Legume-enriched Pasta
Maud Petitot, Chantal C. Brossard, Cecile Barron, Colette C. Larre, Marie Helene M. H. Morel, Evelyne Paty, Brigitte Nicolie, Valérie Micard

To cite this version:

HAL Id: hal-02818916
https://hal.inrae.fr/hal-02818916
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Legume-enriched Pasta: how structure impacts starch and protein digestibilities and protein allergenicity

M. Petitot, C. Brossard, C. Barron, C. Larré, M.H. Morel, E. Paty, B. Nicolie, V. Michel

UMR IA TE, SupAgro, Montpellier
CHU Necker, Paris
CHU Angers, Angers

Interest of Mixing Durum Wheat and Legume in pasta

Inspired by The Mediterranean diet and its health benefits

Wheat & Legume Well represented

But Legume-enriched Pasta: how structure impacts starch and protein digestibilities and protein allergenicity

Macroscopic structure of dry and cooked pasta

- **Porosity (μm)**
 - 100% Durum wheat: 3.4
 - 35% Split pea: 5.9
 - No effect

- **Rheology (TAXTplus)**
 - 100% Durum wheat: Min = 0.98
 - 35% Split pea: Min = 0.65
 - Min = 0.06

Microscopic structure of cooked pasta

- **Starch**
 - Naked starch
 - Starch granules

- **Fibres**
 - Soluble fibres

- **Proteins**
 - Gluten
 - Legume proteins

- **Allergenicity**
 - Presence of IgE-reactive fragments in digestion juices: inhibition ELISA, pools of sera from allergic patients to wheat or to pea

Durum wheat pasta structure

Methodology

PASTA STRUCTURE

- **GLYCEMIC INDEX**
 - in vitro starch digestibility

- **Macromolecular**
 - Porosity
 - Rheology

- **Microscopic**
 - Starch
 - Fibres

- **Supramolecular**
 - Protein interactions

Impact of legume flour addition

100% Durum wheat pasta (control) 35% Split pea pasta

- **Porosity** (μm)
 - 100% Durum wheat: 3.4
 - 35% Split pea: 5.9
 - No effect

- **Rheology (TAXTplus)**
 - 100% Durum wheat: Min = 0.98
 - 35% Split pea: Min = 0.65
 - Min = 0.06

35% legume fortified pasta: higher protein and fibre contents

Structure/ Nutrition: what is known on durum wheat pasta

Pasta structure and nutritional properties: impact of Legume addition and changes in process

100% Durum wheat pasta: a low glycemic index (GI) food

Process

- **Freezing-drying**
 - LT-dried (5°C) Control
 - VHT.LM (90°C)

Main hypothesis

- Pasta compactness (Foulds et al., 2000; Grondel et al., 1999)
- Encapsulation of starch by proteins (Galliano et al., 1989; Foulds et al., 2000)
- Physical structure of starch (Kohyama, 2009; Englyst et al., 1992; Holm et al., 1988)

Methodology

GLYCEMIC INDEX

- in vitro starch digestibility

Macromolecular

- Porosity
 - Rheology

Microscopic

- Starch
 - Fibres

Supramolecular

- Protein interactions

Impact of legume flour addition

100% Durum wheat pasta (control) 35% Split pea pasta

- **Porosity** (μm)
 - 100% Durum wheat: 3.4
 - 35% Split pea: 5.9
 - No effect

- **Rheology (TAXTplus)**
 - 100% Durum wheat: Min = 0.98
 - 35% Split pea: Min = 0.65
 - Min = 0.06

35% legume fortified pasta: higher protein and fibre contents

Structure/ Nutrition: what is known on durum wheat pasta

Pasta structure and nutritional properties: impact of Legume addition and changes in process

100% Durum wheat pasta: a low glycemic index (GI) food

Process

- **Freezing-drying**
 - LT-dried (5°C) Control
 - VHT.LM (90°C)

Main hypothesis

- Pasta compactness (Foulds et al., 2000; Grondel et al., 1999)
- Encapsulation of starch by proteins (Galliano et al., 1989; Foulds et al., 2000)
- Physical structure of starch (Kohyama, 2009; Englyst et al., 1992; Holm et al., 1988)
Supramolecular structure of cooked pasta

- 3D-APBC after protein extraction

- Freeze-drying: idem than LT-dried pasta

- VHT-LM: proteins linked by covalent bonds

Impact of drying treatments

5% Split pea

Macromolecular structure of dry and cooked pasta

<table>
<thead>
<tr>
<th>Pasta type</th>
<th>Total porosity (%)</th>
<th>Freeze-drying LT</th>
<th>Freeze-drying VHT-LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT</td>
<td></td>
<td>5.6</td>
<td>4.5</td>
</tr>
<tr>
<td>VHT-LM</td>
<td></td>
<td>5.6</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Rheology

Compression test

Tension test

Microscopic structure of cooked pasta

Starch

Proteins

Effect of drying

No major impact

Pasta samples

Rapidly available glucose: RAG value

Pasta samples | RAG value | % Available carbohydrates
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Durum wheat</td>
<td>0.25 ± 10^-4</td>
<td>62.5 ± 1.0</td>
</tr>
<tr>
<td>35% Split pea</td>
<td>0.5 ± 1.1</td>
<td>59.4 ± 1.1</td>
</tr>
</tbody>
</table>

No change in the in vitro starch digestibility (RAG)

No effect of structural modifications made by pasta fortification with 35% of legume flour on the RAG value

In vitro starch digestibility of cooked pasta

Freeze-drying LT: 35% Split pea

VHT-LM: 35% Split pea

Degree of Proteine hydrolysis (% n=3)

Freeze-drying LT: Strengthened pasta structure

VHT-LM: No major impact

No significant difference

Microscopic structure of cooked pasta

Starch

Proteins

Effect of drying

No major impact

Pasta fortification with 35% of legume changed both

- the in vitro protein digestibility

- the in vitro allergenicity of digestion juices (nature and quantity of released fragments)
In vitro allergenicity of digestion juices of cooked pasta

ELISA inhibition with allergic sera - presence of IgE-reactive fragments (IgE-RF)

<table>
<thead>
<tr>
<th>Protein fractions</th>
<th>Percentage inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeze-dried</td>
<td>0%</td>
</tr>
<tr>
<td>VHT.LM</td>
<td>20%</td>
</tr>
<tr>
<td>Pasta</td>
<td>40%</td>
</tr>
<tr>
<td>Gastric juices</td>
<td>60%</td>
</tr>
<tr>
<td>Intestinal juices</td>
<td>80%</td>
</tr>
</tbody>
</table>

Conclusions (1)

- **COMPOSITION**
 - More fibres: Non-gelatinised starch at the core
 - Weaker protein network: Different IgE-RF from some wheat proteins (γ-gliadins, LTP...)

Conclusions (2)

- **Structural elements involved in starch digestibility**
 - Pasta porosity: YES
 - Protein network thickness: No change.
 - Nature & quantity of interactions between proteins: YES

Conclusions (3)

- **Hypothesis**: A highly aggregated protein network would be more resistant to protein hydrolysis, which could delay hydrolysis of starch by amylases

Design of foods made from durum wheat and legumes: How the association of their components contributes to their nutritional and organoleptic properties.