each population and performed the F LKclus test, using the matrix

F = 0.1 0 0 0.1
We can do that, because we know the history of the population. Besides, to estimate the F matrix an outgroup is needed, and we did not simulate it.

Some results are presented in the following section.

Results

Under H 0 the empirical distribution is proportional to a χ 2 (A-1)×(n-1) . As shown on Figure 3.2 the F -LK test applied in its multiallic version with A = 2 and the F LKclus test are both biased. We expected some bias because in the multiallelic version we did not use a correction factor for the estimation of P 0 , which is 1 -

1 1 ′ n F -1 1n
in the biallelic version. This bias should be equal to 0.95, but for both tests we observed larger values. If we increase the number of populations it should be reduced. We think, that the amount of bias of F LKclus could be due to the number of alleles. It could also be due to a departure from the normality hypothesis, because of the clusters construction.

Power calculation. To calculate the power of the tests, we used their empirical distribution under H 0 . To do that we first calculated the threshold value of each test, such that under the H 0 hypothesis, a proportion 1 -α of the calculated statistics were below it, and the remaining α percent beyond it. Then, we calculated the proportion of the statistics under H 1 that were over the threshold. Letting α vary from 0 to 0.10 in intervals of 0.01, we obtained the percentage of true positives.

The power of F LKclus increases when the recombination rate decreases. Low recombination rates imply that we should have longer regions of the haplotype that belong to the same cluster, because in the history there were less opportunities to switch cluster along the haplotype. That is why we expect to have a better performance of the test in dense markers cases. For the cases with selection, s > 0, p is the frequency of the selected allele at the end of the evolution. In neutral cases, p is the frequency of the same allele on the middle at the end of the evolution. ) is one explanation for its lower detection power and is probably due to the cluster estimation procedure. This can be also an explanation of the variability of values that takes the F LKclus test for the same value of F LK (Figure 3.6).

Besides, the degrees of freedom of the χ 2 increase with the number of alleles. This means that even if we achieve the maximum, and even if we succeed in taking out the bias of the null distribution, the test will not reach very low p-values. This happens because we have always the same values but as the number of clusters increases, the degrees of freedom do the same, and the corresponding p -values decreases. Application of the test to real data. When the tests were applied to real data, some interesting features appeared.

The data we used is taken from the SheepHapMap project (available in http://www.sheephapmap.org). A total of 2890 domestic sheep from 64 breeds were recruited into the experiment which likely represents the most comprehensive sampling of any livestock species achieved to date. Breeds were collected from Africa, Asia, South America, Europe, the Middle East, Australasia, the USA and Caribbean. The genotyping of these animals was completed in January 2009. The examples we present in this work used three populations: Texel, Galway and Border Leicester, and the tests were ran on a gene known for having been selected for the Texel located in chromosome 2.

In Figure 3.7 we see that in the Texel breed there is a zone where one of the cluster presents a very high frequency, while this is not the case in the Galway breed. The Border Leicester shows some bizarre patterns, but it is not astonishing because this breed arises as a mixture of different breeds and has a very low number of individuals. This difference between cluster frequencies between populations, shows that a group of haplotypes has a very high frequency in a particular population. So we expect that the F LKclus test detects that zone, which was not detected by the F LK test. In fact, F LK has detected only 4 SNPs in this region. When applying the tests to Texel, Galway and Border Leicester, we see in Figure 3.8, that, despite of the bad results in simulations, F LKclus behaves as we expected. It shows a smooth and higher curve in a zone, that is known to be under selection.

Perspectives-Future Work

Although the results we obtained from simulations are not as good as expected, applying the test to real data seems to provide encouraging results but on other criteria. We think that we have to understand better how the test works and what its distribution is. In order to reduce the bias, we think that we have to increase the number of subpopulations. But, to know where the bias comes from, we have to calculate the tests with the "true" value of the "ancestral frequencies". However the ancestral frequencies are cluster frequencies in this case. As we do not know the real classification, the ancestral frequencies will always be an estimation of the real frequencies, if they exist, which makes the question a bit tricky. We observed in the previous section that it is possible for F LKclus to reach the same values as F LK. However, supposing that under H 0 the F LK test has a χ 2 1 and the F LKclus a χ 2 4 (in the 5 clusters case), we will have a larger p-value for the second distribution, due to the degrees of freedom So, we think that it would be a good idea to separate the population into K clusters and then build only two groups out of the K obtained. The first group would contain the cluster with the highest frequency, and the second group, the rest of the clusters. But in order to do that, we need to know which is the best K.

A comparison between both tests in a neighborhood of the selected locus would also be of interest. We think that is natural that the F LK performs better on the selected locus, but we would like to know what would happen if the selected loci were not directly genotyped. In order to do that, we think that we could run the same simulations and then calculate the test in the neighborhood of the selected loci, but not exactly on it.

As we see that there are chromosomal regions that have a strong value of the test statistic, we think that we could apply the local score theory to log F LK n-1 , where n is the number of populations, in order to detect the magnitude of selected regions.

Conclusion

We proposed a new test for detecting footprints of selection on the genome, when comparing a set of populations with common and recent evolutionary history and with high-density SNP genotyping. The idea of the test is to take account of the structure of the population and of the correlation between genomic sites, at the same time. A first set of simulations in a very simple case of population divergence, gave rather disappointedly results. However, the application of the new test on real data provided interesting results and gave us some hints for further improvements.
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 1 Figure 1.1: Example of tree like evolution: construction of the kinship matrix.

  Figure 1.2: Example of a recombination event (top) and a non recombination event (bottom).
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 21 Figure 2.1: Schematic representation of the Hidden Markov Model. The subscript i is omitted for simplicity. For z m = k, θ zm = θ km , idem for m -1.
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 2 Figure 2.2: A possible cluster classification for 10 individuals. Each line correspond to an haplotype and each column to a locus. The clusters are represented by colors, and the presence of the rare allele at each position by a cross.
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 3 Figure 3.1: F LK test on 3 sheep populations: chromosome 2, outputs of -log 10 (p -value). The detected SNPs are pointed in red. The frequencies of the Texels breed show evidence that a whole region was under the same evolution pressure.
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 3 Figure 3.2: QQplot of F LK (blue) and F LKclus with 5 clusters (red) vs. a χ 2 with 1 and 4 degrees of freedom respectively.
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 33 Figure 3.3: Detection power of F LKclus for the selective values 0.03 (pointed line) and 0.05 (line) and recombination r = 10 -7 (blue) et r = 10 -8 (red)

  Example of an extremal configuration difficulty for F LKclus to reach high values (Figures 3.5

  Figure 3.6: F LKclus vs. F LK test statistics.
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 37 Figure 3.7: Classification of a population in 5 clusters. The colors are the cluster proportion and in the x-axe are the markers ordered by position. We classified three different subpopulations of sheep. From top to bottom: Galway, Texel and Border Leicester.
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 38 Figure 3.8: From top to bottom: the log of the p-values of F LKclus, LK and F LK tests applied to a sheep population.
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  Since z i is unknown, we again get:

	P(h i |α, θ, β) =	P(h i |z i , θ)P(z i |α, β),	(2.22)
	z i		
	where P(z i |α, β) is determined by (2.19) and (2.20).	

′ n F -1 1nAnd it follows that

power than the F LKclus test. If the clusters are not very well defined, it is very difficult to reach high values of the tests. When we observed Figure 3.5, we realized that both tests had a similar behavior, but that was very difficult for F LKclus to reach high values.

To understand why this happens and to know if it is possible to reach the same values with F LKclus as with F LK, we made some hand calculations for extreme configurations. We considered the extreme case, where the rare allele goes to fixation in the subpopulation with selection, and disappears in the neutral subpopulation. We built 2, 3, 4 and 5 clusters supposing that all the individuals form the population with selection are in one cluster together and that the remaining clusters are composed by the individuals of the population under H 0 . The table 3.1 shows an example of possible configurations. Although we made the first calculations with this configuration, we saw that it is not necessary to distribute the individuals of the first population equally into the clusters to reach the maximum value of the test.

If the clusters are well separated, both tests reach the same value. The

Moment calculations

.1 When P 0 is known.

V ar( TF -LK (P 0 )) = 2tr ((B 0 ⊗ F) -V ar(P

.2 When P 0 is unknown For this calculations we are going to rewrite some things for making calculations easier.

Where W is the nxn-matrix, whose rows are the w, defined in equation (2.8). Now, the quadratic form TF -LK can be writen as P ′ M P , with:

1nF -1 1n . It is easy to show, that according to equation (2.13)

So, incidentally, the statistic can be written as:

Coming back to our calculations,