Legume-enriched Pasta
Maud Petitot, Chantal Brossard, Cecile Barron, Colette Larre, Marie Helene Morel, Evelyne Paty, Brigitte Nicolie, Valérie Micard

To cite this version:

HAL Id: hal-02818916
https://hal.inrae.fr/hal-02818916
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Interest of Mixing Durum Wheat and Legume in pasta

Inspired by The Mediterranean diet and its health benefits

Macroscopic structure of dry and cooked pasta

Microscopic structure of cooked pasta

Legume-enriched Pasta: how structure impacts starch and protein digestibilities and protein allergenicity

Pasta structure and nutritional properties: impact of Legume addition and changes in process

Methodology

Main hypothesis:

- Pasta compactness (Foulad et al., 2008; Grauch et al., 1998)
- Enzymatic production of starch/biopolymers (Gallina et al., 2008; Foulad et al., 2008)
- Physical structure of starch (Chenier, 2000; Englyst et al., 1992; M. H. Morel et al., 1990)

Impact of legume flour addition

100% Durum wheat pasta (control) D9
35% Split pea pasta

Pasta composition

<table>
<thead>
<tr>
<th>Protein</th>
<th>Starch</th>
<th>Fibres (% db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>77.6</td>
<td>2.4</td>
</tr>
<tr>
<td>16.1</td>
<td>47.9</td>
<td>6.2</td>
</tr>
</tbody>
</table>

35% legume fortified pasta: higher protein and fibre contents

Macroscopic structure of dry and cooked pasta

Microscopic structure of cooked pasta

Durum wheat pasta structure

Structure/Nutrition: what is known on durum wheat pasta

Pasta composition

<table>
<thead>
<tr>
<th>Protein</th>
<th>Starch</th>
<th>Fibres (% db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Glucose (~15%)

Amylose

Amylopectin

S-S bonds

Pasta structure and nutritional properties: impact of Legume addition and changes in process

Glycemic Index

Different test conditions include

- Inglyst et al., 1996
- Foster-Powell, 2002

Structure/ Nutrition: what is known on durum wheat pasta

M.H. Morel, E. Paty, B. Nicolie, V. Micard

M. Petitot, C. Brossard, C. Barron, C. Larri, M.H. Morel, E. Paty, B. Nicolie, V. Micard

M. Petitot, C. Brossard, C. Barron, C. Larri, M.H. Morel, E. Paty, B. Nicolie, V. Micard

UR 1268 Bia, INRA Nantes

CHU Angers, Angers

CHU Necker, Paris

UMR IST, SupAgro, Montpellier

PhD Nancy

Rheology

RAG

Allergenicity

Presence of wheat (bio-enzymes fragments in digestion phase) additively, ILA, sera of mice from allergic patients to wheat or pea
Supramolecular structure of cooked pasta

Impact of drying treatments

In vitro starch digestibility of cooked pasta

Macromolecular structure of dry and cooked pasta

Microscopic structure of cooked pasta

Supramolecular structure of cooked pasta

In vitro starch digestibility of cooked pasta

In vitro Protein digestibility and allergenicity

Degree of Protein hydrolysis (% of the total released fragments)
Conclusions (1)

- **COMPOSITION**
 - Freeze-drying: no significant difference
 - VHT.LM: Changes concerned wheat proteins
 - Presence of IgE-RF from some wheat proteins (γ gliadins, LTP…)

- **PROCESSING**
 - Freeze-drying:
 - More fibres
 - Non-gelatinised starch at the core
 - VHT.LM:
 - Stronger protein network (Covalent links)
 - No effect

Conclusions (2)

- **Structural elements involved in starch digestibility**
 - Pasta porosity: YES
 - Protein network thickness: No changes
 - Nature & quantity of interactions between proteins: YES
 - Hypothesis: A highly aggregated protein network would be more resistant to protein hydrolysis, which could delay hydrolysis of starch by amylases

Conclusions (3)

- **Structural elements involved in protein digestibility and allergenicity**
 - Pasta porosity: NO
 - Protein network thickness: No changes
 - Nature & quantity of interactions between proteins: YES

- **A highly aggregated protein network would be more resistant to protein hydrolysis, which could delay hydrolysis, change released fragments and impact their allergenicity response**