Volatile soil carbon: joint project PROCOPE
Bernard B. Longdoz, Martin Maier, Helmer Schack-Kirchner, Caroline C. Plain

To cite this version:
Bernard B. Longdoz, Martin Maier, Helmer Schack-Kirchner, Caroline C. Plain. Volatile soil carbon: joint project PROCOPE. Réunion dans le cadre du partenariat Hubert Curien "PROCOPE", Feb 2009, Freiburg, Germany. 22 p. hal-02820864

HAL Id: hal-02820864
https://hal.inrae.fr/hal-02820864
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
VOLATILE SOIL CARBON: JOINT PROJECT PROCOPE

Bernard Longdoz, Martin Maier, Helmer Schack-Kirchner, Caroline Plain

Bilateral project between:

Inst. Fur Bodenkunde Und Waldernahrungslehre

&

UMR Forest Ecology and Ecophysiology
UMR FOREST ECOLOGY and ECOPHYSIOLOGY
(Director A. Granier)

Plant and ecosystem functioning under environmental changes (50 permanents, 75 people)

- Forest Phyto-ecology (J.-L. Dupouey)
- Tree and Ecosystem Functioning (D. Epron)
- Physiology (E. Dreyer)
- Technical support (Isotope, microscope, mineral analysis) (C. Brechet)
- GIS (D. Maurice)
Team : Tree and Ecosystem Functioning

- Flux and budget of carbon, water and nitrogen in interaction with climate and edaphic conditions
 - Ecosystem carbon cycle :
 - Ability of the forest to store the atmospheric carbon :
 - Climatic changes
 - Forest management (harvest)
 - Tree carbon and nitrogen reserves
 - Carbon and nitrogen allocation in the tree
 - Hydraulic tree and canopy functioning
Experimental Site: Hesse

Location: 48°40'N, 7°05'E
65 km from Nancy (East)
10 km from Sarrebourg (South)
Mean annual air Temp.: 10°C
Mean annual Precip.: 950 mm
Climate: Temperate
Experimental Site: Hesse

- 200 m from Hesse
- 90% beech
- 40 years old
- Height 19 m
- LAI: 7.5

Soil type: stagnic luvisol

- 5 horizons: A, S1, Sg2, II Cg, III C
- C_{soil}: 9.5 kg m$^{-2}$
Experimental Site: Hesse

Equipped since 1996

Main instrumentation: Eddy covariance system
Experimental Site: Hesse

Eddy Covariance system

Sonic anemometer

IRGA

Tower

[CO$_2$] and [H$_2$O] at high ν (>10 Hz)

3 wind speed components measurements at high ν (>10 Hz)

Air transport

Data record and storage system

Net Fluxes: CO$_2$ (NEE), Evapo-transp.
Sensible and Latent heat every 30 min
Experimental Site: Hesse

Estimation of TER during daytime by extrapolation of night EC data

GPP = NEE – TER

Annual carbon sequestration (NEE)

GPP

TER
Experimental Site: Hesse

Automatic:

- Eddy covariance (Net CO$_2$ Ecosystem Exchange)
- Climate (T°, radiation, humidity, precipitations)
- Edaphic conditions (soil T° and water content)
- Tree diameter (dendrometer) \Rightarrow C biomass

Campaigns:

- LAI
- Soil respiration (Rs)
- Aerial biomass (trunks, leaves, …)
- Below ground biomass (roots)
- Soil composition, …

Temporal variability

Partitioning
Why Soil Respiration?

• Partitioning NEE between components fluxes
 (Rs second flux, Rs = 60-70% of TER)
• Explain temporal variability of TER
• Explain spatial variability of TER

Why Volatile Carbon Soil?

• Solve eddy covariance measurement problems
• Improve soil carbon modelling
• Explain stable isotope fluctuations of soil CO$_2$ efflux
Eddy Covariance Problems

When low turbulence = quite nights

⇒ EC fluxes ≠ Total ecosystem respiration (30% of the nighttimes)

(Longdoz et al. 2008)
Eddy Covariance Problems

Correction CO\textsubscript{2} stored in the canopy air and in the soil

Measurements of CO\textsubscript{2} profile in canopy air below EC system

- We need \([\text{CO}_2]_{\text{soil}}\) measurements for soil CO\textsubscript{2} storage estimation
Modelling (carbon, water, energy)

(Longdoz et al. 2004)

Simulate impact of
Climate changes (extreme events)
Management
Differences between species behaviour
on carbon sequestration

Two « black boxes » : Soil carbon budget & photosyntates allocation

Soil carbon model :
“Century” soil carbon pools
Site specific soil CO$_2$ efflux function Fc (t°, SWC)

⇒ Multi-layers model :
CO$_2$ production profile depending on layer features
Modelling

- Multi-layers model:
 CO$_2$ production profile depending on layer features

- Heterotrophic – Autotrophic partitioning

→ We need [CO$_2$]$_{soil}$ measurements in addition to efflux
Temporal variability of isotopic signature of soil efflux

- Carbon has two main isotopes (12C and 13C)
- Isotopic composition δ^{13}C (‰)

$$\delta^{13}C = \frac{R_{mes}^{13/12}}{R_{st}^{13/12}} - 1$$

δ^{13}C$_{atm} \approx -8$ ‰
δ^{13}C$_{SOM} \approx -21 \rightarrow -30$ ‰

- Discrimination (modification of the δ^{13}C value) during the biophysical processes (photosynthesis, CO$_2$ diffusion)
Measurements of $\delta^{13}C$ soil respiration

- Contribution of the heterotrophic respiration sources (litter/old SOM)
- Contribution of the plant organs (soluble sugar and amino acids, storage carbohydrate and proteins) in autotrophic soil respiration
- Separation of NEE between GPP-Reco

\[
NEE = GPP + \text{Réco}
\]

\[
\delta^{13}C_{NEE} \cdot NEE = \delta^{13}C_{\text{atm}} \cdot GPP + \delta^{13}C_{\text{Réco}} \cdot \text{Réco}
\]

\[
(-8\%\circ) \quad (-26\%\circ)
\]

- Input for inverse carbon cycle model

Determination of terrestrial & oceanic fluxes from $[\text{CO}_2]_{\text{atm}}$ and δ_{atm}

\[
\delta = -26\%\circ \quad \delta = -12\%\circ
\]
Up to now low frequency measurements (Keeling plots) but temporal variability of $\delta^{13}C_{Rs}$!!!!

- Daily and seasonal $\delta^{13}C_{Rs}$ variations?
- Which factors control these variations?

High frequency measurements of fluxes of $^{13}CO_2$ and $^{12}CO_2$ with a Tunable Diode Laser Spectrophotometers (TDLS) as a promising tool for these purposes
Tunable Diode Laser Spectrophotometer

Sample detector

Reference detector

Pump

Reference gas (10% CO₂)

Sample cell

Dewar

Laser

Sample
Chamber description

[CO₂] and ¹³C of gas coming into the chamber

[CO₂] and ¹³C of gas leaving the chamber

To TDLS
Seasonal $\delta^{13}C_{Rs}$ variations

Daily $\delta^{13}C_{Rs}$ variations

!!! Same range of fluctuation (up to 2‰) !!!
Too large variations to avoid them

What causes these variations? (toward prediction of them)

Biological process during:
- Photosynthesis
- Carbon Transport
- CO2 respiration (Production)

Physical process during:
- CO2 diffusion through the soil (from production point to the surface)

To separate the impact of physical from biological processes

We need measurements of [CO2]_{soil} and its δ^{13}CO2
Isotope workpackage of the project

Two/one time(s) per month

→ air sampling (≠ depths) → IRMS analyses for 13CO$_2$ in soil
→ Keeling plot → 13CO$_2$ of soil CO2 efflux