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The MBR social welfare criterion meets Rawls' view of intergenerational equity

. Then, we retain a speci…ed version of the model in which we compute the optimal path and shed light on the consequences of using this criterion from the point of view of equity between generations. Interestingly enough, the best program under the MBR criterion shows a pattern of exploitation of the natural resource that is in line with recent proposals made by philosophers to go beyond the rawlsian criterion.

Introduction

How could society best use natural resources overtime while ensuring a fair share of the bene…ts to all the successive generations? A traditionnal approach to this question is to formulate a criterion -also called an intertemporal social welfare function (ISWF) -that meets various normative conditions. One can then order alternative exploitation paths and single out the best of them, according to the chosen ISWF. Among the most well known ISWFs, one …nds: the discounted utilitarian criterion, the golden rule, Ramsey's criterion, the average utilitarian criterion, the maximin (Rawlsian) criterion. Each has its advantages but none of them achieves the Holy Grail of this literature, i.e. no ISWF provides a complete ordering that satis…es both a concern for e¢ ciency and the requirement that all generations should be treated equally (or anonymously). Optimists hold that implicit criteria can be constructed that meet those two requirements [START_REF] Svensson | Equity among generations[END_REF]. This, however, is an existence result that o¤ers no explicit ISWF, therefore no pratical way to identify fair and e¢ cient management paths. [START_REF] Fleurbaey | Intertemporal equity and the extension of the Ramsey Criterion[END_REF] conjectured that "no explicit complete continuous ordering will ever be found that satis…es e¢ ciency and weak anonymity" 1 .

Those developments suggest we should now look for criteria that are less demanding about either e¢ ciency or equity, or both. This new perspective …nds a starting point in Chichilnisky's contribution (1996), who suggested to adopt a mixed criterion, which can be presented rouhgly as a convex combination of the discounted utilitarian criterion and the golden rule. Her ISWF achieves e¢ciency; besides it avoids dictatorship of the present generation and dictatorhsip of the future generations as well (see also [START_REF] Chichilnisky | What is sustainable development?[END_REF][START_REF] Chichilnisky | Avoiding extinction: equal treatment of the present and the future[END_REF]. But of course other mixed criteria could be contemplated as well, and their respective merits be assessed. Alvarez-Cuadrado and Long (2009) began the analysis of an ISWF constructed as a convex combination of the discounted utilitarian and maximin crirteria, which they called MBR (for mixed Bentham-Rawls). This ISWF avoids the dictatorships of the present and the future. Besides it also escapes the dictatorship of the least adavantaged generations (see [START_REF] Alvarez-Cuadrado | A mixed Bentham-Rawls criterion for intergenerational equity: theory and implications[END_REF].

In this paper we further explore the properties of the MBR criterion. More precisely, in a simple economy with a natural resource, cast in discrete time (Section 2), we study the problem to maximize the MBR criterion. In Section 3 we …nd out su¢ cient conditions for optimality, that complements the necessary …rst order conditions o¤ered in Alvarez-Cuadrado and Long (2009). Then, in Section 4 we retain a speci…ed version of the model in which we compute the optimal path and compare it with optimal paths that obtains under other ISWF, namely the discounted utilitarian criterion, the golden rule criterion, the maximin (Rawlsian) criterion. We are then in position to shed light on the consequences of using these criteria from the point of view of equity between generations. Interestingly enough, the best program under the MBR criterion shows a pattern of exploitation of the natural resource that is in line with recent proposals made by philosophers to go beyond the rawlsian criterion.

A natural resource economy

The economy has in…nitely many successive generations. Let c t be the consumption by generation t of a natural resource whose stock is x t . This resource evolves according to:

x t+1 = x t + f (x t ; c t ) : (1) 
When consuming c t generation t enjoys a life-time utility level, or under a more adequate interpretation a standard of living, U t U (c t ) : The utility function is continuous, non decreasing, concave and admits an upper and a lower bound. Without loss of generality, the numbers U t can be normalized so that 0 U t 1: To any admissible path fc t ; x t g 1 t=0 ; the MBR criterion associates the following value: inf fU (c 0 ) ; U (c 1 ) ; :::g + ( 1)

1 X t=0 t U (c t ) ; 0 < < 1 :
3 Necessary and su¢ cient conditions for optimality

Consider …rst the …nite horizon version of the problem, with T < 1 periods: given the initial stock x 0 > 0, and a time path c 0 ; c 1 ; :::; c T of extractions, producing a path x 1; x 2 ; ::; x T for the stock, let c inf fc 0 ; c 1 ; :::g and U U (c) :

The corresponding social welfare under the MBR criterion is:

W mbr = U + (1 ) T X t=0 t U (c t )
The problem is to …nd U and the path of extractions in order to maximize W mbr subject to eq (1) and c t c 0 for t = 0; 1; :::T For the time being, assume that x T +1 is …xed. This kind of maximization exercice is unlike usual dynamic problems where standard optimization tools can be used. Then the following system of necessary conditions is veri…ed at (c t ; x t ; c) = (c t ; x t ; c ); for t = 0; 1; :::T :

@L t (c t ; x t ; c; t ; ! t ) @c t = (1 ) t U 0 (c t ) + ! t + t @f @c t = 0, (2) 
t t 1 = @L t (c t ; x t ; c; t ; ! t ) @x t = t @f @x t ; (3) 
x t+1 = x t + f (x t ; c t ); U 0 (c) T X t=0 @L t (c t ; x t ; c; t ; ! t ) @c = 0: (4) 
In applications one …nds several canditate programs that solves the necessary conditions. Some of them may correspond to minima instead of maxima. Further conditions are needed to help discard the former, and are o¤ered in the following theorem.

Theorem 2 (Su¢ cient conditions) Let (fc t ; x t ; t ; ! t g ; c ) denote a solution to the necessary conditions. Let fc 0 t ; x 0 t g be any feasible path. If the following conditions hold:

(a) L t (c t ; x t ; c; t ; ! t ) is concave in (c t ; x t ; c) and (b) T (x 0 T +1
x T +1 ) 0; then fc t ; x t g is the optimal path.

Proof: Appendix

For the in…nite version of the problem, the necessary conditions are unchanged. Regarding the su¢ cient conditions, we replace (b) of the theorem by the condition lim t!1 t x t = 0 and lim

t!1 t = 0 Since x 0 T +1 0, this implies lim T !1 T (x 0 T +1 x T +1 ) 0
4 Implications in a simple example

We now investigate the consequences of using the MBR criterion in a simple example, where further analytical results can be obtained. Let the transition be speci…ed as follows:

x t+1 = (x t c t ) ; 2 (0; 1) :

And let the life-time utility from consumption be a linear function:

u(c t ) = c t :
Appendices B,C,D and E compute the discounted utilitarian path, the golden rule, the maximin solution and the MBR path. The steady state of the …rst one gives the so-called modi…ed golden rule:

x mgr := ( ) 1 ;

while the golden rule stock is:

x gr := 1 :
Turning back to the MBR criterion, it is worth noting that this example sat-is…es the su¢ cient conditions given in the previous section. Hence the solutions to the necessary conditions, if there exists any, are optimal (and interior).

First, we can prove that poorest generations are the …rst ones or the last ones (intermediate generations cannot be the poorest).

Proposition 3 Calling c = c t the lowest consumption level of an optimal policy under the MBR criterion, then the following pattern: c < c t 1 ; c < c t+1 ; for some t 1; cannot occur.

Proof. Appendix F.

We will now see that the poorest generations are in the tail (resp. at the begining) when the economy starts above (below) the modi…ed golden rule.

4.1 When the economy starts "rich" (above the modi…ed golden rule:

x 0 x mgr ) Let b A (1 ) + (1 ) (1 ) + (1 ) = + 2 1 ; x H h b A i =(1 ) :
Proposition 4 If the initial condition x 0 satis…es

x mgr x 0 x H then x t = x 0 for all t = 0; 1; 2; ::: is an optimal program for the MBR cirterion.

Proof. Appendix G.

Remark 5 Clearly, as ! 1; x H ! x gr , and as ! 0, x H ! x mgr ( ) =( 1) .

Proposition 6 (ONE DOWNWARD JUMP) If x 0 > x H then the policy made of one jump downward to x H and then stay there for ever is an optimal solution.

Proof. Appendix H.

4.2

When the economy starts "poor" (below the modi…ed golden rule:

x 0 < x mgr )
Unlike the solution dictated by by the maximin criterion, the MBR ISWF does not require the economy to remain trapped in its initial poverty.

Proposition 7 Starting from x 0 < x mgr , it is never optimal to put x t = x 0 for all t.

Proof. Appendix I.

Better still, the economy should take o¤ to reach, in a …nite time, the mod-i…ed golden rule as can be deduced from the two following propositions. Proof. Appendix K.

Hence developement is made of two phases. But its exact pattern, in particular the number of poorest generations in the take o¤ phase, depends on the initial condition.

Given proposition 8, we are interested in studying consumptions of the form

c = c 0 = ::: = c n 1 < c n < c 1 = :::c 1 : (5) 
We de…ne:

x 1 = f 1 (c) = (x 0 c) ; x n = f n (c) = (f n 1 (c) c) ; 8n 2:
We have the following properties for functions f n (c) and c n = c n (c):

For consumptions of the form (5),

x n+1 = x mgr = (f n (c) c n ) (6) then c n (c) = f n (c) (x mgr ) 1= : (7) 
We now show by induction that f 0 n (c) < 0 and f 00 n (c) < 0. In fact:

f 0 1 (c) = (x 0 c) 1 < 0; f 00 1 (c) = ( 1)(x 0 c) 2 < 0; Now, if f 0 n 1 (c) < 0 and f 00 n 1 (c) < 0, then f 0 n (c) = (f n (c)) ( 1)= (f 0 n 1 (c) 1) < 0;
and

f 00 n (c) = 1 (f n (c)) (( 1)= ) 1 [f 0 n (c)] (f 0 n 1 (c) 1)+ (f n (c)) ( 1)= f 00 n 1 (c) = ( ) 2 ( 1 )(f n (c)) (( 1)= ) 1 (f 0 n 1 (c) 1) + (f n (c)) ( 1)= f 00 n 1 (c) < 0
Now we consider the following problem, that corresponds to the optimization of the MBR criterion w.r.t. c of a consumption given by ( 5): 1)(1 + + :::

max c + (
+ n 1 ) c + (1 ) n c n (c) := F (c) (8) 
where Let 0 be the Lagrange multiplier associated with the constraint [START_REF] Svensson | Equity among generations[END_REF]. The …rst order condition of problem ( 8) is

x 1 = (x 0 c) ; x 2 = (x 1 c) ; :::x n = (x n 1 c) ; x mgr = (x n c n ) ; x 0 given: (9) 
F 0 (c) + [f 0 n (c) 1] 0 ( = 0 if c > 0) i.e., if c > 0, K n + (1 ) n f 0 n (c) + [f 0 n (c) 1] = 0 (11) 
where

0, c n (c) c 0, [c n (c) c] = 0
We can also see that F (c) is a concave function. In fact

F 00 (c) = f 00 n (c) < 0:
Note also that 1) which is > 0 if x 0 is not too small Note that an unique solution of problem (8) exists when 0 c c n (c). But what is the relation between problem (8) and an interior optimal solution of our MBR problem? The answer is given in the following proposition.

F 0 (0) = K n (1 ) ( ) n (x 0 ) n(
Proposition 10 First order conditions of the MBR problem for a consumption path given by ( 5) are reduced to the existence of 0 < c < c n (c) that veri…es the …rst order condition of problem [START_REF] Lawers | Ordering in…nite utility streams: completeness at the cost of a non-Ramsey set[END_REF], that is condition [START_REF] Zame | Can utilitarianism be operationalized?[END_REF]. In others words, if there exists initial conditions x 0 where ( 11) is veri…ed with 0 < c < c n (c) < c 1 , there exists initial conditions where the path given by ( 5) is an optimal solution of the MBR problem.

Proof. First note that the following equivalences hold (equivalences related with equation ( 11) when = 0):

K n (1 ) n n x ( 1)= n :::x ( 1)= 1 (1 ) n n 1 x ( 1)= n :::x ( 1)= 2 
:::

(1 ) n x ( 1)= n = = K n (1 ) n x ( 1)= n h 1 + x ( 1)= n 1 h 1 + x ( 1)= n 2
:::

h 1 + x ( 1)= 1 iii = = K n (1 ) n x ( 1)= n f 0 n 1 (c) + 1 = K n + (1 ) n f 0 n (c): (12) 
A consumption of the form ( 5) veri…es ( 9) and ( 7). Suppose, for given x 0 , we have found an integer n and a real number c > 0 such that condition ( 11) is satis…ed with = 0. Then we can compute x 1 ; :::x n ; c n (c). Suppose that c n (c) > c. Then we can construct the multipliers t and ! t recursively as follows. First, since x n+1 = x mgr , and c n > c, n must satisfy (1

) n + 0 n (x mgr ) ( 1)= = 0 Next, n 1 = n (x mgr ) ( 1)= ) n 1 = (1 ) n
Then it follows that

! n 1 = n 1 (x n ) ( 1)= (1 ) n 1 = = (1 ) n 1 h ( ) (x n ) ( 1)= 1 i > 0 n 2 = n 1 x ( 1)= n = (1 ) n 1 x ( 1)= n ! n 2 = n 2 x ( 1)= n 1 (1 ) n 2 = = (1 ) n 2 h ( )x ( 1)= n 1 1 i > 0 etc.
Now we must verify to see whether the constructed ! 0 ; :::! n 1 satisfy the condition ! 0 + ! 1 + :::

+ ! n 1 =
Taking into account (12), the de…nition of K n and the fact that c veri…es [START_REF] Zame | Can utilitarianism be operationalized?[END_REF] with = 0:

! 0 + ! 1 + ::: + ! n 1 =
(1 )(1 + + ::: n 1 ) + ( 1) n n x

( 1)= n :::x

( 1)= 1 (1 ) n n 1 x ( 1)= n :::x ( 1)= 2 ::: (1 ) n x ( 1)= n = = K n (1
) n f 0 n (c) = : Then we have proven that c giving by [START_REF] Zame | Can utilitarianism be operationalized?[END_REF] with = 0and the de…ned values of ! i and i verify the …rst order conditions of the MBR problem.

Reciprocaly, …rst order conditions of the MBR problem are:

! 0 + ::: + ! n 1 = : (1 ) i + ! i i x ( 1)= i+1
= 0; i = 0:::n 1:

(13)

i 1 = i x ( 1)= i+1 ; 8i:
From these two last equations we can compute all values of i , i = 0:::n 1. Summing from i = 0 to n 1 equations (13) we obtain

K n (1 ) n n x ( 1)= n :::x ( 1)= 1 (1 ) n n 1 x ( 1)= n :::x ( 1)= 2 
:::

(1 ) n x ( 1)= n = 0;
from (12) this is equivalent to the …rst order condition of problem [START_REF] Lawers | Ordering in…nite utility streams: completeness at the cost of a non-Ramsey set[END_REF].

Conclusion

This paper further explore the properties of the MBR intertemporal welfare criterion proposed by Alvarez-Cuadrado and Long (2009). We …nd out su¢ cient conditions for optimality for the general formulation of the problem. Besides, for a simple natural resource economy we compute the optimal path and shed light on the consequences of using this criteria from the point of view of equity between generations. Interestingly enough, the best exploitation program under the MBR criterion shows a pattern of exploitation of the natural resource that is in line with recent proposals made by philosophers to go beyond the rawlsian criterion. Those scholars, including Rawls, argue that the maximin does not result in an acceptable normative prescription for poor economies, since its focus on equality implies no saving, hence no growth, and does not permit to reach the threshold at which basic liberties can be realized. They advocate an expansion in two stages, with an accumulation phase folowed by a cruise phase. In the cruise phase, equality is justi…ed again. This pattern is exactly to one obtained under the MBR intergenerational welfare criterion.

(c c 0 ) @L t (c t ; x t ; c ; t ; ! t ) @c
Thus, L t (c t ; x t ; c ; t ; ! t ) L t (c 0 t ; x 0 t ; c 0 ; t ; ! t )

(x t x 0 t ) t @f @x t + (c c 0 )! t for t = 0 But x 0 = x 0 0 = x 0 given, so L t (c t ; x t ; c ; t ; ! t ) L t (c 0 t ; x 0 t ; c 0 ; t ; ! t ) (c c 0 )! t for t = 0 And L t (c t ; x t ; c ; t ; ! t ) L t (c 0 t ; x 0 t ; c 0 ; t ; ! t ) (x t x 0 t ) t 1 t + (c c 0 )! t for t = 1; 2; ::; T Hence V V [U (c ) U (c 0 )] + T X t=0 (c c 0 )! t + x 1 0 x 1 1 + x 2 1 x 2 2 + ::: + x T T 1 x T T x 0 1 0 + x 0 1 1 + ::: x 0 T T 1 + x 0 T T + T X t=0 t (x 0 t+1 x 0 t ) T X t=0 t x t+1 x t = [U (c ) U (c 0 )] + ( T X t=0 (c c 0 )! t ) + T (x 0 T +1 x T +1 ) = = T (x 0 T +1
x T +1 ) 0 (using eq (??), and condition (b)). This completes the proof.

B The discounted utilitarian criterion

If 2 ]0; 1[ stands for the planner's discount factor, the discounted utilitarian problem reads as:

max fctg 1 t=0 1 X t=0 t c t ; (14) 
subject to the constraint x t+1 = (x t c t ) ; x 0 given:

Using the maximum principle and asking for an interior solution, we obtain (as in the continuous case) only the stationnary steady state (the so-called modi…ed gloden rule) given by

x m := ( ) 1 :
To avoid this turnpike issue we propose to solve the same problem but with a …nite horizon T and take the limit of the solution when T goes to in…nity. Now, the problem is:

max fctg T 0 T X t=0 t c t + T +1 x T +1 ; (15) 
subject to the constraint x t+1 = (x t c t ) ; t = 0:::T; x 0 given:

Using dynamic programming, it is easy to check that problem (15) has the following optimal solution c T t for all t = 0; :::T :

c T t = 8 < : 0 if x t < x x t x if x t x ;
where x = ( )

1 1
: The optimal consumption is zero when the stock is strictly below the steady state; otherwise it is optimal to consume the amount exactly necessary to settle the economy to its steady state. As we can see, this solution does not depends on T so, taking the limit when T goes to in…nity, the optimal solution for our problem ( 14) is again:

c t = 8 < : 0 if x t < x x t x if x t x:
As far as the stock of the resource is concerned, the optimal path is, if x 0 x:

x t = x 1 ; 8t 1; and if x 0 < x x t = 8 < : (x 0 ) t t = 0:::t 0 ; x 1 t > t 0 ;
where t 0 is such that (x 0 ) t0 x m .

C The golden rule criterion

The problem is to …nd the highest stationary utility level. Formally:

max c c (16) 
such that x = (x c) :

The solution to this program is

x GR := ( ) 1 ; c GR := x GR (x GR ) 1= :

D The maximin (Rawls) criterion

Under this criterion, the goal is to achieve the best utility level for the less advantaged generation. Or:

max c c (17) 
such that x t+1 = (x t c t ) ; x 0 given; x t 0; c t c:

We can remark that if there exists a date t 0 such that c t0 = 0, then c = 0 and that if there exists c t0 = x t0 , then c t0+1 = 0 and c = 0. So we can deduce that the optimal solution is an interior solution.

Appendix ?? gives the derivation of the solution which is:

if x 0
x GR , the solution is the constant consumption path c = c GR ; which navigates the stock to a steady state value x H x GR ; if x 0 < x GR then the solution of (??) is c = x 0 x 1= 0 ; which implies x t = x 0 for all t.

E The mixed Bentham-Rawls (MBR) criterion

Inspired by the above analysis, the mixed Bentham-Rawls problem reads as:

max c;ct " c + (1 ) 1 X t=0 t c t # ; (18) 
such that,

x t+1 = (x t c t ) ; x 0 ; given ; x t 0; c t c 0:

Let the Langragian be

L = c + (1 ) 1 X t=0 t c t + 1 X t=0 ! t (c t c) + 1 X t=0 t ((x t c t ) x t+1 );
The …rst order conditions are:

@L @c t = (1 ) t + ! t t (x t c t ) 1 = 0; t = 0; 1::: (19) @L @x t = t 1 + t (x t c t ) 1 = 0; t = 1; 2:::; (20) @L @ c = 1 X t=0 ! t = 0: ! t 0; ! t (c t c) = 0; c t c 0 (21) 

F Proof of Proposition 3

For this policy we have ! t 1 = ! t+1 = 0; ! t > 0;

x t = (x t 1 c t 1 ) ; x t+1 = (x t c) ; x t+2 = (x t+1 c t+1 ) :

And from …rst order conditions

(1 ) t 1 = t 1 (x t ) and we ca deduce that, if ! t+2 = 0, then x t+2 = x mgr and if ! t+2 > 0, then x t+2 > x mgr , so x t+2 x mgr :

We can conclude that

x mgr x t+2 = (x t+1 c t+1 ) = [(x t c) c t+1 ] < (x mgr c t+1 ) < (x t c t+1 ) < (x t c) = x t+1 ;

that is a contradiction.

G Proof of Proposition 4

We want to show that there exist values ! t 0 for all t = 0; 1; 2; :: and t such that, for all x 0 2 [x mgr ; x H ], we have

(1 ) t + ! t t (x 0 c 0 ) 1 = 0; t = 0; 1:::

t 1 + t (x 0 c 0 ) 1 = 0; t = 1; 2:::;

(28)

1 X t=0 ! t = 0 (29) Write A 1 = (x 0 c 0 ) 1 = h x 1= 0 i 1 ie A = 1 x
(1 )= 0 Eq (28) becomes t = A t 1 where t = 1; 2; :: Therefore t = A t 0 for t = 1; 2; :: And (1 ) + ! 0 0 A 1 = 0 (1 ) t + ! t A t 0 A 1 = 0; t = 1:

So ! 0 = 0 A 1 (1 ) 
! t = A t 0 A 1 (1 ) t for t = 1; 2:::

Assume A < 1 ie x 0 < ( ) = (1 ) 
x GR

For ! 0 to be non-negative, we need to choose 0 such that

0 A 1 1 (30) 
Assume inequality (30) holds. Then for ! t to be non-negative for all t; we need

A t t ie x 0 ( ) = (1 ) 
x mgr

Proposition 8 Proposition 9

 89 Consumption paths cannot be non-monotone. If c t > c 8t > h then x t+1 = x mgr 8t > h, and c t+1 = c 1 for 8t > h Proof. Appendix J. If c t > c 8t T then x t = x mgr 8t T + 1.

  We must also impose the constraint that c n (c) c 0 (10) De…ne K n = + (1 )(1 + + ::: + n 1 ):

We have recently been informed of a manuscript by Lauwers (2007) that con…rms this conjecture. See also[START_REF] Zame | Can utilitarianism be operationalized?[END_REF].

Appendix

A Derivation of the su¢ cient conditions

L t (c t ; x t ; c ; t ; ! t ) t x t+1 x t because ! t (c t c ) = 0. And

Then, since ! t 0 and (c 0

Now, from the assumption that L t (c t ; x t ; c; t ; ! t ) is concave in (c t ; x t ; c);

Summing over all ! t , we need to satisfy

Since we can choose 0 A 1 as long as (30) holds, we require

)

H Proof of Proposition 6

With one jump, we jump from x 0 to x 1 < x 0 , and then stay at x 1 for ever. then

x t = (x 1 c 1 ) = x 1 for t = 2; 3; :::

The necessary conditions are

(1 ) 0 (x 0 c 0 ) 1 = 0;

(1 ) t + ! t t (x 1 c 1 ) 1 = 0; t = 1; 2; ::

(1 ) t + ! t t 1 = 0; t = 1; 2; : (33)

where, from (32)

) t for t = 1; 2; :::

(1 ) t for t = 1; 2::

t for t = 1; 2:::

Summing over t = 1; 2::: 1) + ( 1)] ( 1)(1

]

I Proof of Proposition 7

First order conditions give:

(1 ) t + ! t t x 1 0 = 0; t = 0; 1::: (34)

= , we obtain that: t = A t 1 and so, t = 0 A t :

Note that A < 1 when x 0 < x 1 . Summing equation (34) in t we obtain

t for all t. This last inequality is not true for all t because A > 1.

J Proof of Proposition 8

Proof. As c t > c; 8t > h, from (21

From (20)

Remplacing in (35) As c t > c; 8t T , from (21) ! t = 0; 8t T . From ( 19) and ( 20)

Remplacing in (20) ( ) =(1 ) = x t = x mgr 8t T + 1: