Growth

The synchronism between growth & dynamic of reserves vary with phenology Malagoli et al. 2005 Leaf development

G R cycle

Space for time analogy • Can we keep perennials under climate change?

• Should we learn how to manage their C/N reserves?

• Would geophytes and annuals become useful?

• Which genotypes? Which mixtures? Which management? Increasing demands on the buffering capacity in plants:

Between increased supply (CO 2 ) and increased demand (warming) of carbohydrates, Between increased C assimilation and reduced soil N supply, Which strategies for managing carbohydrate (and storage proteins) under climate change?

Increased buffering capacity to avoid down-regulation of leaf photosynthesis under elevated CO 2 ? Which plant parts for storage? e.g. breeding for tap roots, rhizomes, stolons.. Which forms of storage? Fructans, VSP, starch... Which co-benefits or drawbacks (e.g. insects, pathogens)?

• 3° Drought and survival: the role of reserves Years ( Bartels et al., 1996;Close, 1996Close, , 1997) ) Factors contributing to dehydration tolerance of meristems ?

Variability & extremes

Incrementa l change

Increased importance of drought resistance in forage grasses

Drought survival

Autumn recovery

Perenniality

Sustainability of agro-ecological functions

---------------------SURVIVAL PERIOD ----------------------

Rehydration

Dehydration tolerance

Two main hypothesis Conclusions (1/3)

Conclusion -Strategies of perennial grasses under drought

• Basic knowledge of reserve dynamics in plants needs to be extended and applied to climate change adaptation.

• Which ideotypes for optimal C-N reserve dynamics in a future climate?

-Increased reserve levels (insurance hypothesis)? -Increased share of specialized organs (e.g. rhizomes, bulbs, stolons, tap roots)? -Are fructans and VSP preferable to other reserve types (water stress tolerance)? -Targeted enzymatic activities (e.g. 



  Transpiration & assimilation unaffected -Growth modulation STAGE 2: Transpiration & assimilation reduced -Growth reduced & stopped STAGE 3: Transpiration (cuticular)progressive senescence progressive (Blum, 1989) No discriminating differences in lethal hydration of meristematic tissues Lethal hydration of meristems in dactylis = 35 % to 45%  much lower than lethal hydration of lamina BUT  Discriminating differences in duration of survival at low hydration  Resistant populations survive longer at low hydration  Accumulation of water soluble carbohydrates (Julander, 1945; Suzuki & Nass, 1988…)  Accumulation of dehydrins -LEA Proteins associated with desiccation & osmotic stress Abundant in dormant embryos and resurrection plants

  Photosynthesis Carbon ReservesLamina turgescence

  and increase Genetic variability ; Genotype x Environment interactions; -Breed genotypes with high plasticity; use populations? -Use mixtures rather than monocultures? -Breed for adapted plant reserve dynamics • Adapting pasture management -Avoid excess reserve depletion (e.g. frequent cutting, severe grazing) -Favour deep rooting; adapt sowing and harvesting dates Conclusions : research needs • Modelling • Improve formalisms for: mortality, high temperatures etc.. • Observations • Climatic gradient (e.g. Morocco-South of France) événement extrême appliqué en été 2009 de magnitude égale à celle de 2003 ou à celle projetée en 2050 Exclusion de pluie : rideaux automatisés Réchauffement : émetteurs infra-rouge

  

  

  

  

  

  

  

  

•

  Which are the dominant pasture lifeforms in warmer/drier climates? -Perennials are dominant in temperate grasslands. However, earlier flowering is documented at warmer/drier sites (e.g. Dactylis glomerata, Volaire, 2001; Lolium perenne F. Balfourier,) -Annuals become dominant in arid climates (below 300 mm) -Geophytes (e.g. Poa bulbosa, Hordeum bulbosum; Dactylis ssp.

Hispanica cv. Kasbah) are located in semi-arid areas and are summer dormant

Elevated CO 2 effects (Free Air Carbon dioxide Enrichment)

  

	• 2° Elevated CO 2 and incremental warming effects on reserves Elevated CO 2 and incremental warming effects on reserves Leaf area & Daily radiative partitioning Leaf area & Elevated CO 2 and incremental Consistent increase in leaf photosynthesis warming effects on reserves All studies: +58% (Drake et al., 1997) Daily radiative partitioning Temperature FACE studies: +35 % (Ainsworth and Long, 2005)
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(Ainsworth and Long,

2005) Response to elevated CO 2 of maximal carboxylation capacity

  

(Ainsworth et al., 2007, PCE) 

Climate change tunnels at

INRA Clermont Nitrogen, leaf area and biomass allometry in Lolium perenne (Soussana et al., 1996; Casella & Soussana, 1997; Calvet & Soussana, 2001) Leaf area per unit root+shoot mass declines under elevated CO 2. This decline correlates with that in shoot N content

  

	C-N fluxes in elevated CO 2 with L. perenne
	Ambient CO 2
	Elevated CO 2

N Min Water soluble carbohydrates + Photosynthesis Rhizo-deposition C:N Respiration SOIL N immobilisation N uptake C yield + + + Organic C + + - - + - - +

  

	Negative
	feedback
	Negative feedback
	on yield,
	because of an
	increased soil N
	immobilization
	and increased
	allocation of C
	below-ground
	(Soussana et al., 1996;
	Loiseau & Soussana, 2000)

WSC pools in laminae and sheath of perennial ryegrass monocultures (mean of two N supplies)
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experiment with a semi-natural grassland (mini-FACE system, INRA Clermont) Water soluble carbohydrate contents of laminae (L) and stems (S) of plant community at two cutting frequencies (C-, C+)
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(Picon-Cochard et al., 2004, EJA) 

soluble carbohydrate contents of grasses and forbes at two cutting frequencies

  

	At leaf level		At plant axis level
	Farquhar's photosynthetic model Stomatal regulation		Assimilate partitioning b b Functional balance between roots & shoots
	Coordination of leaf N content		Reserve dynamics
	Leaf N distribution vs. light		Substrate dynamics
	Acclimation to temperature, CO 2 Morphogenesis		Root, shoot structure & shoot proteins dynamics A A …
	Architecture Plasticity for some traits …	a a	At population level
	At root level		Self thining Axis density dynamics
	NO 3 -, NH 4 + uptake vs. acquisition in function of N in plant/ soil concentration	A A	Density dependent recruitment Mortality …
	Morphogenesis Architecture		At community level
	Acclimatation to Temperature		
	…		Radiative balance (Kubelka-Munk equations)
			Inorganic N balance (diffusion driven competition)
	At soil level		Community dynamics
	Inorganic N balance		At ecosystem level
	SOM dynamics (four SOM pools)		
	Microbial turnover (two decomposer types)	Ambient	Primary productivity Elevated CO 2 C and N cycles
	Forbes and legumes became dominant	

(Teyssonneyre et al., 2002 GCB; Picon-Cochard et al., 2004, EJA) 

Grassland Ecosystem Model with Individual centred Interactions (GEMINI)

  

(Soussana et al., 2000, Soussana et aL, in prep) 

Modelling

reserve and substrate dynamics

  

	Substrate C	Labile reserve C	Slow reserve C

Same dynamics for N substrate and reserve

(Soussana et al., 2000, Soussana & Oliveira Machado, 2001) 

Simulated CO 2 response ratio of substrate and reserve dynamics (Festuca arundinacea, cut-, N+, 10 yrs simulation)
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response ratio of leaf proteins, shoot structures and roots (Festuca arundinacea, cut-, N+)

  

	Role of reserves under incremental
	warming and elevated CO 2
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Stages of plant responses of perennial grasses under a standard climatic scenario

  

	June	July	August	September	Increasing water
					deficit
	Green	Progressive senescence	Total senescence	
	STAGE1 STAGE 2	STAGE 3		
	Stability production Autumn/winter/spring	+	Stability soil cover

Expérience avec/sans extrêmes (chaleur, sécheresse) avec ou sans enrichissement en CO 2

  Un événement extrême est appliqué. Suivi des bilans C et eau, avec ou sans enrichissement en CO 2
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D.

Coordination & Synthèse 16. Gestion de l'information et des connaissances 17. Coordination et gestion de l'ARP
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D.

Coordination & Synthèse 16. Gestion de l'information et des connaissances 17. Coordination et gestion de l'ARP Thank you

  

	• species and cultivar
	• soil properties
	• (re)distribution of pests and pathogens
	• direct effects of elevated CO 2 (photosynthesis)
	• interactions between CO 2 -air temp -water stress -mineral
	nutrition…
	• and

adaptive responses of plants… Crop yield responses to climate change depend upon

  

(How) will global change impact on the synchronism between growth and reserves ?

Volaire & Gandoin (1996) Volaire & Lelièvre (1997)Volaire et al. (1998b) 

Drought recovery

Rehydration

Accumulation of highly polymerised fructans

Sensitive populations Resistant populations

Water soluble carbohydrates: Discriminating adaptation

Dehydration tolerance

Accumulation of highly polymerised fructans

Sensitive populations Resistant populations

Water soluble carbohydrates: Discriminating adaptation

Dehydration tolerance

Volaire & Gandoin (1996) Volaire & Lelièvre (1997) Volaire et al. (1998b) Fructans DP >3

Carbon reserves (regrowth after rehydration)

Stabilisation lipidic layers of cell walls

Crowe et al. (1987);Demel et al. (1998);Hincha et al. (2002Hincha et al. ( , 2007)); Vereyken et al. (2003) Dehydration tolerance

Water soluble carbohydrates: Interaction with management

Severe defoliation in Spring

Depletion of Carbon reserves

Low summer survival + Low autumn recovery Volaire (1994) Spring intensity of defoliation affects autumn recovery after drought through fructan accumulation in meristems in Summer