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Abstract

In this paper we further explore the properties of the Mixed Bentham-
Rawls (MBR) criterion for intergenerational justice that was introduced
in Alvarez-Cuadrado and Long (2009). In a simple economy with a nat-
ural resource, cast in discrete time, we study the problem to �nd the best
exploitation policy under the MBR criterion. We �nd out su¢ cient condi-
tions for optimality, that complements the necessary �rst order conditions
o¤ered in Alvarez-Cuadrado and Long (2009). Then, we retain a speci�ed
version of the model in which we compute the optimal path and shed light
on the consequences of using this criterion from the point of view of eq-
uity between generations. Interestingly enough, the best program under
the MBR criterion shows a pattern of exploitation of the natural resource
that is in line with recent proposals made by philosophers to go beyond
the rawlsian criterion.
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1 Introduction

How could society best use natural resources overtime while ensuring a fair share
of the bene�ts to all the successive generations? A traditionnal approach to this
question is to formulate a criterion - also called an intertemporal social welfare
function (ISWF) - that meets various normative conditions. One can then order
alternative exploitation paths and single out the best of them, according to the
chosen ISWF. Among the most well known ISWFs, one �nds: the discounted
utilitarian criterion, the golden rule, Ramsey�s criterion, the average utilitarian
criterion, the maximin (Rawlsian) criterion. Each has its advantages but none
of them achieves the Holy Grail of this literature, i.e. no ISWF provides a
complete ordering that satis�es both a concern for e¢ ciency and the require-
ment that all generations should be treated equally (or anonymously). Optimists
hold that implicit criteria can be constructed that meet those two requirements
(Svensson, 1980). This, however, is an existence result that o¤ers no explicit
ISWF, therefore no pratical way to identify fair and e¢ cient management paths.
Fleurbaey and Michel (2003) conjectured that "no explicit complete continuous
ordering will ever be found that satis�es e¢ ciency and weak anonymity"1 .
Those developments suggest we should now look for criteria that are less

demanding about either e¢ ciency or equity, or both. This new perspective �nds
a starting point in Chichilnisky�s contribution (1996), who suggested to adopt
a mixed criterion, which can be presented rouhgly as a convex combination of
the discounted utilitarian criterion and the golden rule. Her ISWF achieves e¢ -
ciency; besides it avoids dictatorship of the present generation and dictatorhsip
of the future generations as well (see also Chichilnisky 1997, 2009). But of course
other mixed criteria could be contemplated as well, and their respective merits
be assessed. Alvarez-Cuadrado and Long (2009) began the analysis of an ISWF
constructed as a convex combination of the discounted utilitarian and max-
imin crirteria, which they called MBR (for mixed Bentham-Rawls). This ISWF
avoids the dictatorships of the present and the future. Besides it also escapes
the dictatorship of the least adavantaged generations (see Alvarez-Cuadrado
and Long, 2009).
In this paper we further explore the properties of the MBR criterion. More

precisely, in a simple economy with a natural resource, cast in discrete time
(Section 2), we study the problem to maximize the MBR criterion. In Section
3 we �nd out su¢ cient conditions for optimality, that complements the neces-
sary �rst order conditions o¤ered in Alvarez-Cuadrado and Long (2009). Then,
in Section 4 we retain a speci�ed version of the model in which we compute
the optimal path and compare it with optimal paths that obtains under other
ISWF, namely the discounted utilitarian criterion, the golden rule criterion, the
maximin (Rawlsian) criterion. We are then in position to shed light on the
consequences of using these criteria from the point of view of equity between
generations. Interestingly enough, the best program under the MBR criterion

1We have recently been informed of a manuscript by Lauwers (2007) that con�rms this
conjecture. See also Zame (2007).
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shows a pattern of exploitation of the natural resource that is in line with recent
proposals made by philosophers to go beyond the rawlsian criterion.

2 A natural resource economy

The economy has in�nitely many successive generations. Let ct be the con-
sumption by generation t of a natural resource whose stock is xt. This resource
evolves according to:

xt+1 = xt + f(xt; ct) : (1)

When consuming ct generation t enjoys a life-time utility level, or under
a more adequate interpretation a standard of living, Ut � U (ct) : The utility
function is continuous, non decreasing, concave and admits an upper and a lower
bound. Without loss of generality, the numbers Ut can be normalized so that
0 � Ut � 1: To any admissible path fct; xtg1t=0 ; the MBR criterion associates
the following value:

� inf fU (c0) ; U (c1) ; :::g+ (1� �)
1X
t=0

�tU (ct) ; 0 < � < 1 :

3 Necessary and su¢ cient conditions for opti-
mality

Consider �rst the �nite horizon version of the problem, with T < 1 periods:
given the initial stock x0 > 0, and a time path c0; c1; :::; cT of extractions,
producing a path x1;x2; ::; xT for the stock, let c � inf fc0; c1; :::g and U � U (c) :
The corresponding social welfare under the MBR criterion is:

Wmbr = �U + (1� �)
TX
t=0

�tU (ct)

The problem is to �nd U and the path of extractions in order to maximizeWmbr

subject to eq (1) and
ct � c � 0 for t = 0; 1; :::T

For the time being, assume that xT+1 is �xed.
This kind of maximization exercice is unlike usual dynamic problems where

standard optimization tools can be used. The necessary conditions for optimality
have been derived in Alvarez-Cuadrado and Long (2009), from Hestenes�the-
orem. Let the trajectory fc�t ; x�t ; ��t ; !�t ; c�g

T
t=0 denotes a solution to the MBR

problem.
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De�nition 1 Let�s call Transformed Lagragian the following function

Lt(ct; xt; c; ��t ; !�t ) � (1� �)�tU (ct) + ��t f(xt; ct) + !�t (ct � c) :

Then the following system of necessary conditions is veri�ed at (ct; xt; c) =
(c�t ; x

�
t ; c

�); for t = 0; 1; :::T :

@Lt(ct; xt; c; ��t ; !�t )
@ct

= (1� �)�tU 0 (ct) + !�t + ��t
@f

@ct
= 0, (2)

��t � ��t�1 = �
@Lt(ct; xt; c; ��t ; !�t )

@xt
= ���t

@f

@xt
; (3)

xt+1 = xt + f(xt; ct);

�U 0 (c)�
TX
t=0

@Lt(ct; xt; c; ��t ; !�t )
@c

= 0: (4)

In applications one �nds several canditate programs that solves the necessary
conditions. Some of them may correspond to minima instead of maxima. Further
conditions are needed to help discard the former, and are o¤ered in the following
theorem.

Theorem 2 (Su¢ cient conditions) Let (fc�t ; x�t ; ��t ; !�t g ; c�) denote a solution
to the necessary conditions. Let fc0t; x0tg be any feasible path. If the following
conditions hold:

(a) Lt(ct; xt; c; ��t ; !�t ) is concave in (ct; xt; c) and
(b) ��T (x

0
T+1 � x�T+1) � 0;

then fc�t ; x�t g is the optimal path.
Proof: Appendix
For the in�nite version of the problem, the necessary conditions are un-

changed. Regarding the su¢ cient conditions, we replace (b) of the theorem by
the condition

lim
t!1

�tx
�
t = 0 and lim

t!1
�t = 0

Since x0T+1 � 0, this implies

lim
T!1

��T (x
0
T+1 � x�T+1) � 0

4 Implications in a simple example

We now investigate the consequences of using the MBR criterion in a simple
example, where further analytical results can be obtained. Let the transition
be speci�ed as follows:

xt+1 = (xt � ct)�; � 2 (0; 1) :
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And let the life-time utility from consumption be a linear function:

u(ct) = ct:

Appendices B,C,D and E compute the discounted utilitarian path, the golden
rule, the maximin solution and the MBR path. The steady state of the �rst one
gives the so-called modi�ed golden rule:

xmgr := (��)
�

1�� ;

while the golden rule stock is:

xgr := �
�

1�� :

Turning back to the MBR criterion, it is worth noting that this example sat-
is�es the su¢ cient conditions given in the previous section. Hence the solutions
to the necessary conditions, if there exists any, are optimal (and interior).
First, we can prove that poorest generations are the �rst ones or the last

ones (intermediate generations cannot be the poorest).

Proposition 3 Calling c = ct the lowest consumption level of an optimal policy
under the MBR criterion, then the following pattern:

c < ct�1; c < ct+1; for some t � 1;

cannot occur.

Proof. Appendix F.
We will now see that the poorest generations are in the tail (resp. at the

begining) when the economy starts above (below) the modi�ed golden rule.

4.1 When the economy starts "rich" (above the modi�ed
golden rule: x0 � xmgr)

Let

bA � �(1� �) + �(1� �)
�(1� �) + (1� �) =

� + � � 2��
1� �� ;

xH �
h
� bAi�=(1��) :

Proposition 4 If the initial condition x0 satis�es

xmgr � x0 � xH

then xt = x0 for all t = 0; 1; 2; ::: is an optimal program for the MBR cirterion.

Proof. Appendix G.
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Remark 5 Clearly, as � ! 1; xH ! xgr, and as � ! 0, xH ! xmgr �
(��)

�=(1��).

Proposition 6 (ONE DOWNWARD JUMP) If x0 > xH then the policy made
of one jump downward to xH and then stay there for ever is an optimal solution.

Proof. Appendix H.

4.2 When the economy starts "poor" (below the modi�ed
golden rule: x0 < xmgr)

Unlike the solution dictated by by the maximin criterion, the MBR ISWF does
not require the economy to remain trapped in its initial poverty.

Proposition 7 Starting from x0 < x
mgr, it is never optimal to put xt = x0 for

all t.

Proof. Appendix I.
Better still, the economy should take o¤ to reach, in a �nite time, the mod-

i�ed golden rule as can be deduced from the two following propositions.

Proposition 8 Consumption paths cannot be non-monotone. If ct > c 8t > h
then xt+1 = xmgr 8t > h, and ct+1 = c1 for 8t > h

Proof. Appendix J.

Proposition 9 If ct > c 8t � T then xt = xmgr 8t � T + 1.

Proof. Appendix K.
Hence developement is made of two phases. But its exact pattern, in par-

ticular the number of poorest generations in the take o¤ phase, depends on the
initial condition.
Given proposition 8, we are interested in studying consumptions of the form

c = c0 = ::: = cn�1 < cn < c1 = :::c1: (5)

We de�ne:

x1 = f1(c) = (x0 � c)�; xn = fn(c) = (fn�1(c)� c)�;8n � 2:

We have the following properties for functions fn(c) and cn = cn(c):

� For consumptions of the form (5),

xn+1 = x
mgr = (fn(c)� cn)� (6)

then
cn(c) = fn(c)� (xmgr)1=� : (7)
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� We now show by induction that f 0n(c) < 0 and f 00n (c) < 0. In fact:

f 01(c) = ��(x0 � c)��1 < 0; f 001 (c) = �(�� 1)(x0 � c)��2 < 0;

Now, if f 0n�1(c) < 0 and f
00
n�1(c) < 0, then

f 0n(c) = �(fn(c))
(��1)=�(f 0n�1(c)� 1) < 0;

and

f 00n (c) = �
�� 1
�

(fn(c))
((��1)=�)�1 [f 0n(c)] (f

0
n�1(c)�1)+�(fn(c))(��1)=�f 00n�1(c)

= (�)2(
�� 1
�

)(fn(c))
((��1)=�)�1(f 0n�1(c)�1)�+�(fn(c))(��1)=�f 00n�1(c) < 0

Now we consider the following problem, that corresponds to the optimization
of the MBR criterion w.r.t. c of a consumption given by (5):

max
c

��
� + (1� �)(1 + � + :::+ �n�1)

�
c+ (1� �)�ncn(c)

	
:= F (c) (8)

where

x1 = (x0�c)�; x2 = (x1�c)�; :::xn = (xn�1�c)�; xmgr = (xn�cn)�; x0 given:
(9)

We must also impose the constraint that

cn(c)� c � 0 (10)

De�ne
Kn = � + (1� �)(1 + � + :::+ �n�1):

Let � � 0 be the Lagrange multiplier associated with the constraint (10). The
�rst order condition of problem (8) is

F 0(c) + � [f 0n(c)� 1] � 0 ( = 0 if c > 0)

i.e., if c > 0,
Kn + (1� �)�nf 0n(c) + � [f 0n(c)� 1] = 0 (11)

where
� � 0, cn(c)� c � 0, � [cn(c)� c] = 0

We can also see that F (c) is a concave function. In fact

F 00(c) = f 00n (c) < 0:

Note also that

F 0(0) = Kn � (1� �) (��)n (x0)n(��1) which is > 0 if x0 is not too small

Note that an unique solution of problem (8) exists when 0 � c � cn(c). But
what is the relation between problem (8) and an interior optimal solution of our
MBR problem? The answer is given in the following proposition.
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Proposition 10 First order conditions of the MBR problem for a consumption
path given by (5) are reduced to the existence of 0 < c < cn(c) that veri�es the
�rst order condition of problem (8), that is condition (11). In others words, if
there exists initial conditions x0 where (11) is veri�ed with 0 < c < cn(c) < c1,
there exists initial conditions where the path given by (5) is an optimal solution
of the MBR problem.

Proof. First note that the following equivalences hold (equivalences related
with equation (11) when � = 0):

Kn � (1� �)�n�nx(��1)=�n :::x
(��1)=�
1 � (1� �)�n�n�1x(��1)=�n :::x

(��1)=�
2 � :::

�(1� �)�n�x(��1)=�n =

= Kn�(1��)�n�x(��1)=�n

h
1 + �x

(��1)=�
n�1

h
1 + �x

(��1)=�
n�2 :::

h
1 + �x

(��1)=�
1

iii
=

= Kn � (1� �)�n�x(��1)=�n

�
�f 0n�1(c) + 1

�
= Kn + (1� �)�nf 0n(c): (12)

A consumption of the form (5) veri�es (9) and (7).
Suppose, for given x0, we have found an integer n and a real number c >

0 such that condition (11) is satis�ed with � = 0. Then we can compute
x1; :::xn; cn(c). Suppose that cn(c) > c. Then we can construct the multipliers
�t and !t recursively as follows. First, since xn+1 = xmgr, and cn > c, �n must
satisfy

(1� �)�n + 0� �n� (xmgr)(��1)=� = 0

Next,
�n�1 = �n� (x

mgr)
(��1)=� ) �n�1 = (1� �)�n

Then it follows that

!n�1 = �n�1� (xn)
(��1)=� � (1� �)�n�1 =

= (1� �)�n�1
h
(��) (xn)

(��1)=� � 1
i
> 0

�n�2 = �n�1�x
(��1)=�
n = (1� �)�n�1�x(��1)=�n

!n�2 = �n�2�x
(��1)=�
n�1 � (1� �)�n�2 =

= (1� �)�n�2
h
(��)x

(��1)=�
n�1 � 1

i
> 0

etc.
Now we must verify to see whether the constructed !0; :::!n�1 satisfy the

condition
!0 + !1 + :::+ !n�1 = �
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Taking into account (12), the de�nition of Kn and the fact that c veri�es (11)
with � = 0:

!0 + !1 + :::+ !n�1 =

�(1� �)(1 + � + :::�n�1) + (1� �)�n�nx(��1)=�n :::x
(��1)=�
1 �

(1� �)�n�n�1x(��1)=�n :::x
(��1)=�
2 � :::� (1� �)�n�x(��1)=�n =

= � �Kn � (1� �)�nf 0n(c) = �:

Then we have proven that c giving by (11) with � = 0and the de�ned values of
!i and �i verify the �rst order conditions of the MBR problem.

Reciprocaly, �rst order conditions of the MBR problem are:

!0 + :::+ !n�1 = �:

(1� �)�i + !i � �i�x(��1)=�i+1 = 0; i = 0:::n� 1: (13)

�i�1 = �i�x
(��1)=�
i+1 ; 8i:

From these two last equations we can compute all values of �i, i = 0:::n � 1.
Summing from i = 0 to n� 1 equations (13) we obtain

Kn � (1� �)�n�nx(��1)=�n :::x
(��1)=�
1 � (1� �)�n�n�1x(��1)=�n :::x

(��1)=�
2 � :::

�(1� �)�n�x(��1)=�n = 0;

from (12) this is equivalent to the �rst order condition of problem (8).

5 Conclusion

This paper further explore the properties of the MBR intertemporal welfare
criterion proposed by Alvarez-Cuadrado and Long (2009). We �nd out su¢ cient
conditions for optimality for the general formulation of the problem. Besides,
for a simple natural resource economy we compute the optimal path and shed
light on the consequences of using this criteria from the point of view of equity
between generations.
Interestingly enough, the best exploitation program under the MBR cri-

terion shows a pattern of exploitation of the natural resource that is in line
with recent proposals made by philosophers to go beyond the rawlsian crite-
rion. Those scholars, including Rawls, argue that the maximin does not result
in an acceptable normative prescription for poor economies, since its focus on
equality implies no saving, hence no growth, and does not permit to reach the
threshold at which basic liberties can be realized. They advocate an expansion
in two stages, with an accumulation phase folowed by a cruise phase. In the
cruise phase, equality is justi�ed again. This pattern is exactly to one obtained
under the MBR intergenerational welfare criterion.
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Appendix

A Derivation of the su¢ cient conditions

Let

V � � �U (c�) + (1� �)
TX
t=0

�tU (c�t )

and

V � �U (c0) + (1� �)
TX
t=0

�tU (c0t)

Then

V � = �U (c�) +
TX
t=0

�
Lt(c�t ; x�t ; c�; ��t ; !�t )� ��t

�
x�t+1 � x�t

�	
because !�t (c

�
t � c�) = 0. And

V = �U (c0) +

TX
t=0

�
Lt(c0t; x0t; c0; ��t ; !�t )� ��t (x0t+1 � x0t)� !�t (c0t � c0)

	
Then, since !�t � 0 and (c0t � c0) � 0,

V � �U (c0) +
TX
t=0

�
Lt(c0t; x0t; c0; ��t ; !�t )� ��t (x0t+1 � x0t)

	
i.e.

�V � ��U (c0)�
TX
t=0

�
Lt(c0t; x0t; c0; ��t ; !�t )� ��t (x0t+1 � x0t)

	
Thus

V � � V � � [U (c�)� U (c0)] +
TX
t=0

fLt(c�t ; x�t ; c�; ��t ; !�t )� Lt(c0t; x0t; c0; ��t ; !�t )g

+
TX
t=0

��t (x
0
t+1 � x0t)�

TX
t=0

��t
�
x�t+1 � x�t

�
Now, from the assumption that Lt(ct; xt; c; ��t ; !�t ) is concave in (ct; xt; c);

Lt(c�t ; x�t ; c�; ��t ; !�t )� Lt(c0t; x0t; c0; ��t ; !�t ) �

(c�t � c0t)
@Lt(c�t ; x�t ; c�; ��t ; !�t )

@c�t
+ (x�t � x0t)

@Lt(c�t ; x�t ; c�; ��t ; !�t )
@x�t

+
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(c� � c0)@Lt(c
�
t ; x

�
t ; c

�; ��t ; !
�
t )

@c�

Thus,
Lt(c�t ; x�t ; c�; ��t ; !�t )� Lt(c0t; x0t; c0; ��t ; !�t ) �

(x�t � x0t)��t
@f

@x�t
+ (c� � c0)!�t for t = 0

But x�0 = x
0
0 = x0 given, so

Lt(c�t ; x�t ; c�; ��t ; !�t )� Lt(c0t; x0t; c0; ��t ; !�t ) � (c� � c0)!�t for t = 0

And
Lt(c�t ; x�t ; c�; ��t ; !�t )� Lt(c0t; x0t; c0; ��t ; !�t ) �

(x�t � x0t)
�
��t�1 � ��t

�
+ (c� � c0)!�t for t = 1; 2; ::; T

Hence

V � � V � � [U (c�)� U (c0)] +
TX
t=0

(c� � c0)!�t+

x�1�
�
0 � x�1��1 + x�2��1 � x�2��2 + :::+ x�T��T�1 � x�T��T

�x01��0+x01��1+ :::�x0T��T�1+x0T��T +
TX
t=0

��t (x
0
t+1�x0t)�

TX
t=0

��t
�
x�t+1 � x�t

�
=

� [U (c�)� U (c0)] +
(

TX
t=0

(c� � c0)!�t

)
+ ��T (x

0
T+1 � x�T+1) =

= ��T (x
0
T+1 � x�T+1) � 0

(using eq (??), and condition (b)).
This completes the proof.

B The discounted utilitarian criterion

If � 2 ]0; 1[ stands for the planner�s discount factor, the discounted utilitarian
problem reads as:

max
fctg1t=0

1X
t=0

�tct ; (14)

subject to the constraint

xt+1 = (xt � ct)�; x0 given:

Using the maximum principle and asking for an interior solution, we obtain
(as in the continuous case) only the stationnary steady state (the so-called
modi�ed gloden rule) given by

xm := (��)
�

1�� :

11



To avoid this turnpike issue we propose to solve the same problem but with a
�nite horizon T and take the limit of the solution when T goes to in�nity. Now,
the problem is:

max
fctgT0

TX
t=0

�tct + �
T+1xT+1 ; (15)

subject to the constraint

xt+1 = (xt � ct)�; t = 0:::T; x0 given:

Using dynamic programming, it is easy to check that problem (15) has the
following optimal solution c�Tt for all t = 0; :::T :

c�Tt =

8<: 0 if xt < x

xt � x if xt � x ;

where x = (��)
1

1�� : The optimal consumption is zero when the stock is strictly
below the steady state; otherwise it is optimal to consume the amount exactly
necessary to settle the economy to its steady state. As we can see, this solution
does not depends on T so, taking the limit when T goes to in�nity, the optimal
solution for our problem (14) is again:

c�t =

8<: 0 if xt < x

xt � x if xt � x:

As far as the stock of the resource is concerned, the optimal path is, if x0 � x:

x�t = x
1; 8t � 1;

and if x0 < x

x�t =

8<: (x0)
t� t = 0:::t0;

x1 t > t0;

where t0 is such that (x0)t0� � xm.

C The golden rule criterion

The problem is to �nd the highest stationary utility level. Formally:

max
c

c (16)

such that
x = (x� c)�:

The solution to this program is

xGR := (�)
�

1�� ; cGR := xGR � (xGR)1=�:

12



D The maximin (Rawls) criterion

Under this criterion, the goal is to achieve the best utility level for the less
advantaged generation. Or:

max
�c
�c (17)

such that
xt+1 = (xt � ct)�; x0 given; xt � 0; ct � �c:

We can remark that if there exists a date t0 such that ct0 = 0, then �c = 0
and that if there exists ct0 = xt0 , then ct0+1 = 0 and �c = 0. So we can deduce
that the optimal solution is an interior solution.
Appendix ?? gives the derivation of the solution which is:

� if x0 � xGR, the solution is the constant consumption path c = cGR;
which navigates the stock to a steady state value xH � xGR;

� if x0 < xGR then the solution of (??) is c = x0 � x1=�0 ; which implies
xt = x0 for all t.

E The mixed Bentham-Rawls (MBR) criterion

Inspired by the above analysis, the mixed Bentham-Rawls problem reads as:

max
�c;ct

"
��c+ (1� �)

1X
t=0

�tct

#
; (18)

such that,

xt+1 = (xt � ct)�; x0; given ; xt � 0; ct � �c � 0:

Let the Langragian be

L = ��c+ (1� �)
1X
t=0

�tct +

1X
t=0

!t(ct � �c) +
1X
t=0

�t((xt � ct)� � xt+1);

The �rst order conditions are:

@L

@ct
= (1� �)�t + !t � �t�(xt � ct)��1 = 0; t = 0; 1::: (19)

@L

@xt
= ��t�1 + �t�(xt � ct)��1 = 0; t = 1; 2:::; (20)

@L

@�c
= � �

1X
t=0

!t = 0:

!t � 0; !t(ct � �c) = 0; ct � �c � 0 (21)

13



F Proof of Proposition 3

For this policy we have

!t�1 = !t+1 = 0; !t > 0;

xt = (xt�1 � ct�1)�; xt+1 = (xt � c)�; xt+2 = (xt+1 � ct+1)�:

And from �rst order conditions

(1� �)�t�1 = �t�1�(xt)
��1
� (22)

(1� �)�t + !t = �t�1 (23)

(1� �)�t+1 = �t (24)

�t�1 = �t�(xt+1)
��1
� (25)

�t = �t+1�(xt+2)
��1
� (26)

From (23), (24) and (25) we have

(1� �)�t + !t = (1� �)�t+1� (xt+1)
��1
�

that gives

!t = (1� �)�t
h
��(xt+1)

��1
� � 1

i
> 0 () xt+1 < x

mgr:

From (22), (24) and (25) we have

(1��)�t�1 = (1��)�t+1�(xt+1)
��1
� �(xt)

��1
� () 1 = (��)2(xt+1xt))

��1
�

this last equation gives
xt > x

mgr:

From (24) and (26) we have

(1� �)�t+1 = �t+1�(xt+2)
��1
�

and we ca deduce that, if !t+2 = 0, then xt+2 = xmgr and if !t+2 > 0, then
xt+2 > x

mgr, so
xt+2 � xmgr:

We can conclude that

xmgr � xt+2 = (xt+1 � ct+1)� = [(xt � c)� � ct+1]� <

(xmgr � ct+1)� < (xt � ct+1)� < (xt � c)� = xt+1;

that is a contradiction.
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G Proof of Proposition 4

We want to show that there exist values !t � 0 for all t = 0; 1; 2; :: and �t such
that, for all x0 2 [xmgr; xH ], we have

(1� �)�t + !t � �t�(x0 � c0)��1 = 0; t = 0; 1::: (27)

��t�1 + �t�(x0 � c0)��1 = 0; t = 1; 2:::; (28)

� �
1X
t=0

!t = 0 (29)

Write

A�1 = �(x0 � c0)��1 = �
h
x
1=�
0

i��1
ie

A =
1

�
x
(1��)=�
0

Eq (28) becomes
�t = A�t�1 where t = 1; 2; ::

Therefore
�t = A

t�0 for t = 1; 2; ::

And
(1� �) + !0 � �0A�1 = 0

(1� �)�t + !t �At�0A�1 = 0; t = 1:

So
!0 = �0A

�1 � (1� �)

!t = A
t�0A

�1 � (1� �)�t for t = 1; 2:::

Assume
A < 1

ie
x0 < (�)

�=(1��) � xGR

For !0 to be non-negative, we need to choose �0 such that

�0A
�1 � 1� � (30)

Assume inequality (30) holds. Then for !t to be non-negative for all t; we need

At � �t

ie
x0 � (��)�=(1��) � xmgr

15



Summing over all !t, we need to satisfy

� = �0A
�1

1X
t=0

At � (1� �)
1X
t=0

�t =
�0A

�1

1�A � 1� �
1� �

ie

� +
1� �
1� � =

�0A
�1

1�A
ie �

� +
1� �
1� �

�
(1�A) = �0A�1

Since we can choose �0A�1 as long as (30) holds, we require�
� +

1� �
1� �

�
(1�A) � (1� �)

ie

1�A � (1� �)(1� �)
�(1� �) + (1� �)

ie

A � �(1� �) + (1� �)� (1� �)(1� �)
�(1� �) + (1� �) =

�(1� �) + �(1� �)
�(1� �) + (1� �) �

bA < 1:
H Proof of Proposition 6

With one jump, we jump from x0 to x1 < x0, and then stay at x1 for ever. then

xt = (x1 � c1)� = x1 for t = 2; 3; :::

The necessary conditions are

(1� �)� �0�(x0 � c0)��1 = 0;

(1� �)�t + !t � �t�(x1 � c1)��1 = 0; t = 1; 2; :: (31)

��t�1 + �t�(xt � ct)��1 = 0; t = 1; 2:::;

So
(1� �)� �0�(x0 � c0)��1 = 0; (32)

(1� �)�t + !t � �t�1 = 0; t = 1; 2; : (33)

�1 = �2�(x2 � c2)��1 = �2�(x1)(��1)=� � �2A�11
�0 = �1�(x1 � c1)��1 = �1�(x1)(��1)=� � �1A�11

�1 = �0A1

16



�2 = �1A1 = �0A
2
1

and
�t = �0A

t
1

where, from (32)
�0A

�1
1 = 1� �

Equation (33) gives

!t = �tA
�1
1 � (1� �)�t for t = 1; 2; :::

ie
!t =

�
�0A

t
1

�
A�11 � (1� �)�t for t = 1; 2::

!t = (1� �)
�
At1 � �t

�
for t = 1; 2:::

Assume
A1 > �

Summing over t = 1; 2:::

� = (1� �)
�

A1
1�A1

� �

1� �

�

� +
� (1� �)
1� � = (1� �) A1

1�A1
(1� �) � + � (1� �)

1� � = (1� �) A1
1�A1

[(1� �) � + � (1� �)]
(1� �)(1� �) =

A1
1�A1

[(1� �) � + � (1� �)] (1�A1) = (1� �)(1� �)A1
[(1� �) � + � (1� �)] = A1 [(1� �)(1� �)� (1� �) � + � (1� �)]

A1 =
�(1� �) + �(1� �)
�(1� �) + (1� �) =

bA
I Proof of Proposition 7

First order conditions give:

(1� �)�t + !t � �t�x
��1
�

0 = 0; t = 0; 1::: (34)

��t�1 + �t�x
��1
�

0 = 0; t = 1; 2:::;

� =
1X
t=0

!t:
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Calling A = x
1��
�

0 =�, we obtain that: �t = A�t�1 and so,

�t = �0A
t:

Note that A < 1 when x0 < x1. Summing equation (34) in t we obtain

1� �
1� � + � �

�0
1�A�x

��1
�

0 = 0;

then

�0 = (
1� �
1� � + �)

1�A

�x
��1
�

0

:

!t = (
1� �
1� � + �)(1�A)A

t � (1� �)�t � 0 () (
1� �
1� � + �)

1�A
1� � �

�
�

A

�t
for all t. This last inequality is not true for all t because �

A > 1.

J Proof of Proposition 8

Proof. As ct > c;8t > h, from (21) !t = 0;8t > h. From (19)

�t�(xt � ct)��1 = (1� �)�t; 8t > h:

Then �
�t+1
�t

��
xt+1 � ct+1
xt � ct

���1
=
�t+1

�t
= �; 8t > h (35)

From (20)
�t+1
�t

=
1

� (xt+1 � ct+1)��1
;

Remplacing in (35)

1

� (xt � ct)��1
= �; 8t > h

Therefore
1

� (xt+1)
(��1)=� = �; 8t > h

ie
xt+1 = (��)

�=(1��) � xmgr; 8t > h

Then
ct+1 = xt+1 � x1=�t+2 = x

mgr � (xmgr)1=� � c1

18



K Proof of Proposition 9

As ct > c;8t � T , from (21) !t = 0;8t � T . From (19) and (20)

�t�1 = (1� �)�t; 8t � T:

Remplacing in (20)

(��)�=(1��) = xt = x
mgr 8t � T + 1:
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