Legume-enriched Pasta
Maud Petitot, Chantal Brossard, Cecile Barron, Colette Larre, Marie Helene Morel, Evelyne Paty, Brigitte Nicolie, Valérie Micard

To cite this version:

HAL Id: hal-02818916
https://hal.inrae.fr/hal-02818916
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Legume-enriched Pasta

Structure/Nutrition: what is known on durum wheat pasta

Durum wheat pasta: a low glycemic index (GI) food

<table>
<thead>
<tr>
<th>Cereal</th>
<th>GI</th>
<th>Area A (tested food)</th>
<th>Area B (bread or glucose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>100</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Water</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
</tbody>
</table>

Main hypotheses:
- Pasta compactness (Fardet et al., 1998; Granfeldt et al., 1991)
- Encapsulation of starch by proteins (Gallinaro et al., 1998; Fandri et al., 1998)
- Physical structure of starch (Granfeldt, 2000; Englyst et al., 1992; Holm et al., 1988)

Impact of legume flour addition

- **100% Durum wheat pasta (control)**
 - GI: 53
 - Protein: 4.8
 - Starch: 76.1
 - Fibre: 5.6
 - Durum wheat: 11.6
 - Split pea: 1.6

- **35% legume fortified pasta:** 2.4
 - Protein: 5.1
 - Starch: 70.9
 - Fibre: 5.2

Methodology

- **PASTA STRUCTURE**
 - Microscopic
 - Starch
 - Fibres
 - Proteins

- **GLYCEMIC INDEX**
 - in vitro starch digestibility
 - GI = Englyst et al., 1996
 - *P* < 0.05

- **PROTEIN HYDROLYSIS**
 - Germs: 35% split pea, 6% gluten
 - Protein: 37.6%, 52.4%

- **ALLERGENICITY**
 - Presence of IgE-reactive fragments in digestion juices: inhibition ELISA, sera from allergic patients to wheat or to pea

Pasta structure and nutritional properties: impact of legume addition and changes in process

- **100% Durum wheat (control)**
- **35% Split pea (LT-dried)**

Macroscopic structure of dry and cooked pasta

- **Porosity**
 - LT-dried: 5.4
 - 35% Split pea: No effect

- **Rheology (TAXT plus)**
 - 100% Durum wheat: 38 N.mm
 - 35% Split pea: 5.6 N/mm

- **Macroscopic structure of cooked pasta**
 - Starch
 - Fibres
 - Proteins
 - 35% Split pea: No major impact

Impact of Legume consumption on starch and protein digestibilities

- **Glutens**: D-glutenins, L-glutens
- **Amylose Amylopectin**
- **S-S bonds**

Interest of Mixing Durum Wheat and Legume in Pasta

- Inspired by the Mediterranean diet and its health benefits

- **Legume**: Protein, Rich in Lysine, Poor in sulphur Aa
- **Durum wheat**: Gluten (~13%), Starch (~75%)

Durum wheat pasta structure

- Macromolecular structure
- Microscopic structure
- Supramolecular structure

Durum wheat + water

- **Starch granules**: Amylose, Amylopectin
- **Gluten network**
- **S-S bonds**

Methodology

- **PASTA STRUCTURE**
- Microscopic
- Starch
- Fibres
- Proteins

- **GLYCEMIC INDEX**
- in vitro starch digestibility
- GI = Englyst et al., 1996
- *P* < 0.05

- **PROTEIN HYDROLYSIS**
- Germs: 35% split pea, 6% gluten
- Protein: 37.6%, 52.4%

- **ALLERGENICITY**
- Presence of IgE-reactive fragments in digestion juices: inhibition ELISA, sera from allergic patients to wheat or to pea
Supramolecular structure of cooked pasta

SE-HPLC after protein extraction

- Non covalent bonds
- Covalent (S-S)
- Covalent (other)
- Other covalent bonds

Legume pasta

- Non covalent bonds
- Covalent (S-S)
- Covalent (other)
- Other covalent bonds

Weaker protein network

In vitro starch digestibility of cooked pasta

Rapidly available glucose: RAG value

- Pasta samples
- % Available carbohydrates
- 100% Durum wheat: 12.5 ± 10.4
- 35% Split pea: 8.5 ± 2.4

No change in the in vitro starch digestibility (RAG)

In vitro Protein digestibility and allergenicity

- Degree of Protein hydrolysis (% DH)
- ELISA inhibition with allergic sera presence of IgE reactive fragments (IgE-RF)

Pasta fortification with 35% of legume flour on the RAG value

Impact of drying treatments

- Freeze-drying LT (55°C) CONTROL
- Freeze-drying VHT.LM (90°C)

Macroscopic structure of dry and cooked pasta

<table>
<thead>
<tr>
<th>Protein</th>
<th>Total porosity (%)</th>
<th>Freeze-drying LT</th>
<th>Freeze-drying VHT.LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeze-drying LT</td>
<td>3.5</td>
<td>Freeze-drying VHT.LM</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Microscopic structure of cooked pasta

- Starch
- Proteins

Effect of drying

- No major impact

Supramolecular structure of cooked pasta

SE-HPLC after protein extraction

- Non covalent bonds
- S-S bonds
- Other covalent bonds

Freeze-drying: slightly LT dried pasta

VHT.LM: proteins linked by covalent bonds

In vitro starch digestibility of cooked pasta

Rapidly available glucose: RAG value

- Percent available carbohydrates
- Freeze-drying LT
- Freeze-drying VHT.LM

Higher porosity could increase accessibility to amylases

In vitro Protein digestibility of cooked pasta

<table>
<thead>
<tr>
<th>Degree of Protein hydrolysis (% DH)</th>
</tr>
</thead>
</table>

Freeze-drying

No significant difference

VHT.LM: DH in gastric conditions only – kinetical effect?

Stronger protein network at a supramolecular level

Freeze-drying: idem than LT dried pasta

VHT.LM:

Proteins linked by covalent bonds
In vitro allergenicity of digestion juices of cooked pasta

ELISA inhibition with allergic sera - presence of IgE-reactive fragments (IgE-RF)

<table>
<thead>
<tr>
<th>Protein fractions</th>
<th>Freeze-drying</th>
<th>VHT.LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>More fibres</td>
<td>Stronger protein network</td>
</tr>
<tr>
<td></td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td></td>
<td>Same RAG value</td>
<td>Change DH and IgE-RF</td>
</tr>
</tbody>
</table>
| Gastric juices | No significant difference | VHT.LM: Changes concerned wheat proteins (γ-gliadins, LTP…)
| | VHT.LM: Changes concerned wheat proteins (γ-gliadins, LTP…)

Conclusions (1)

COMPOSITION

MORE FIBRES

SAME RAG

FREEZE-DRIED:

Non-gelatinised starch at the core

VHT.LM:

Stronger protein network (Covalent links)

Gastric juices

0 20 40 60 80 100

% inhibition

Freeze-dried

LT PASTALEG PASTALEG PASTALEG

Pasta porosity: YES

Protein network thickness: No changes

Nature & quantity of interactions between proteins: YES

Structural elements involved in starch digestibility

Structural elements involved in protein digestibility and allergenicity:

Pasta porosity: NO

Protein network thickness: No changes

Nature & quantity of interactions between proteins: YES

A highly aggregated protein network would be more resistant to protein hydrolysis, which could delay hydrolysis of starch by amylases

Conclusions (3)

Hypothesis: A highly aggregated protein network would be more resistant to protein hydrolysis, which could delay hydrolysis of starch by amylases

Protein network thickness: No changes

Nature & quantity of interactions between proteins: YES

Structural elements involved in protein digestibility and allergenicity:

Pasta porosity: NO

Protein network thickness: No changes

Nature & quantity of interactions between proteins: YES

A highly aggregated protein network would be more resistant to protein hydrolysis, which could delay hydrolysis, change released fragments and impact their allergenicity response

Conclusions (2)

Hypothesis: A highly aggregated protein network would be more resistant to protein hydrolysis, which could delay hydrolysis of starch by amylases