Modelling dissipation of Chlordecone in soils
Yves-Marie Cabidoche, Philippe Cattan, Cathy Clermont-Dauphin, Julie Sansoulet

To cite this version:
Yves-Marie Cabidoche, Philippe Cattan, Cathy Clermont-Dauphin, Julie Sansoulet. Modelling dissipation of Chlordecone in soils. Ecotrons&Lysimeters - Key tools for studying terrestrial ecosystems responses to global change, to pollutants and to pollutant engineering, Groupement d’Intérêt Scientifique sur les Friches Industrielles (GISFI). Vandoeuvre Lès Nancy, FRA.; Université de Lorraine (UL), Nancy, FRA.; German Research Center for Environmental Health - Helmholtz Center München (GmbH). DEU., Mar 2010, Nancy, France. hal-02820980

HAL Id: hal-02820980
https://hal.inrae.fr/hal-02820980
Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modelling dissipation of Chlordecone in soils

Yves-Marie Cabidoche, Philippe Cattan, Claridge Clermont-Dauphin, Julie Sansoulet
Modelling dissipation of Chlordecone in soils

Chlordecone: insecticide against Cosmopolites sordidus

Applied in banana fields between 1972 and 1993, 3 kg ha\(^{-1}\) year\(^{-1}\)

Stable and persistent organochloride, high hydrophobicity, low solubility, \(K_{oc} = 17.5 \text{ m}^3 \text{ kg}^{-1}\)

10 years after: contamination of water (\(\geq 10 \mu\text{g L}^{-1}\)) and vegetables (\(> 1 \text{ mg kg}^{-1}\))

Question: persistence duration?

Three steps:

- « Space for time » approach of current contamination
- Modelling leaching and resulting contamination of soils
- Measuring runoff and drainage water contaminations for validating the model

Ecotrons & Lysimeters
Nancy, France
March 29-31 2010
Modelling dissipation of Chlordecone in soils

« Space for time » approach of current contamination

A set of 35 banana parcels, including diverse levels of intensification, located on three main soil types: andosol, ferralsol, nitisol (Clermont-Dauphin et al, Agr. Ecos. & Env., 2005)

Survey: reconstituting the chordecone supply schedule

Soil sampling:

- Accounting spatial position and variability
- Determining CLD and SOC content and BD on 0-10, 10-30 cm and deeper layers

Result: multiple regression of CLD soil content against CLD supply, SOC, and annual rainfall average: more than 80% of variance was explained, without accounting time

Ecotrons & Lysimeters
Nancy, France
March 29-31 2010
Modelling dissipation of Chlordecone in soils

WISORCH : a dissipation model of chlordecone in soils
West Indies ORganoCHlorids Cabidoche et al, Env. Pol., 2009

Hypothesis : only leaching is responsible for chlordecone dissipation, no degradation occurs

Content

- Annual step
- First order kinetics applied to each supply S_i
- S_j: remnant CLD soil content at the end of year j
- High sorptivity on carbon content (S_{soc}): $K_{oc} = 17.5 \text{ m}^3 \text{ kg}^{-1}$
- Two drainages are applied: concentrated drainage resulting from stem flow the first years (D_{red}), then drainage calculated from hydric balance (D_{bil})

Validation or Calibration?

Ecotrons & Lysimeters
Nancy, France march 29-31 2010
Modelling dissipation of Chlordecone in soils

Using leaching outputs for validation

Modelling average CLD concentration in drainage water at the bottom of A layer:

\[
[CLD]_w = \frac{(S_j - S_{j-1})}{D_j}
\]

source of B layer contamination

2 submodels applied on a 2-layer soil:

- Matric drainage below the interrow (MD)
- Dual drainage below banana stem (DD)

Wick Lysimeters
Distributed drainage \(\Rightarrow\) multiple lysimeters

Using HYDRUS2D to simulate lysimeter drainage flows

Removing lysimeters from the model \(\Rightarrow\) no bias affecting lysimeters

Measuring [CLD] in water samples

Sansoulet et al., EJSS, 2007
Sansoulet et al., Vadose Zone J., 2008
Modelling dissipation of Chlordecone in soils

Lysimeters:

2 \([\text{CLD}]_w\) (regression slope) phases below banana in andosol

- First corresponds to MD
- Second to DD

WISORCH model is in good accordance with measured \([\text{CLD}]_w\) while taking calibration values of Koc: 19.8 for andosol, and 2.7 m³ kg⁻¹ for nitisol

\(\Rightarrow\) Koc differences between andosol and nitisol are actual
Discussion and conclusions

- WISORCH, a simple leaching model, accounts for chlordecone dissipation in soils of the FWI
- The validity of WISORCH indicates that no chlordecone degradation occurred
- It allows temporal extrapolation of chlordecone pollution duration: several decades for nitisol, more than half millennium for andosol
- Even if depollution is faster in nitisol, contamination hazard for drainage water and crops is currently higher
- Determining soil CLD content is not sufficient for predicting water and crop contamination
- Research is currently conducted for understanding why sorptivity of allophanic andosol and halloysitic nitisol are different

Thanks for your attention