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Abstract

We study the properties of a pricing rule for irrigation water with two vari-
ables: the volume consumed by the farmer and the volume he/she reserves
before the plantation. With a simple deterministic model, we show how this
pricing rule allows the Water User Association manager to anticipate any
possible usage conflict thanks to farmer information revelation, to guarantee
his/her association budget equilibrium. We show too how farmers are incited
to restrain their use of water. Moreover this pricing method is fair (all farm-
ers are equally treated), flexible through the possible change of the value
of the parameters, and moreover simple and easily understandable (when for
example translated in a double entry table). Therefore, it compares favorably
to other classical water pricing methods.

JEL-Classification: C61, C72, Q25
Keywords: water, irrigation, economics, price.



1 Introduction

It is now well recognized that an efficient management of scarce wa-
ter resources is crucial for guaranteeing the sustainability of agriculture in
many countries with structural or periodic water deficit. Moreover, as com-
petition with other sectors (urban, industrial and environmental) increases,
irrigation is often criticized as a waste of a precious resource (see for exam-
ple Elnabousi, 2008). In France for example, an increase of irrigated areas
in the last decades has led, in case of drought, to severe degradation of the
environment and to inefficient administrative banning on water uses. As in
many other countries (see for example Almahdi et al., 2007, for Australia),
despite its modest role in the national product, agriculture is by far the first
sector of water consumption in France, when the resource is rare. Meanwhile
this practice will probably not diminish at a time of increased agricultural
product demand. Thus new policies and approaches need to be designed to
improve water management strategies.

In France, after having built many individual or collective dams in order to
increase water–storage capacity (“supply management”), efforts are currently
focused on “demand management,” i.e. the use of less irrigation water for the
same production and the search for more efficient alternatives for sharing
water among the different uses, while trying to find more efficient water-
pricing schemes (Garcia and Reynaud, 2004).

But in this country, the fact that by law the water does not belong to
anybody (contrary to what happens for example in the USA, see Petrie et
Taylor, 2007) does not allow an efficient use of market based instruments.
In practice, if we put aside independent farmers with their own dam or well,
generally the agents pay a price to their water user associations (WUA)
which does not reflect the scarcity of the resource but aims at balancing the
WUA budget. Moreover, France tries to impose a tax on water use, but the
money collected in this way does not return to the agricultural sector. The
farmers’ opposition to such taxation is therefore quite understandable, even
when its low level does not reduce water consumption for irrigation in the
slightest. Partial or total bans are therefore a current tool, decreasing de facto
the water use, but with some adverse effects, as inefficient economic results:
farmers cannot irrigate thirsty plants in which they invested time and money,
while they could have chosen other less water demanding cultures. Besides
these bans lead to an over-equipment in irrigation material, in order to get
around such compulsory rules, typically by irrigating more intensely when
access to water is not forbidden.
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Our objective is then to study if, at the expense of a slight complication
of the pricing rule, it would not be possible at least to reveal some informa-
tion on the water demand by the farmers, far before the summer, in order
to anticipate crises, and to give the farmers the possibility to change their
culture choices in order to adapt them more precisely to the available water.

The aims of water management are multiple and may sometimes be un-
derstood as contradictory (Johansson et al., 2002): The first one is to allocate
water to users who valorize it at the best (efficiency). The second is to guar-
antee an access to this essential good to everybody and to be acceptable
in order to be applied (equity). Moreover, as mentioned by Perry (2001),
it may be a tool to redistribute public investment benefits. The third is to
recover costs induced by water extraction/distribution/use. We may empha-
size on this subject that the European Union Water Framework Directive
(European Union, 2000), has an entire article dedicated to cost recovery for
water services. The fourth is to be transparent and simple enough to be un-
derstandable, and it is clear that a two variable tariff as the one presented
here is quite acceptable as shown by the spread of the use of futures and
other sophisticated financial tools by farmers, and more specifically by the
generalization of reservations in everyday life (transportation...).

Generally speaking, water pricing practices can be classified in two fam-
ilies: volumetric and non-volumetric methods. Volumetric methods rely on
the volume and require metered water facility. Non-volumetric methods are
based on output/input other than water, e.g. in the agricultural sector a per
area pricing (Johansson, 2000). The last method are widespread because of
their simplicity but they do not encourage to save water.

The volumetric rate pricing depends only on the quantity of consumed
water (see Burt, 2007). This type of pricing does not guarantee cost recov-
ery since the receipt depends directly on the consumed volume. In order to
prevent the risk of not covering costs (and especially fixed costs linked to
infrastructures; see for example Iglesias and Blanco, 2008, ) a two part tariff
may be chosen: besides the volumetric pricing, a fixed price is applied to wa-
ter users. This fixed price will guarantee a minimum regular income ensuring
the water provider a part of its cost recovery.

The volumetric part can be priced in three main ways. It can be either
constant whatever the level of consumed water or priced “per block”: the cost
per additional consumed unit varies when the level of consumption reaches
some given thresholds. The marginal pricing can either increase with the level
of consumption (increasing block tariff) or decrease (declining block rate).
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The increasing block tariffs (IBT) can be used to impose conservation
incentives on some target group of large users. Customers facing the higher
prices at the margin will, in theory, use less water than they would under the
uniform pricing; customers facing lower prices at the margin will use more.
The increasing block design will conserve water if the sum of decreases in use
exceeds the sum of increases. The expectation is that demand in the high
blocks will be more elastic than demand in the low blocks, resulting in a net
decrease in water use. Although there is widespread consensus that IBT have
many advantages, this type of tariff still deserves more careful examination
since an incorrect structure of the IBTs leads to several shortcomings as
argued by Boland and Whittington (2000), such as difficulties to set the initial
block, mismatch between prices and marginal costs, conflict between revenue
sufficiency and economic efficiency, absence of simplicity, transparency and
implementation, incapacity of solving shared connections, etc.

The decreasing block tariff (DBT) is, unlike the preceding one, in ac-
cordance with the proposition that high value goods “should” be bought at
higher price than low value goods. Water will be first purchased for uses with
high values, and then only for uses which will lead to less welfare increases.
Concerning equity, this type of tariff is ”not advisable”. ”The consumers
who acquire smaller amounts of the good and/or service because of their
low incomes would be bearing a higher price than those who can afford to
consume greater amounts” (Gracia and al., 2001). But it can be justified in
the following circumstances:

- When users have very different levels of consumption. A consumer hun-
dred times bigger than the average consumer does not create costs hundred
times higher, because there is only one pipe line, one billing process. . . And,
since cost per volume is lower with large consumers, it is justifiable to propose
DBT in case of heterogeneous users.

- In order to incite users to stay in the WUA: as we have explained above,
IBT might encourage users who have access to alternative water sources to
quit (partly at least) the network, stopping to contribute to the recovery of
the costs. This can lead to cost recovery problems for the water supplier and
besides might lead to negative environmental consequences. DBT does not
have this negative incentive.

A two-part tariff combines a fixed and a volumetric rate (or a mix of fixed
and variable elements). ”Under this system, consumers must pay an entry
charge that entitles them to consume the good. Subsequently they will pay
an additional smaller amount for each extra unit consumed [in the case of
a DBT for the volumetric part].” ”Two part tariff are easy to explain and
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easy to understand.” (Gracia and al., 2001). But in practice it fails to reach
the efficiency objective and suffer from th efact that it does not allow to
reaveal information on water demand, which may be at the origin of sudden
discrepancy between water supply and demand.

In the following we study the properties of a different pricing structure,
in which each farmer makes a water reservation, say in spring, before plant-
ing, and then pay a water bill which is an increasing function of his/her
reservation and of his/her consumption,. This allows the water user manager
to forecast a disequilibrium between water demand and supply. The water
pricing is parameterized (parameters a, b and λ), in order to adapt the price
to the actual WUA situation and to the available water suply. Section 2 we
present the notations, the pricing formula and its first properties. In section
3 we study the optimal farmer’s behaviour. In section 4 we conclude with
some considerations on further researches.

The different qualities of this pricing structure, that we study here with
a simple deterministic model, are in accordance with the four aims of the
WUA manager we presented before, even the ease to be understood when for
example the pricing formula is translated in a double entry table. Therefore it
compares favorably to the other previously presented classical water pricing
methods.

2 The model

2.1 Notations

We consider a water user association, composed of n farmers, which
provides them irrigation water at a cost. Each farmer i has a production
function we note hi(Ci), function of the volume Ci of the water he consumes.
This production function is private information, known only by the farmer
himself.

Each year, each farmer firstly reserves a water volume Si, for example
before choosing his planting, then consumes another volume Ci for the field
irrigation, Ci being either inferior or superior to Si. The pricing formula is
designed in order to take into account these two variables and to display
some properties.
The notation we use are the following:
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• B is the total water user association expenses

• D is proportional to B : D = λB, with a constant λ > 0,

• Si is the volume reserved by agent i during the considered year,

• Ci is the volume consumed by agent i during the same year,

• Fi is the sum agent i must pay (his water bill).

For each agent i, the pricing formula is:

Fi(Si, Ci) = D

(
a Si + (1− a)

max(Ci, b Si) Ci

Si

)
, (1)

with a ∈ (0, 1) and b ∈ (0, 1).
The pricing scheme is common knowledge for all farmers, and is the same

for all of them. Parameter a represent a kind of sharing of the price between
on the first hand the reservation part and on the other hand the consumption
part. The role of parameter b is to incite to reserve at least the forescasted
consumption divided by b. When Ci > bSi, the C2

i which appears in the
pricing formula incites to diminish water consumption.
We show here that a deterministic approach, without acquisition of informa-
tion between the reservation date and the consumption date, is sufficient in
order to study some of the properties of this pricing. Of course other proper-
ties directly linked to stochastic variables (as the climate) cannot be studied
here and are the object of further researches.

2.2 Preliminary properties of the pricing formula

We study the properties of this formula in the following way: Once Ci is
known, and therefore the gross product of the field if given, the objective of
the farmer is to minimize his water bill, by choosing judiciously his reserved
volume. This allows to compute a function Si(Ci) with which we can calculate
the optimal volume the farmer use for irrigation, knowing that each different
choice of Ci leads to some harvest hi(Ci) and to a minimal water bill.

If Ci is given, the objective of i is to minimize in Si:

Fi(Si, Ci) =





D
(
a Si + (1− a) (Ci)

2

Si

)
if b Si ≤ Ci,

D (aSi + (1− a) b Ci) if b Si > Ci.

We can deduce the following properties of this pricing scheme:
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• Fi(Si, Ci) is a continuous function in Si.

•
∂Fi(Si, Ci)

∂Si

=





D
(
a− (1− a) (Ci

Si
)2

)
if bSi < Ci,

a D if b Si > Ci.

and it is not defined in b Si = Ci.

•
∂Fi(Si, Ci)

∂Si

= 0 ⇐⇒ Si =

√
1− a

a
Ci, and b

√
1− a

a
< 1.

These properties imply the following result:

Lemma 1 The minimization of (1) in Si, for Ci given, is:

S∗i =
√

1−a
a

Ci if b2

b2+1
< a < 1,

S∗i = b−1 Ci if 0 < a ≤ b2

b2+1
.

Note that we obtain a linear relation between Si as a function of Ci, that
depends only on the parameters a and b.

3 The maximization problem of farmer i

When choosing the values of his control variables Si and Ci the farmer must
decide of the optimal value of Ci knowing the optimal value of Si previously
announced. Therefore each farmer must solve:

max
Si

[
max

Ci

(hi(Ci)− F (Si, Ci))

]
, (2)

where, the profit function of farmer i, hi, is an increasing and concave fonc-
tion.
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3.1 The maximization problem in Ci

We note G(Si, Ci) = hi(Ci)− F (Si, Ci) (see Fig. 1). We have then:

∂Gi(Si, Ci)

∂Ci

=





h′i(Ci)− 2 (1− a) DCi

Si
if b Si < Ci,

h′i(Ci)− (1− a) b D if b Si > Ci.

We note, C−
i (Si) the solution in Ci of

h′i(Ci) = 2 (1− a) D
Ci

Si

,

With a simple derivation of this last equation, it is easy to see that

C−′
i (Si) =

2 (1− a) D Ci

2 (1− a) D Si − h′′(Ci)S2
i

> 0,

therefore, C−
i (Si) is an increasing funtion of Si.

We call C+
i the solution in Ci of (note that this solution does not depend

on Si):
h′i(Ci) = (1− a) b D.

When bSi < Ci we have:

2 (1− a) D
Ci

Si

> 2 (1− a) b D > (1− a) b D,

The concavity of hi implies that

C−
i (Si) < C+

i .

We can easily deduce that the optimal solution Csol
i of (2) for Si given depends

on the relative positions of C−
i (Si) < C+

i and of b Si:

Csol
i =





C−
i (Si) if Si < C−

i (Si)/b,

b Si if C−
i (Si)/b ≤ Si ≤ C+

i /b

C+
i if Si > C+

i /b.

Note that this formula gives a relation Csol
i (Si) that depends on the param-

eters of the regulator and the profit function of farmer i. Csol
i (Si) is first an
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increasing function, then linear and finally a constant.

Maximization in Ci: a numerical example

If h(Ci) =
Cα

i

α
, the maximization problem for Si given is:

Csol
i =





(2(1− a)D)
−1
2−α S

1
2−α

i if Si < (2(1−a) D)
−1
1−α

b
2−α
1−α

,

b.Si if (2(1−a) D)
−1
1−α

b
2−α
1−α

≤ Si ≤ ((1−a)bD)
−1
1−α

b

((1− a)bD)
−1
1−α if Si > ((1−a)bD)

−1
1−α

b
.

Taking now α = 0.5, a = 1/3, b = 0.7, D = 2, the numerical values are:

Csol
i =





(3
8
)2/3S

2/3
i if Si < (3

8
)2(10

7
)3,

0.7 Si if (3
8
)2(10

7
)3 ≤ Si ≤ (30

28
)2 10

7

(30
28

)2 if Si > (30
28

)2 10
7
.

We see in Fig. 2 how the optimal consumption Csol
i depends on the value of

Si and α.

3.2 The maximization problem in Si

When solving the maximization of our problem in Si, knowing the optimal
value Ci, (which is generally a function of Si), we must consider the relation
between Si and Ci.

• if Si < C−
i (Si)/b we must solve

max
Si

(hi(C
−
i (Si))− F (Si, C

−
i (Si))),

and the first order condition gives:

h′i(C
−
i (Si)) C ′−

i (Si) = D

[
a + (1− a)

2C−
i (Si)C

′−
i (Si)Si − (C−

i (Si))
2

S2
i

]
.

(3)
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• if C−
i (Si)/b ≤ Si ≤ C+

i /b we get

max
Si

(hi(bSi)−D(aSi + (1− a)b2Si)),

with first order condition:

bh′i(bSi) = D
[
a + (1− a)b2

]
. (4)

• and if Si > C+
i /b the maximization problem is then

max
Si

(hi(C
+
i )− F (Si, C

+
i )),

that does not have a solution.

To obtain the optimal solution of our problem in Si we must analyze
the admissibility of solutions of (3) and (4). We can assure that the optimal
solution of (2) is such that bSi ≤ Ci.
To do that we have the following result:

Lemma 2

max
Si

[
max

Ci

(h(Ci)− F (Si, Ci))

]
= max

Si,Ci

[h(Ci)− F (Si, Ci)] . (5)

Proof.
In section 3.1. of this paper we have shown that the solution of

max
Si

[
max

Ci

(h(Ci)− F (Si, Ci))

]
, (6)

is given either if bSi = Ci (border solution) by the maximization in Si of
G(Si, bSi)or if bSi < Ci (interior solution) by

h′(Ci) = 2 (1− a) D
Ci

Si

, (7)

with

h′(C−
i (Si)) C ′−

i (Si) = D

[
a + (1− a)

2C−
i (Si)C

′−
i (Si)Si − (C−

i (Si))
2

S2
i

]
. (8)

Now if we solve the problem

max
Si,Ci

(h(Ci)− F (Si, Ci)), (9)
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its interior solution (with bSi < Ci), knowing from section 2.2 that

∂G(Si, Ci)

∂Si

= 0 ⇐⇒ Si =

√
1− a

a
Ci and b

√
1− a

a
< 1, (10)

is given by

∂G(Si, Ci)

∂Ci

= 0 ⇐⇒ h′(Ci) = 2 (1− a) D
Ci

Si

,

which coincides with (7). Replacing this equation in (3) we obtain

2(1− a)D
Ci

Si

C ′
i = D

(
a +

(1− a)2CiC
′
i

Si

− (1− a)
C2

i

S2
i

)
.

Simplifying we find equation (10) so that the interior solution coincides with
the solution of (2). The border solutions are also the same (i.e. bSi = Ci) for
(2) and for

max
Si

[
max

Ci

(h(Ci)− F (Si, Ci))

]
. (11)

Finally both solutions are the sames.
From Lemma 1 and Lemma 2 we can deduce that

Theorem 1 The optimal strategie of farmer i is:

i) Si = Ci

√
(1− a)/a if b2/(1 + b2) < a < 1 where Ci is the solution of

h′i(Ci) = 2D
√

a(1− a). (12)

ii) bSi = Ci if 0 < a ≤ b2/(1 + b2) where Ci is the solution of

h′i(Ci) =
D(a + (1− a)b2)

b
. (13)

Remark 1

The optimal solution is a continuous function of the parameters a and b.

The regulator can choose the parameters a and b in order to enforce an inte-
rior solution or a border solution.

Remark 2 Note that in ii) of last theorem

lim
b→0

D(a + (1− a)b2)

b
= ∞.
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If we choose b small enough and therefore a small enough to remain in case
ii), (13) incites the farmers to use less water, i.e. Ci → 0 when b → 0. But
in general we can not draw any conclusion on the value of Si. Nevertheless
in the previous exemple with hi(Ci) = Cαi

i /αi, we have

Si =
1

D(a + (1− a)b2

1
1−αi

b
αi

1−αi ,

and we conclude that Si → 0 too when b → 0. In conclusion the manager may
use these two parameters a and b in order to decrease the water consumption
but he can not make water decrease at discretion since as in our example he
might decrease also the reserved volume and at the end the budget equilibrium
would not be satisfied.
Note also that in i) of last theorem, we can not make the consumption Ci

decrease at will, since the maximum value of h′i(Ci) is equal to D according
to (13).
In conclusion the manager by the choice of parameters a, b and λ leads the
problem either in case i) for which a budget equilibrium can be attained or in
case ii) where he incites the farmers to lessen his water consumption1 while
possibly allowing a budget equilibrium. The budget equilibrium will be studied
in more details in next section.

3.3 The budget equilibrium constraint

In this section we study the conditions in which the budget equilibrium may
be obtained, or in other terms, in which

∑
i

Fi(Si, Ci) = B. (14)

The water user association may choose the parameters a and b in such a
a way that:

i) either b2/(1 + b2) < a < 1 and then Si = Ci

√
(1− a)/a,

Ci = [h′i]
−1

(2D
√

a(1− a)) =: gi(2D
√

a(1− a)),

and the budget equilibrium constraint (14) must be writen as:

2λB
√

(1− a)/a
∑

i

Ci = 2λB
√

(1− a)/a
∑

i

gi(2λB
√

a(1− a)) = B.

1since D ≤ h′i ≤ ∞ in ii) and 0 ≤ h′i ≤ D in i) the water consumption is always inferior
when in ii) than when in i).
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That is:
2λ

√
(1− a)/a

∑
i

gi(2λB
√

a(1− a)) = 1.

When hi(Ci) =
C

αi
i

αi
, this last equation becomes

f(λ) = 2
√

(1− a)/a
∑

i

λ
αi

αi−1 Mi = 1, (15)

where
Mi = (2B

√
a(1− a))1/(αi−1).

Noting that f(0) = +∞, that limλ→∞ f(λ) = 0 and that f ′(λ) < 0, we
deduce that there exists a unique λ which verifies (15).
ii) or 0 < a < b2/(1 + b2) and then Si = bCi, in this case,

f(λ) = A
∑

i

λ
αi

αi−1 Mi = 1,

where

A =
D(a + (1− a)b2)

b
, Mi = (BA)1/(αi−1),

and we obtain the same conclusion as in i).
So, once the parameters a and b are chosen for considerations of water

savings, the water user association manager can force the system to be in
budgetary equilibrium with the choice of the parameter λ value. Of course,
not knowing the true value of the αi parameters, or more generally of the
hi(Ci) functions, he will not be able to compute directly the optimal λ value,
but the existence result on a unique λ value and the monotonicity of f(λ)
allow him to find the correct value by fumbling.
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4 Conclusion

We have shown here how it is possible with a pricing system based on
two variables, reservation and consumption, for the Water User Association
manager to get enough information in order to anticipate any disequilibrium
between water demand and supply, when it is always possible to change
the choice of the cultures. Moreover changing the parameters allows him to
modify the volume consumed by the farmers, which is especially useful when
searching a decrease of the water consumption. Translated in a two entry ta-
ble, this method is simple to understand by each farmer, and quite acceptable
since associating the pursuit of fairness, efficiency and adaptability.

At last, with a judicious choice of the value for the parameters, it is pos-
sible to incite the farmers to be more or less acute in the choice of their
reservation and consumption values. This pricing system should therefore
allow a more efficient use of the water resource by the farmers, by the way
decreasing the constraints on other economic sectors and on the environment.
Further researches are nevertheless needed to study how such a system keeps
or increases its advantages when we take into account the fact that in many
countries the water supply may be stochastic. Moreover the information ac-
quisition may be sequential, throughout spring and summer seasons in most
places. This leads to other refinements which are the aim of other present
researches.
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Figure 1: G(Si, Ci)
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Figure 2: Optimal policy Csol(Si)
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