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ABSTRACT.   Is it better for a seller who wants to auction multiple units to face many small bidders or few 
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allocation efficiency is not significantly different. 
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1. INTRODUCTION 

Multi-unit auctions (in which bidders are allowed to submit multiple price-quantity bids) are 

used in an increasing number of domains : the purchase of foreign exchange (Tenorio, 1999), 

electricity markets (Wolfram 1998), the sale of treasury securities (Binmore and Swierzbinski 

2000), the sale of agricultural goods, etc. They could also be mobilized in other areas such as 

water buybacks in drought-threatened basins (Hailu and Thoyer, 2005). In a multi-unit 

auction, many items or units are put on sale simultaneously in a single round. If bidders have 

multi-unit demands (i.e. bidders have positive valuations for many units and thus are 

interested in winning more than one unit), they may submit many bids which indicate the 

price they propose for each unit.1 Multi-unit auctions are more flexible than single bid 

auctions that limit bids to single quantity-price pair bids and thus help to avoid the 'lumpy bid' 

problem inherent in single-bid auctions (Chan et al, 2003).  

 

The design of an auction seeks to maximize the competition between bidders in order to gain 

efficiency (both in terms of sale revenue and allocative efficiency). In auctions where each 

bidder is only interested in one unit, the competition degree can be easily measured by the 

ratio between the number of units to be sold and the number of bidders: this is the degree of 

rationing. In multi-unit auctions where bidders want more than one unit, the competition is 

not so easily defined. Although the degree of rationing can be measured as total supply 

divided by total demand, the competition structure will depend on the number of bidders and 

the structure of their individual demand. As a consequence and more generally, for a same 

degree of rationing we may have different competition structures. 

 

In practice, it may happen that the auctioneer has to select a target group to which the items 

will be sold (or purchased if it is a procurement auction). Of course, depending on the size of 

the group (the number of bidders) and the demand of each potential bidder in the group, the 

                                                 
1 In the auction literature, multi-unit auctions are sometimes formalized as a share auction in which the good is 

assumed perfectly divisible and bidders submit demand functions. See Wilson (1979), Wang and Zender (2002). 

A multi-unit auction is a discrete version of a share auction. 
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degree of competition will differ and it is expected that the auctioneer will choose the target 

group where the competition is greatest. 

 

Similarly, when the seller defines the size of a unit (the minimal indivisible quantity one can 

bid on and buy) she may also have an impact on the competition structure. Indeed, if the size 

of a unit is small enough, most potential buyers can participate on their own to the auction and 

in this case the bigger buyers will want many units. On the opposite, if the size of a unit is 

important, only the larger bidders may be able to participate to the auction, unless the smaller 

buyers cooperate to bid together and then share their purchase. 

 

What is at stake for the auctioneer is to choose the market place and the size of the elementary 

unit sold, which will ensure the highest expected revenue (and/or potentially the highest 

allocative efficiency if the auctioneer is a public agency). 

 

The objective in this paper is to compare the performance of multi-unit auction under 

different structures of competition when bidders have private independent values. More 

precisely, for a same level of rationing, is it better for the seller to face a group of numerous 

bidders who have a small individual demand or a smaller group of bidders who have larger 

individual demand? What is best in terms of auction performance, i.e. seller’s revenue and 

allocation efficiency? 

 

We will focus on the case of uniform-price auction in which the stop-out price, i.e. the price 

paid by the winner(s), is the first rejected bid (or the highest losing bid).2 Although structural 

properties of equilibrium bidding strategies can be deducted from simple examples, the 

existing literature offers little insights into their analytical characterization, made intractable 

by the existence of multiple equilibria. Since theoretical analysis cannot provide a clear-cut 

answer, we turn to experimental data in order to characterize better the outcomes of multi-unit 

auctions. 

 

                                                 
2 In a uniform-price auction, the stop-out price is sometimes defined as the lowest accepted bid. This different 

pricing rule can have substantial impacts on the bidders’ strategies and thus on the result of the auction. In this 

paper, we will consider only the case where the market price is the highest rejected bid. 
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We therefore analyse a multi-unit auction run into two different “competitive environment” 

scenarios: the first one includes six bidders with small individual demands, the second is 

characterized by two bidders with large individual demands. Aggregate demand and supply 

are the same in both scenarios. We first identify potential Nash equilibria in bidding 

behaviour and deduct that the auction revenue could potentially fall to zero, were bidders able 

to coordinate on such equilibria. We then run controlled laboratory experiments to compare 

the efficiency outcomes in both scenarios. The main conclusion is that with constant degree of 

rationing, when the number of bidders increases while individual demand decreases, there is 

less strategic bidding (demand reduction), therefore leading to higher expected revenue (with 

a lower variance). However, allocation efficiency is not significantly different. 

 

The paper is structured as follows. Next section summarises intuitions and literature findings 

based on a specific example which will be mobilized in the experiments. The third section 

describes the experimental protocol. The fourth section presents the experimental results on 

auction performance. The fifth section analyses strategies in experiments. Last section 

concludes. 

2. LITERATURE AND HYPOTHESES 

2.1. Literature findings 

In the literature on auctions with multi-unit demand, most articles aim to compare the 

performance of different auction formats for a given structure of competition. We focus here 

only on the case of the uniform-price auction. The uniform-price auction has first been 

considered falsely as the generalisation of the second-price auction in the case of a multi-unit 

auction. This incorrect analogy led some prominent economists to confusions regarding the 

incentive effects of uniform-price auctions (Binmore and Swierzbinski, 2000). Indeed, it is a 

dominant bidding strategy to submit one’s true value in the single-unit demand case, but when 

bidders have non-increasing multi-unit demand they have an incentive to reduce their demand 

so as to obtain units at a more favourable price (see, for example, Noussair, 1995; 

Engelbrecht-Wiggans and Kahn, 1998). If we consider the discrete case where many 

indivisible units are put on sale and bidders submit a bid for each unit they want, a bidder who 
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desires more than one unit in a uniform-price auction has an incentive to shade her bid (bid 

under her true valuation, i.e. underbidding). There is no bid shading  on the first unit 

demanded, but increasing amounts of bid shading occur on subsequent units. The intuition 

behind the incentive to reduce demand is that bidders have market power in the uniform-price 

auction since their bid potentially determines the price they will have to pay. Demand 

reduction reduces seller’s revenue and introduces inefficiencies as buyers with lower valued 

units may earn items in place of higher valued buyers (Ausubel and Cramton, 2002). 

 

Many works study this demand reduction phenomenon. There are in particular many 

experimental auctions that are conducted to compare demand reduction in different multi-unit 

auction formats, usually for two identical units: Alsemgeest, Noussair and Olson, 1998; List 

and Lucking-Reiley, 2000; Kagel and Levin, 2001; Engelmann and Grimm, 2006; Porter and 

Vragov, 2006. As the theory predicts, clear demand reductions is observed in the uniform-

price auction (even when bidders have flat demands). In addition, Engelbrecht-Wiggans, List 

and Lucking-Reiley (2006) found that the demand reduction diminishes when the number of 

bidders increases, but does not vanish. 

 

From a theoretical view point, it is difficult to obtain results in a general discrete case (N 

bidders with multi-unit demand competing for K units). Most papers consider special cases. 

The most common studied example is when two units are put on sale and bidders have a 

demand for two units. Engelbrecht-Wiggans and Kahn (1998) and Krishna (2002) provide 

characterizations of equilibria in such auction. 

 

If there are two units for sale and two bidders with value vectors X that are identically and 

independently distributed according to the density function f(x) = 2 on χ = {x ∈ [0, 1]² : x1 ≥ 

x2}, Krishna (2002, p. 189) proves that β1(x1, x2) = x1, and β2(x1, x2) = 0, i.e. bidding one’s 

true value for the first unit and zero for the second, is a symmetric equilibrium of the uniform-

price auction. Thus, in every realization, each bidder wins one unit and the price is zero! In 

such case, allocative efficiency is not guaranteed (since the private value of the first unit of 

one of the two bidders can be lower than the second private value of the other bidder and is 

won however). 

 

Can such equilibrium be extended to a more complicated case where the number of bidders or 

the number of units is strictly greater than two? 
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2.2. Theoretical predictions for two competition structure scenarios 

To simplify, we restrict the analysis to symmetric bidders. Bidders who participate in the 

auction have the same structure of individual demand, i.e. they want the same number of units 

and have decreasing demand values (downward sloping demands). More precisely, each 

bidder’s private values are independently drawn from the same distribution and are ordered 

from the highest to the lowest. This distribution and ordering rule is common knowledge. In 

the following experiment we consider a uniform distribution on [0, 100]. In addition, we 

assume that there is neither communication nor any possibility for explicit collusion. 

 

To fix ideas assume a situation with a total supply of K = 6 units. We study two scenarios. In 

scenario 1, there is a group of six identical bidders with a non increasing demand for two units 

each. In scenario 2, we consider, two players with a demand for six units each. In short there 

are six small bidders in scenario 1 and two large bidders in scenario 2. Note that the aggregate 

demand in both scenarios is identical and is equal to 12 units. Since there are only 6 units put 

on sale, the degree of rationing is 0.5 in both scenarios. However, the structure of competition 

differs because the size and numbers of bidders are different. Table 1 summarizes information 

on both scenarios. 

 

Table 1 : Summary of the two scenarios 

 
Scenario 1 

« 6 small bidders » 
Scenario 2 

« 2 large bidders » 
Number of bidders 6 2 
Individual demand 2 6 
Total demand 12 12 
Degree of rationing 0.5 0.5 
 

Our main question is: which scenario is best from the auctioneer’s viewpoint? Which scenario 

leads to the highest seller’s revenue? Which scenario gives the best allocation efficiency? In 

order to answer these questions from a theoretical point of view we first need to determine 

optimal bidding strategies and auction equilibria.3 

 

                                                 
3 Note that when bidders have single unit demand, imagine 12 bidders with a demand for only one unit, their 

optimal bidding strategy is to bid their true value (no demand reduction). Thus the expected revenue corresponds 

to the seventh highest value out of twelve and there is allocation efficiency. 
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Let’s first consider scenario 1 with 6 small bidders. This scenario bears similarities with the 

Krishna case described above. We also have N = K (N is the number of bidders) and bidders 

still have a demand for two units. Despite the similarities of this game with Krishna’s 

example, we show in Appendix 1 that we cannot obtain the same type of equilibrium (bid 

sincere on the first unit and bid zero on the second unit) as soon as N = K > 2. Actually, 

bidding one’s true value for the first unit remains an optimal strategy, but if the private value 

of the second unit is high enough, it is profitable for the bidder to attempt to win a second unit 

by bidding more than zero for this second unit. As a consequence, bidding zero for the second 

unit is not an equilibrium strategy in our scenario with 6 small bidders when they bid their 

true value for the first unit. Nevertheless, note that bidding 100 (or any value above) for the 

first unit and zero for the second unit is a symmetric Nash equilibrium strategy in scenario 1. 

In this case, no bidder has a profitable deviation whatever their private values are. As a result, 

extreme demand reduction may occur and bidding above one’s highest value for the first unit 

can be justified here. 

 

Let’s now consider scenario 2 with two large bidders having an individual demand of six units 

each, and a total supply of K = 6 units put on sale. Each bidder submits six bids. In this case, 

bidding one’s true values for the first three units and then bidding zero for the last three units, 

by analogy with Krishna’s example, is a Nash equilibrium strategy. Indeed, even in the most 

favourable realization (the bidder receives the highest possible value, i.e. 100 in our 

experiment, for all six units) there is no profitable deviation. In particular, we show in 

Appendix 2 that it is not in the bidder’s interest to deviate and to bid a positive value for the 

fourth bid in the attempt to win a fourth unit when the other bidder bids truthfully on the first 

three units and zero on the other last three units. Moreover, it is also an equilibrium strategy to 

bid 100 (or any value above) for the first three units and to bid zero for the last three units. In 

those type of equilibria, the expected price is zero. 

 

To summarize, there are many equilibria in both scenarios. Some equilibria correspond to 

extreme demand reduction and lead to very low prices and potential allocative efficiency 

losses. Nevertheless, those equilibria are not undominated equilibria and require some tacit 

coordination among the bidders to be effective. It is therefore not guaranteed that bidders will 

reach them. The problem is that we cannot measure the theoretical degree of optimal demand 

reduction of undominated equilibria due to the impossibility to describe the equilibrium 

bidding strategies as closed form expressions (Chakraborty, 2006). Thus, it is impossible to 



 8 

give theoretical predictions on performance or to have a clear benchmark equilibrium to 

compare our results with.  

2.3. Intuitions and hypotheses 

Intuitively we may expect a greater expected revenue in scenario 1 than in scenario 2. There 

are two arguments to justify our intuition. First, in scenario 1 with six small bidders, we 

expect demand reduction only on 6 units since bidders should submit their true value (or 

above their true value) for the first unit; whereas in scenario 2, with two large bidders we may 

observe demand reduction for up to ten units. In other words, we expect less underbidding in 

scenario 1 than  in scenario 2. Thus, on average and if we ignore the amount of bid shading in 

each case, we could expect higher revenue in scenario 1.  Second, if we consider the two large 

bidders in scenario 2 as two “cartels” (collusion among three bidders), it reinforces 

expectations for lower competitive pressure in scenario 2 and therefore lower revenue for the 

seller compared to scenario 1 (without collusion). These arguments lead us to hypothesis 1. 

 

Hypothesis 1: For a given degree of rationing, the expected price (and therefore revenue 

efficiency) of a uniform-price auction with symmetric bidders is greater when the number of 

bidders increases or equivalently when individual demands decrease. 

 

The outcome in terms of allocative efficiency is less predictable. Since, there is demand 

reduction on more units a priori in scenario 2, we may think that the risk of misallocation is 

higher in this scenario. However, the risk of misallocation is a priori lower when there are 

fewer bidders and the “cartel effect” may suggest the opposite. Indeed, we may think of a 

better allocation efficiency in scenario 2 since the two “cartels” can be expected to allocate 

the units won among their members efficiently. Since arguments run in opposite directions, 

we are not able to offer intuitions on which competition structure is better in terms of 

allocation efficiency and we may speculate that both effects compensate each other. 

 

Hypothesis 2: For a given degree of rationing, allocative efficiency is not significantly 

affected by the competition structure, i.e. by the number of bidders or equivalently by the size 

of individual demand as long as bidders have multi-unit demand. 
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Intuition also suggests that the tacit cooperative outcome (due to strategic bidding and leading 

to a price of zero) is more straightforward and easier to reach in scenario 2 with two large 

bidders than in scenario 1 with six small bidders, in particular when bidders cannot 

communicate but when the game is repeated many times as it is the case in our experiments. 

Indeed, when there are only two bidders, they can easily anticipate that one of their bids may 

determine the equilibrium price and that they could cooperate with their rival by sharing 

equally the markets between them by bidding a very low price on the fourth unit and the 

following units. There may be no significant demand reduction for the second and the third 

bid, but we might observe a big drop-off in the bid for the fourth unit. In scenario 1 with six 

small bidders, the likelihood for a bidder that his second bid determines the auction price is 

much lower (one chance out of six a priori) and we may expect less strategic bidding. 

In other words, we expect intuitively that when the number of bidders increases, bidders act 

more as price takers than as price makers, i.e. they act more according to decision theory than 

according to game theory. Since optimal bidding strategies are complex to compute and tacit 

cooperation is more difficult to reach, bidders may presume that the equilibrium price will be 

around the seventh highest value out of twelve, so somewhat lower than 50, whatever they 

bid. From order statistic and our assumptions on the distribution of bidders’ private values, 

the expected value of the seventh highest value out of twelve is: 
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Finally, according to those intuitions on the bidders’ behaviour, we may expect more truthful 

bidding on average in scenario 1 with six small bidders with an auction price around the 

seventh highest value. In scenario 2 with two large bidders, depending on whether the pair of 

bidders gets to a cooperative equilibrium or not, we may observe more diversified outcomes. 

As a result, our third hypothesis is that the auction competition structure leads to different 

bidding strategies. 

 

Hypothesis 3: For a given degree of rationing, bidders bid more strategically, i.e. they bid high 

on first unit(s) and low on last unit(s), when the number of bidders is lower. Thus auction 

results are less predictable (higher standard deviation on auction prices) when the number of 

bidders is low. On the opposite, bidders tend to bid closer to their true values when the 

number of bidders increases. 
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These three hypotheses are tested with an experiment based on the two scenarios. 

3. EXPERIMENTS 

As presented previously, we set-up experimental uniform-price auctions in which six identical 

units are put on sale simultaneously. The six highest bids are the winning bids. The bidders 

pay a price equal to the seventh highest bid (the first rejected bid) for each unit won. The 

implicit reserve price is zero: bidders can only submit positive bids. This auction game is 

repeated 13 times in a session with the same set of players for different value sets. The 

equilibrium price is announced to all the bidders before the next auction starts, so they know 

how many units they have won in the period and what is their profit. If there are ties, the unit 

is allocated randomly among the tied bidders. 

 

The first two periods are trial periods to make sure the players understand the game4. Thus 

only the last 11 periods are paid and used to analyse the results of the experiments. 

Participants received their accumulated round payoffs (plus a show-up fee of €3.00) at the end 

of the experiment. Excluding the show-up payment, the average earnings per subject were 

about €18.10. Communication among the players is made impossible during all the 

experiment. 

 

A total of 40 students from Montpellier University have participated in the experiments in 

2004 and 2006. Let’s call G1, G2 and G3 the three groups of bidders who played scenario 1 

and P1, P2 to P11 the eleven pairs of bidders who played scenario 2 (see Table 2). 

 

All private values are randomly drawn from a uniform distribution between 0 and 100. For 

each of the six players in scenario 1, two values are independently drawn. The highest one is 

for the first unit, the lowest value is attributed to the second unit. In scenario 2, the 6 values 

given to each bidder are ordered from the highest value for the first unit to the lowest for the 

                                                 
4 The instructions were read aloud to the whole group and included examples. The subjects’ understanding of the 

game was tested through a short questionnaire and was followed by a time allocated to group questions and 

responses. Protocols and questionnaires are available on request (Evrard, 2004). 
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last unit wanted. In both scenarios 156 values are needed for one session (13 periods * 12 

privates values). 

 

Table 2 : Experimental setting 

 Scenario 1 
« 6 small bidders » 

Scenario 2 
« 2 large bidders » 

Total 

Number of students 18 22 40 
Number of sessions 3 

(G1, G2, G3) 
11 

(P1, P2, …, P11) 
14 

Number of auctions 33 121 154 
Number of bids 396 1452 1848 
 

4. RESULTS ON PERFORMANCES 

We first analysed results to detect learning effects across periods and potential end-of-game 

impacts. There is no significant trend indicating such effects (see Figures A1 and A2 in 

appendix 3). Even, in scenario 2, tacit cooperative outcomes, due to severe demand reduction 

(strategic bidding), are no more frequent in the last periods than in the first ones. Kruskal-

Wallis tests5 on auction prices and on all other performance indicators described in the 

following do not allow us to reject the null hypothesis of equality of population across periods 

at the 5% level of confidence, even when we include the two trial periods. In other words, we 

cannot reject the hypothesis that the 13 period bids are drawn from the same distribution. As a 

consequence, we do not distinguish periods in the following analysis. Thus, results presented 

in next sections rely on all periods (except the two trial periods). 

4.1. Performance indicators 

Seller’s revenue 

The seller’s revenue is six times the price obtained in the auction. Thus, to measure the 

revenue efficiency of an auction, we simply compare the auction price to the seventh highest 

                                                 
5 Kruskal-Wallis test is an extension of the Mann Whitney (rank-sum) test for more than two sub-samples. 
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value, i.e. the price the seller would have received, had all players bid their true values for 

every units. 

 

REseventh = 100
luehighest vaseventh 

priceauction ×  

 

However to measure the revenue efficiency, we also compare the revenue obtained to the 

revenue that the seller would get in perfect information and discriminatory pricing: 

 

REinfo = 100
lueshighest vasix   theof sum

6 priceauction ××
 

 

Allocation efficiency 

Different criteria may be used to measure the allocation efficiency. A perfect efficiency would 

require that the 6 units are attributed to the bidder(s) who has (have) the six highest values. 

First, we can measure the efficiency by the ratio: number of units correctly attributed over the 

number of units to allocate (here 6). 

 

AEnum = 100
6

attributedcorrectly unit  ofnumber ×  

 

However we may want a more accurate indicator, since a wrong attribution may be more or 

less harmful depending on the difference of the bidders’ values. So we also define another 

allocation efficiency indicator: the ratio of the sum of the six values which correspond to the 

units that have been won over the sum of the six highest values. The closer to 100%, the 

higher the allocation efficiency. 

 

AEvalue = 100
lueshighest va 6

units won 6  theof values
×

∑
∑  

 

Experimental auction performances are summarized in Table 3 for the two scenarios. Since 

scenario 1 requires 3 times more bidders, we only have 33 observations when there are six 

small bidders, but we have 121 auctions with two large bidders. 
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Table 3 : Global performance in each scenario 

 scenario 1 scenario 2 
Variable Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max 
price 33 39.79 14.16 17 73 121 34.58 17.81 1 90 
seventh 33 41.33 12.07 23 61 121 42.61 13.03 20 84 
REseventh 33 96.15 19.48 60 152 121 83.28 40.60 2 346 
REinfo 33 55.58 16.59 21 86 121 47.26 22.10 1 138 
AEnum 33 90.40 11.81 66.67 100 121 91.40 10.49 62.5 100 
AEvalue 33 98.12 3.05 89 100 121 98.30 3.10 86 100 
 

In the following comments, tests for normality lead us to use non parametric tests to compare 

Table 3 results. Significance is given at the 5% level. 

4.2. Test of hypothesis 1: revenue efficiency 

As predicted, the expected revenue for the seller is higher in scenario 1 (six small bidders) 

than in scenario 2 (two large bidders). The average auction price is 39.79 in scenario 1 and, as 

expected, is really close to the average seventh highest value. A Wilcoxon signed-rank test 

does not allow us to reject the null hypothesis that prices are equal to the corresponding 

seventh highest value in scenario 1 (z = -0.989). Thus, revenue efficiency is relatively high 

(REseventh = 96.15%) when there are six small bidders. In scenario 2, the average auction 

price is only 34.58 and is significantly lower than the seventh highest value (z = -6.876). 

Revenue efficiency is significantly lower (REseventh = 83.28%) than the one in scenario 1 

with a two-sample Wilcoxon rank-sum (Mann-Whitney) test (z = 2.724). The revenue 

efficiency indicator REinfo is also significantly lower in scenario 2 (z = 2.361). In addition, 

standard deviations for the two revenue efficiency criteria are much higher in scenario 2. 

Support for hypothesis 3 will be developed in next section, however, this result is a first 

argument that confirms this hypothesis : auction results are less predictable with two large 

bidders. They depend on the bidders’ ability to reach a tacit cooperative outcome. Indeed, we 

observe that very low prices have been reached in scenario 2, leading to very low minima for 

both revenue efficiency criteria (2% and 1%), whereas the minima in scenario 1 are 60% and 

21%. We also observe an important difference in maximum values which are much higher in 

scenario 2 and prove some aggressive bidding when there are only two bidders. Actually, 

overbidding (at least from some bidders) is found in both scenarios since we observe revenue 

efficiency higher than 100%. This point will be detailed in section 5 on bidders strategies. 
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4.3. Test of hypothesis 2: allocation efficiency 

For the allocation performance, results are relatively good in both scenarios. There is no 

significant difference among scenarios. Two-sample Wilcoxon rank-sum (Mann-Whitney) 

tests give z = -0.270 and z = -0.515 for AEnum and AEvalue respectively. On average, less 

than 10% of the units are attributed to bidders who have lower values. However, the 

allocation efficiency in value is still quite high (more than 98% on average) which means that 

the valuation of wrongly won units is not much lower (less than 2% on average) than the 

valuation of the bidders who should have won the 10% of misallocated units. 

Therefore, we have seen that revenue efficiency is lower when small bidders are aggregated 

(or “collude”) to form two large bidders (or “cartels”), however this “cartel effect” does not 

significantly increase allocation efficiency. In this experimental framework, allocation is good 

and does not depend much on the competition structure. This confirms hypothesis 2. 

Before analysing bidding strategies, a quick analysis of  performances by groups or pairs for 

the 11 periods shows two very different outcomes.6 For scenario 1, based on Kruskal-Wallis 

tests, we can not reject the null hypothesis of equality among the 3 groups composed of six 

subjects at the 5% level of confidence except for the variable REseventh. On the opposite, for 

scenario 2, we reject the null hypothesis of equality among the 11 pairs at the 5% level of 

confidence for every variable (price, REseventh, REinfo, AEnum and AEvalue). In particular, 

one pair (P08) presents very low performances (the average price reached by this pair is 7.64). 

As we are going to see now, this pair managed to reach a tacit cooperative equilibrium using 

very strategic bidding in most of the periods. 

5. ANALYSIS OF BIDDING STRATEGIES 

The objective of this section is to test hypothesis 3. We first present global results on bidding 

strategies; we then analyse individual bidding strategies and identify three types of bidders in 

scenario 2; we finally conduct regression analysis to explain bidders’ strategies. 

                                                 
6 Result tables are not reported here, but are available upon request. 
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5.1. Underbidding, sincere bidding and overbidding 

We examine all bids relative to the true value. In scenario 1, we have 396 bids, 198 on the 

first unit and 198 on the second unit. In scenario 2, we have 1452 observations, 242 bids for 

each of the six ordered units. Each pair (value, bid) is plotted in Figure 1 and Figure 2 (except 

16 pairs in scenario 2 because corresponding bids are above 160). Figure 1 shows that in 

scenario 1, bids are correlated to values whereas Figure 2 is more fuzzy, revealing many bids 

at 100 and many at zero. The level of underbidding is limited by zero, but overbidding is not 

limited and we observe some very unreasonable high bids (maximum is 5000). We count 8 

(2%) bids strictly above 100 in scenario 1 and 73 (5%) in scenario 2. 

 

Figure 1 : Scenario 1     Figure 2: Scenario 2 
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Since figures 1 and 2 do not unveil any single clear bidding strategy, we first consider in 

Table 4 the proportion of bidders who underbid (bid < value), bid sincere (bid = value) and 

overbid (bid > value) by scenario and by ordered units. Naturally this results just give 

preliminaries indications on bidders’ strategies since they do not reflect the intensity of 

underbidding or overbidding. 
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Table 4 : Proportion of underbids, sincere bids and overbids 

Scenario 1 obs. underbids sincere bids overbids 
Unit 1 198 0.5707 0.2020 0.2273 
Unit 2 198 0.6566 0.1515 0.1919 
All units 396 0.6136 0.1768 0.2096 
Scenario 2 obs. underbids sincere bids overbids 
Unit 1 242 0.2975 0.0537 0.6488 
Unit 2 242 0.3512 0.0413 0.6074 
Unit 3 242 0.4959 0.0331 0.4711 
Unit 4 242 0.7521 0.0165 0.2314 
Unit 5 242 0.7438 0.0372 0.2190 
Unit 6 242 0.6942 0.0992 0.2066 
All units 1452 0.5558 0.0468 0.3974 

 

Contrary to our intuitions, bidders underbid on more units in scenario 1 (61,36%, we expected 

50%: 0% on the first unit and 100% on the second unit) than in scenario 2 (55.58%). 

However, in scenario 1, results are quite similar for the first and the second units. 

Surprisingly, 57% of the bids for the first unit are below the corresponding value, although it 

is a dominant strategy to bid at least one’s value for the first unit. Moreover, almost 20% of 

the bidders bid above their value for the second unit although overbidding for the second unit 

goes against theoretical results. Nevertheless, two third of bidders shade their second bid as 

predicted by the theory. 

 

In scenario 2, we clearly see a different strategy for the first three units and the last three 

units. As predicted, the proportion of bidders who underbid on the fourth unit is the most 

important (75%). But, as in scenario 1, we still observe many bidders (more than 20%) who 

bid above their values for the last three units. Nevertheless, this proportion is much lower than 

for the first three units. Actually we observe quite aggressive bidding for the first units when 

there are only two bidders, as if bidders absolutely wanted to win at least some of the offered 

units. These results confirm hypothesis 3 that bidders are more strategic in scenario 2 than in 

scenario 1 where the proportion of sincere bids is much higher. 

 

To gain more insights into bidders’ behaviour we analyse the difference between bids and true 

values: VBBminusV −=  measures the degree of over or underbidding. To prevent bias from 

observations with extremely high bids, all bids above 100 are set to 100. Indeed, underbidding 

is limited by zero, since negative bids are not allowed; so in order to analyse underbidding 

and overbidding on the same scale we do as if bidders were not allowed to bid above 100. 
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First, results on BminusV from Table 5 confirm previous findings. In scenario 1, bidders are 

relatively sincere, the means of BminusV are close to zero and are not significantly different 

for units 1 and unit 27. In scenario 2, on average, subjects overbid on units 1, 2 and 3 and 

underbid on units 4, 5 and 6. With a two sample Wilcoxon rank-sum (Mann-Whitney) test, we 

reject the hypothesis that BminusV are the same for the first three and the last three units. In 

addition, the mean of the amount underbid is the highest for unit 4 (-10.68). Again, these 

results support hypothesis 3. 

 

Table 5 : Statistics on BminusV with max bid = 100 

scenario 1 obs. Mean St. Dev. Min Max 
unit 1 198 -1.26 13.72 -37 68 
unit 2 198 -0.27 14.43 -35 79 
scenario 2 obs. Mean St. Dev. Mean St. Dev. 
unit 1 242 3.78 15.06 -59 60 
unit 2 242 7.71 17.84 -49 66 
unit 3 242 3.86 21.85 -85 76 
unit 4 242 -10.68 17.41 -82 64 
unit 5 242 -7.80 15.22 -62 64 
unit 6 242 -4.16 11.06 -52 69 

 

5.2. Types of bidders 

When examining bidding strategies in scenario 1, we observe that bidders have the same 

behaviour for the two units in general: bidders who underbid (overbid) on the first unit also 

underbid (overbid) on the second, and sincere bidders bid their true values (or very close) on 

both units. Only 5 players (28%) have a more erratic behaviour which is difficult to 

categorize. 

 

On the opposite, we can roughly distinguish three types of bidders in scenario 2. First, there is 

a majority of sincere bidders (45%) who bid close to their true values on the first units then 

bid sincere or underbid a little on the last units (see Figure 3). Second, there are bidders, we 

call them “strategic bidders”, who significantly overbid on the first units (many of them bid 

                                                 
7 Skewness/Kurtosis test for Normality lead to reject the null hypothesis: BminusV is not Normally distributed, 

so we use non parametric tests to make comparisons across scenarios and across first and last units within a 

scenario. 
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100 or even above) and underbid on the last units (many of them bidding zero). We count 9 

such strategic bidders, i.e. 41% of the 22 subjects in scenario 2 (see Figure 4). Finally, as in 

scenario 1, we also observe few bidders (14% in scenario 2) whose behaviour is difficult to 

categorize (see Figure 5). 

 

Figure 3 : Sincere bidder  Figure 4 : Strategic bidder      Figure 5: Erratic bidder 
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5.3. Regressions on bidding strategies 

Finally we conduct ordinary least square regressions to explain the bidders’ bids. First, we 

propose a simple linear model (1) which seeks to explain the bids by the values of 

corresponding units. 

iii VB εβα ++=      (1) 

Then, to compare bidding behaviour in both scenarios, we introduce in model (2) a dummy 

variable ‘last’ (Li). 

iiii LVB εγβα +++=      (2) 

with, in scenario 1:  Li = 0 for unit 1,  Li = 1 for unit 2, 

 in scenario 2:  Li = 0 for units 1, 2 and 3, Li = 1 for units 4, 5 and 6. 

 

Results are presented in Table 6. 
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Table 6 : OLS Regression results 

 Scenario 1 Scenario 2 

 (1) (2) (1) (2) 
value (Vi) 0.9601*** 0.9479*** 1.7548*** 1.2999*** 
 (37.57) (30.30) (9.49) (4.32) 
last (Li)  -1.2478  -36.9446** 
  (-0.68)  (-2.08) 
_cons 1.5568 2.7613 -19.2743 21.28 
 (1.09) (1.21) (-1.64) (0.94) 
Number of obs. 396 396 1452 1452 
Adj R-squared 0.7813 0.7810 0.0467 0.0489 
t statistics in parentheses   * p < 0.10,  ** p < 0.05,  *** p<0.01 
 

We obtain a coefficient of determination of 78% in scenario 1, but less than 5% in scenario 2. 

However, the variable ‘value’ is highly significant in both scenarios. Adding the dummy 

variable ‘last’ in model (2) confirms previous findings. In scenario 1, variable ‘last’ is not 

significant, thus the bidding strategy for unit one is not significantly different from the 

bidding strategy for the second unit. In scenario 2, the estimated coefficient associated to the 

variable ‘last’ is significantly negative at the 5% level of confidence. Thus, bidding strategies 

for units 1, 2 and 3 display a significant mark-up compared to bidding stratgies for units 4, 5 

and 6. 

 

We conduct separate regressions when last = 0 and last = 1 in both scenarios. Results are 

reported in Table 7. 

 

Table 7 : OLS Regression results 

 Scenario 1 Scenario 2 
 last = 0 last = 1 last = 0 last = 1 
 B1 B2 B1, B2, B3 B4, B5, B6 

value 0.9581*** 0.9356*** 1.8421*** 0.6472*** 
 (22.45) (20.26) (3.21) (25.14) 

_cons 2.1044 1.8913 -16.6883 2.0040** 
 (0.71) (1.07) (-0.40) (2.34) 

Number of obs. 198 198 726 726 
Adj R-squared 0.7186 0.6751 0.0127 0.4654 

t statistics in parentheses                         * p < 0.10,  ** p < 0.05,  *** p<0.01 

 

Even if α and β are slightly lower for the second unit, as expected in scenario 1, coefficients 

are not significantly different than the ones estimated for the bids on the first unit. Moreover, 

coefficients of determination stay relatively high in both cases. On the opposite, in scenario 2, 
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coefficients are much different and coefficient of determination is over 46% when last = 1, 

but is only 1.4% when last = 0. Indeed, when we run linear regressions on the 1st, the 2nd and 

the 3rd bids separately, bids do not significantly depend on corresponding values in scenario 2. 

These regression results also indicate that the underbidding is more important on last units in 

scenario 2 than the underbidding on the second unit in scenario 1 (0.6472 versus 0.9356) even 

if coefficients associated to the constant are not rigorously the same. 

 

There is no improvement in the models when we add the values of the other units as 

explanatory variables: 

iiiki VVB εββα +++= 2211     in scenario 1 

iiiiiiiki VVVVVVB εββββββα ++++++++= 665544332211  in scenario 2 

with k = 1,2 in scenario 1 and k = 1 to 6 in scenario 2. 

 

Results are not reported here, but as obtained in previous regressions, only the value for the 

unit corresponding to the bid is significant, except for the first three bids in scenario 2. This 

last result is due to the strategic bidders who overbid systematically on their first units. 

6. CONCLUSION 

Although multi-unit auctions are widely used in practice and while the multi-unit auction 

literature is being rapidly enriched (theoretical models, empirical studies, experimental 

auctions), no study analyses explicitly the impact of the competition structure on multi-unit 

auction performances. We show with this paper that the competition structure has an impact 

on bidding strategies even when the degree of rationing is the same. Our experiments indicate 

that,  with constant degree of rationing, when the number of bidder decreases while individual 

demand increases, there is more strategic bidding leading to lower expected revenue with a 

higher variance. Performance in terms of allocation efficiency is less sensitive to the 

competition structure. 

 

Therefore, when designing a multi-unit auction, it is important to consider the question of the 

competition structure. Whereas the seller is usually not in capacity to increase the degree of 

rationing (unless renouncing to sell all his units), we show that if he can determine who is 
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eligible to bid and what is the size of the unit, i.e. the minimum amount one can bid on, he can 

improve his expected revenue. 

 

Naturally, in the absence of theoretical predictions from auction models, more experimental 

works need to be done to confirm our findings. Moreover, many other questions remain 

unanswered and deserve attention. For example, what would be the results with 

heterogeneous bidders, i.e. when bidders do not have the same individual demands? An 

extension of this work could include a third scenario with one large bidder wanting six units 

facing three smaller bidders each wanting two units. 
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APPENDIX 1 

We consider scenario 1: six bidders have a decreasing demand for two units only. 

To prove that bidding sincere on the first unit and zero for the second unit is not a Nash 

equilibrium in this scenario, we propose a deviation strategy:  

β1(x1, x2) = x1 and 2β̂ (x1, x2) > 0  for a sufficiently high value of x2,  

with x1 and  x2  the values of unit 1 and 2 respectively, and βi the bidding strategy on unit i,  

i = 1, 2. 

We look for the optimal 2β̂  when all other bidders follow the strategy: 

β1(x1, x2) = x1 and β2(x1, x2) = 0 ∀ x1 and x2. 

Thus, the deviating bidder’s objective function is to maximize the following expected profit: 
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X is the fifth highest bid of his five opponents who bid sincere on their first unit and zero on 

their second unit. X is also the smallest non zero bid of his five opponents. Therefore X is the 

unknown price the bidder will have to pay if he wins two units, i.e. if 2β̂≤X . 

Each bidder receives two values from a uniform distribution on [0; 100]. From the order 

statistics, the density and cumulative functions of x1 (the highest of the 2 received values) are: 
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The probability the deviating bidder wins two units is: 

( ) 2
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(5) 2 2 2 2 2
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ˆPr ( ) 10 
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The expected price if he wins two units is: 
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∫  

The expected profit is then: 
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ˆ ˆ
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5 1 2 5 1 2 20 0

ˆ ˆ1 ( ) ( ) ( ) 2y dy x y dy x x X X
β β

π ϕ β ϕ β     Ε = − − + + − Ε <        ∫ ∫  

Using Maple software we plot [ ]πΕ  with 2β̂ on the x-axis going from 0 to 100, for many 

given values x1 and x2. We observe that if x2 is high enough, the expected profit can be higher 

for some 2β̂ >0 than with β2 = 0. Therefore, bidding β1(x1, x2) = x1 and β2(x1, x2) = 0 ∀ x1 and 

x2 is not a Nash equilibrium. 

For example, if a bidder receives x1 = 80 and x2 = 70, his profit will be 80 if he follows the 

strategy β1(x1, x2) = x1 and β2(x1, x2) = 0 as the other five players do. However, in the 

following Graph 1, we see that his expected profit will be a little bit higher than 87 if be bids 

around 47 for the second unit. 
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Graph 1 : Expected revenue when x1 = 80 and x2 = 70 

 

Actually, the bidding strategy β1(x1, x2) = x1 and β2(x1, x2) = 0 ∀ x1 and x2 is a Nash 

equilibrium when N = K = 2. However, as soon as N = K > 2, there are profitable deviations 

from this type of strategy if x2 is high enough. 

APPENDIX 2 

We consider, scenario 2: two bidders (1 and 2) have a decreasing demand for six units. 

We look for a profitable deviation for bidder 1 when bidder 2 plays: 

βk(x1, x2, x3, x4, x5, x6) = xk when k = 1, 2, 3; 

βk(x1, x2, x3, x4, x5, x6) = 0 when k = 4, 5, 6. 

If bidder 2 adopts the same “collusive” strategy, his profit is then x1 + x2 + x3 since he wins 

three units and the price is zero. We wonder if it is in bidder’s 1 interest to win a fourth unit. 

Let’s assume that bidder 1 submits 4β̂  > 0. His objective is to maximize his expected profit. 

[ ] ( ) ( )
4

3 4 1 2 3 4 3 4 1 2 3 4 3 3 4ˆ
ˆ ˆ ˆ ˆMax  1 Pr ( 3 ) Pr( ) 4c x x x c x x x x c c

β
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c3 is the third highest value out the six values of bidder 2. The density and the cumulative 

functions of c3 are: 
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The expected value of c3 (the auction price) when bidder 1 wins four units is: 
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∫  

Bidder’s 1 expected profit is then: 

[ ] ( )(6) (6)
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Using Maple software we plot [ ]πΕ  with 4β̂ on the x-axis going from 0 to 100, with values x1 

= x2 = x3 = x4 = 100. From Graph 2, we see that it is not possible to increase the expected 

profit of bidder 1 with 4β̂  > 0. As a result, since there is no profitable deviation even in the 

most favourable case (i.e. when x1 = x2 = x3 = x4 = 100), bidding one’s true values for the first 

three units and zero for the last three units is a Nash equilibrium in scenario 2. 

 

Graph 2 : Expected revenue when x1 = x2 = x3 = x4 = 100 
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APPENDIX 3 

Figure A1 : Scenario 1     Figure A2 : Scenario 2 
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