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Abstract

This paper explores the e¤ect of a potential joint-venture breakup on the level of
technology transfer in a set-up with exploration-exploitation trade-o¤s in the pres-
ence of time compression costs. We consider a joint-venture relationship between a
technologically advanced multinational �rm and a local �rm operating in a developing
economy where the ability to enforce contracts is weak, and the local �rm can quit
without penalties. The multinational �rm has to consider the advantages and disad-
vantages of an intensive transfer of technology versus an extensive one. In response to
the breakup incentives, the multinational �rm reduces the intensity (lowering the pace)
and opts for a more extensive transfer mode (longer duration of transfer), compared
to the �rst best. The scheme is supported by a �ow of side payments to encourage
the local �rm to stay longer. We show that a fall in time compression costs may in-
crease or decrease the intensity of technology transfer, both in the �rst-best and in
the second-best scenarios, depending on the nature of the saving in time-compression
costs.
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1 Introduction

Technology transfer from developed economies to less developed ones has been an important

engine of growth of emerging market economies. A common mode of technology transfer is

the setting up of a joint venture between a multinational and a local �rm1. Governments

of emerging market economies often encourage such joint ventures. In fact, the Chinese

government does not allow foreign car manufacturers to have their own subsidiaries in China.

It requires foreign car manufacturers to form joint ventures (JVs) with local �rms so that

the latter can bene�t from technology transfer. In addition, foreign car manufacturers must

obtain the Chinese government�s permission to form JVs.

A salient feature of international joint ventures is that breakup typically happens within

a few years. The local partner may have strong incentives to break away, once it has accu-

mulated su¢ cient technological knowledge. A multinational �rm that o¤ers a joint venture

contract to a local �rm must take into account the possibility of such opportunistic be-

havior. The breakup of joint ventures or similar collaborative agreements has been widely

reported. Easterly (2001, p. 146) recounted that Daewoo Corporation of South Korea and

Bangladesh�s Desh Garment Ltd. signed a collaborative agreement in 1979, whereby Dae-

woo would train Desh workers, and Desh Ltd would pay Daewoo 8 percent of its revenue.

Desh cancelled the agreement on June 30, 1981 after its workers and managers have received

su¢ cient training. Its production soared from 43,000 shirts in 1980 to 2.3 million in 1987.

(Interestingly, of the 130 Desh workers trained by Daewoo, 115 eventually left Desh to set

up their own �rms.).

This paper considers the e¤ect of an anticipated breakup on the manipulation of actual

breakup time via distorting the level of technology transfer. We assume the multinational

�rm always honors its promises (because it wants to maintain its reputation in other coun-

tries), but it cannot prevent the local �rm from breaking away after receiving technology

transfer.

The problem for the multinational �rm is to give an incentive to the local �rm to stay

longer, because after the breakup, it will be obliged to stop production in the host country,

while the local �rm will gain by using the acquired knowledge as a stand-alone �rm. Incen-

tives for the local partner to stay longer can be either in the form of a large �ow of side

payments or a promised increase in the transfer of knowledge before the break (which, if

not well-designed, can become itself an incentive to leave sooner). In the �rst case, the local

1Hoekman, Maskus and Saggi (2005) review the principal channels of technology transfer, which are trade
in goods, foreign direct investment, licensing, labor turnover and movement of people.
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�rm will bene�t a lot before the breakup, while in the second case the local �rm will reap

a large pro�t after the breakup. In this context, within a �xed horizon, a �rst key feature

of our model is to know how the multinational will balance between an intensive and an

extensive mode of knowledge transfer. Given a total amount of knowledge to be transferred,

at one extreme one can choose a highly intensive transfer mode (a fast rate of transfer over

a short period of time) and at the other extreme, one can opt for an extensive transfer mode

(a slow transfer rate over a long period of time). Then, if the transfer of knowledge is too

intensive, the local �rm will quit sooner to bene�t alone, for a longer time, of a large total

amount of knowledge accumulated before the breakup. In this case the pro�t for the multi-

national will be of short duration. Furthermore, the breakup time being not contractible,

the multinational �rm may have to rely on second-best technology transfer schemes that do

not maximize joint surplus, but that are incentive compatible.

In our model three key features of technology transfer play a major role: it is costly, it

takes time and it generates value.

i) it is costly: the faster the pace of knowledge transfer, the more costly it is. Indeed,

there are "time-compression costs" (Dierickx and Cool,1989) and absorptive capacity costs

(Cohen and Levinthal,1990). For a given total amount of knowledge to be transferred, the

shorter the interval of time the multinational spends to transfer it, the greater will be its

transfer cost.

ii) it takes time: time is an essential element here. The earlier the breakup, the more time

would be available for the local �rm to reap the rewards of value creation, and the shorter

is the phase of positive pro�t for the multinational. This is a speci�c form of the famous

"exploration-exploitation" trade-o¤ (March,1991) where the opportunity cost of exploring

(learning) is the reduced time for exploitation for the fully acquired knowledge2. In our

model, exploration represents, for each unit of time until the breakup, a transfer of knowledge,

while exploitation is the ability to reap some pro�t. The multinational will not be able to

exploit after the breakup, while the local �rm can exploit both before and after the breakup.

The resolution of this trade-o¤, the right balance between exploration and exploitation,

depends on what type of knowledge is involved: knowledge in the sense of information ("to

know what"), or knowledge in the sense of ability to act ("to know how", learning by doing or

2March de�ned exploration and exploitation as follows: �Exploration includes things captured by terms
such as search, variation, risk taking, experimentation, play, �exibility, discovery, innovation. Exploita-
tion includes such things as re�nement, choice, production, e¢ ciency, selection, implementation, execution�
(1991, p. 71). Levinthal and March added that exploration involves �a pursuit of new knowledge,�whereas
exploitation involves �the use and development of things already known�(1993, p. 105). In general explo-
ration means learning (by imagination, evaluation, building competences and human capital, by imitation
or introspection). In our case it represents a transfer of knowledge.
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by thinking). Knowledge can be more or less tacit. To be able to use it an agent can imitate

the �teacher�, or the teacher must codify the knowledge to be transferred, changing tacit

knowledge into explicit knowledge. There is also the need for a preparation phase (building

absorptive capacities). The costs of transferring knowledge include costs of achieving mutual

understanding, of improving assimilation capabilities, codi�cation costs, etc.

iii) it generates value: the more knowledge the multinational transfers before the breakup,

the larger is the joint pro�t per unit of time before the breakup, and the larger is the stand-

alone pro�t of the local �rm after the breakup.

In this dynamic context, our paper explores the e¤ect of a potential joint-venture breakup

on the level of technology transfer in a set-up with exploration-exploitation trade-o¤s in the

presence of time compression costs and imperfect property rights. Thus, supported by a

side-payment scheme, the nature of transfer costs will determine the optimal intensive vs.

extensive mode of transfer, the total amount of knowledge transferred before the breakup

and the optimal breakup time.

We will compare the �rst-best and second-best cases by asking the following questions:

(i) if �rst-best contracts are not implementable, is the speed of technology transfer reduced?

(ii) Is the cumulative amount of technology transfer lower under the second-best scheme?

(iii) Does the side payment increase over time to give an incentive to delay the breakup ?

(iv) How do exogenous changes in transfer cost impact the time pro�le of transfer ?

In response to breakup incentives, we show that the multinational �rm transfers technol-

ogy in a less intensive but more extensive way compared to the �rst-best. The scheme is

supported by a �ow of side payments to encourage the local �rm to stay longer. We show

that a fall in time compression costs may increase or decrease the intensity of technology

transfer, both in the �rst-best and in the second-best scenarios, depending on the nature of

the time compression costs economies, the length of the time horizon and on the maximum

absorptive capacity.

We formulate a dynamic model of principal-agent relationship in which at any point of

time the agent (the local �rm) can quit without legal penalties. An interesting feature of

the model is that the agent�s reservation value is changing over time, because the agent�s

knowledge capital increases with the accumulated amount of technology transfer. The agent�s

quitting value (i.e., how much it can earn as a stand-alone �rm over the remaining time

horizon) is a non-monotone function of time. Given a planned time path of technology

transfer, during the early phase of the relationship, the local �rm�s quitting value is rising

with time. However, near the end of the time horizon, when the transferred knowledge would
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become useless because a new product (developed elsewhere) renders the existing product

completely obsolete, the local �rm�s quitting value is falling over time. Because of this

non-monotonicity of quitting value, the local �rm�s optimal quitting time (in the absence of

side transfer payments) occurs before the projected end of the �rst-best relationship. Such

an early breakup may be prevented if the principal (the multinational) designs a suitable

scheme in which both the pace and aggregate amount of technology transfer deviate from

the �rst-best, and a suitable �ow of side payments to encourage the local �rm to stay longer.

Our model is linked to two streams of the literature. The �rst one focuses on the de�nition

and properties of the costs of technology transfer, while the second stream, typically relying

on two-period formulation, concerns the technology transfer within a joint venture.

Our assumptions on the costs of technology transfer are based on empirical �ndings.

An early paper that discussed the resource cost of transferring technology know-how was

Teece (1977). Teece disagreed with the �common belief that technology is nothing but a

set of blueprints that is usable at nominal cost to all�. He argued instead that �the cost

of transfer, which can be de�ned to include both transmission and absorption costs, may

be considerable when the technology is complex and the recipient �rm does not have the

capabilities to absorb the technology�. His empirical research focused on measuring the costs

of transmitting and absorbing all of the �relevant unembodied knowledge�. These costs fall

into four groups. First, there are pre-engineering technological exchanges, where the basic

characteristics of the technology are described to the local �rm. Second, there are costs of

transferring and absorption of the process or product design, which require �considerable

consulting and advisory resources�. Third, there are �R&D costs associated with solving

unexpected problems and adapting or modifying technology�. Fourth, there are training

costs, which involve extra supervisory personnel. Teece found that empirically the resources

required for international technology transfer are considerable and concluded that �it is

quite inappropriate to regard existing technology as something that can be made available

at zero social cost�. Niosi et al. (1995) found that technology transfer costs are signi�cant

and mostly concentrated in training. A central aspect of our model consists of exploring

the implications of the time-compression cost of technology transfer. The following speci�c

example illustrates. Take the transfer cost function C(h) = b(h=h)� where 0 � h � h is the

amount of transfer per unit of time, and � � 1 is the degree of convexity. A strictly convex
cost (� > 1) means marginal cost of transfer increases with h. The parameter � represents

an index of time compression3. We show how an increase in � (which may come about from

3See Attouch and Soubeyran (2006, 2008).
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exogenous changes in communication technology) may a¤ect the equilibrium transfer rate

in the �rst-best (perfect property rights) and in the second-best (imperfect property rights)

scenarios. We also examine a fall in b which represents a global fall in the time-compression

cost. Results on the impact of a fall in transfer cost on the equilibrium amount of technology

transfer di¤er, depending on whether a such a fall is caused by a rise in � or by a fall in

b. Then, in modelling the endogenous pace and duration of technology transfer, our paper,

by seriously taking into account "time-compression costs", provides a useful framework to

investigate theoretical support for the hypothesis that the degree of intellectual property

protection in�uences the extent of technology transfer (for a survey of empirical evidence,

see Mans�eld, 1994).4

The second major contribution of our model is an explicit account of the incentive prob-

lem of technological transfer in a dynamic setting. This topic has been considered by Ethier

and Markusen (1996), Markusen (2001), and Roy Chowdhury and Roy Chowdhury (2001)

using two-periods models. The questions we wish to address, namely the determination of

the optimal and second-best pace of technology transfer, cannot be examined adequately

in a two-period model. With just two periods, one cannot model the "spreading" e¤ect

(transferring knowledge over a longer period of time) and the e¤ect of a reduction in transfer

cost on the timing and amount of technology transfer. Our model, set in continuous time,

is capable of generating a richer set of results. It enables us to show how to achieve the

balance between the intensive and the extensive modes of transfer, and to determine jointly

the optimal length of the transfer phase and the optimal total amount of knowledge to be

transferred (both in the �rst-best case and the second-best cases). Furthermore, our result

on non-monotonicity of the local �rm�s value of quitting as a function of quitting time can-

not be obtained in two-period models. This non-monotonicity has important bearing on the

principal�s optimal speed of technology transfer. There are two important considerations

here. On the one hand, �rst-best e¢ ciency requires trading o¤ higher absorption cost asso-

ciated with faster transfer against higher bene�t of knowledge accumulation. On the other

hand, a high speed of transfer brings the local �rm�s optimal quitting time closer to the

present, which is detrimental to the multinational.

Ethier and Markusen (1996) presented a model involving a race among source-country

�rms to develop a new product that becomes outdated after two periods.5 The winning �rm

4By emphasizing the time-compression cost, our model di¤ers signi�cantly from the licensing models (e.g.
Kabiraj and Marjit (2003), Mukherjee and Pennings (2006)) in which technology transfer is via licensing,
which does not use up real resources.

5With this assumption, the time horizon of a �rm is e¤ectively restricted to two periods.
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has the exclusive right to produce the good in the source country (S), and can produce the

good in the host country (H) either by setting up a wholly owned subsidiary, or by licensing

to a local �rm. If the licensing contract is for one period, in the following period the former

licensee, having learned the technology, can set up its own operation to compete against

the source-country �rm. Two-period licensing is ruled out because by assumption the local

�rm can breakaway in the second period without penalties. The authors assume that in the

host country there is complete absence of protection of intellectual property. Their model

highlights the interplay of locational and internalization considerations. It provides a key to

understand why there are more direct investment between similar economies. Their paper

does not address the issue of endogenous timing of breakaway by the local partner of a joint

venture, nor the issue of the multinational�s optimal speed of technology transfer that serves

to counter the breakaway incentives.

Markusen (2001) proposed a model of contract enforcement between a multinational �rm

and a local agent. He considered a two-period model where the agent learns the technology in

the �rst period and can quit (with a penalty) and form a rival �rm in the second period. The

multinational can �re the agent after the �rst period and hire another agent in the second

period. A main result is that if contract enforcement induces a shift from exporting to local

production, both the multinational �rm and the local agent are better o¤. Markusen�s paper

does not address the issue of the optimal speed of technology transfer.

Roy Chowdhury and Roy Chowdhury (2001) built a model of joint venture breakdown.

They used a two-period setting, with a multinational �rm and a local �rm. They showed

that for intermediate levels of demand, there is a joint venture formation between these �rms

in period 1, followed by a joint venture breakdown in period 2 (when the two �rms become

Cournot rivals). In their model, the incentive for forming a joint venture is that both �rms

can learn from each other (the local �rm acquires the technology while the multinational

learns about the local labor market). The model does not allow the multinational to control

the speed of technology transfer.

In the papers mentioned above, by restricting to two-period models, the question of

optimal timing of breakup cannot be studied in rich detail. Among papers that deal with

optimal timing decisions of multinational �rms is Buckley and Casson (1981). They analyzed

the decision of a foreign �rm to switch from the �exporting mode�to the FDI mode (in setting

up a wholly owned subsidiary). That paper did not deal with the problem of opportunistic

behavior that would arise if there were a local partner. Horstmann and Markusen (1996)

explored the multi-period agency contract between a multinational �rm and a local agent

7



but in their model there was no technology transfer from the former to the latter. Their

focus was to determine when a multinational would terminate its relationship with the local

sales agent and establish its own sales operation. Rob and Vettas (2003) generated the

time paths of exports and FDI, with emphasis on demand uncertainty and irreversibility.

They did not consider the possibility of licensing or joint venture. Horstmann and Markusen

(1987) explored a multinational �rm�s timing decision on investing (setting up a wholly

owned subsidiary) in a host country in order to deter entry. Lin and Saggi (1999) explored

a model of timing of entry by two multinationals into a host country market, under risk of

imitation by local �rms. There was no contractual issues in their model; the emphasis was

instead on the leader-follower relationship. They showed that while an increase in imitation

risk usually makes FDI less likely, there exist parameter values that produce the opposite

result.

The remainder of our paper is structured as follows. Section 2 introduces the model,

and characterizes the �rst-best pace of technology transfer when contracts are perfectly

enforceable, so that a joint-venture breakup is not allowed. Section 3 shows that if breakup

can happen without penalties, and the local �rm faces a credit constraint, then the �rst-best

pace of technology transfer is not an equilibrium outcome, because the multinational would

want to modify the pace of technology transfer in order to (partially) counter the incentives

of breakaway. We �nd that the equilibrium outcome under credit constraint and imperfect

property rights involves a slower pace of technology transfer, and also results in a lower

cumulative technology transfer.6 Section 4 shows that without credit constraint or with

perfect property rights the �rst-best pace of technology transfer is the equilibrium outcome.

Section 5 shows how an exogenous fall in transfer costs (e.g. because of reduced barriers to

communication) a¤ects the equilibrium transfer rate as well as the total amount of transfer.

The Appendices contain proofs.

6This may be interpreted as the unwillingness to transfer the latest technology. In Glass and Saggi
(1998)�s general equilibrium model, the quality of technology that FDI transfers depends on the size of the
technology gap between the North and the South. Empirical work by Coughlin (1983) found that comparing
countries that are not favorable to FDI that set up wholly owned subsidiaries with countries having less
restrictive FDI policies, the �rst group of countries tend to receive process rather than product technology
transfers, and the product technology transfers tend to concentrate on older products.
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2 The Basic Model

2.1 Assumptions and Notation

We consider a developing country in which a good can be produced using local inputs (such as

labor and raw material) and technological knowledge which can be transferred from a foreign

�rm. Unlike most existing models which assume that the technology transfer can happen

immediately, we take the view that there are absorption costs and training costs which rise

at an increasing rate with the speed of technology transfer, and which make an once-over

technology transfer unpro�table. We therefore explicitly introduce time as a crucial element

in our model. We take time to be a continuous variable, t 2 [0; T ]. Here T is an exogenously
given terminal time of the game. It can be interpreted as the time beyond which the product

ceases to be valuable (cf. the product cycle theory of Vernon).

Let h(t) denote the rate of technology transfer at time t: The state of technological

knowledge of the local �rm at time t is denoted by H(t) where H(t) =
R t
0
h(�)d� . The

(reduced-form) �gross pro�t� of the joint venture at time t is assumed to be a function

of H(t) alone. It is denoted by �(H(t)) where �(:) is a continuous, concave and strictly

increasing function, with � = 0 if H = 0. This gross pro�t does not include �absorption

cost�which is denoted by C(h(t)). We assume that C(h) is continuous, strictly convex and

increasing in h, with C(0) = 0. This implies that for all h > 0, the marginal absorption

cost is greater than the average absorption cost, C 0 > C=h. We also assume that there is an

upper bound on h, denoted by h > 0.

Let us make the following speci�c assumptions:

Assumption A1: (a) The di¤erence between marginal absorption cost and average absorp-

tion cost, C 0(h)�C(h)=h, is positive and increasing in h for all h > 0. (b) T�0(0) > C 0(0) � 0.
Assumption A2: The time horizon T is su¢ ciently short, such that

C 0(h)� C(h)

h
>
T�0(0)

2
(1)

Assumption A3: The elasticity of marginal contribution of technology to pro�t is less than

or equal to unity:

1 +
H�00(H)

�0(H)
� 0 (2)

Remark 1: Assumption A1(a) implies that

C 00(h)� C 0(h)h�1 + C(h)h�2 > 0 (3)

Clearly, the function C(h) = bh� (where � > 1 and b > 0) satis�es A1(a). Assumption A1(b)

means that the return (over the life-time of the joint venture) of a very small technology
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transfer is higher than its marginal cost. Assumption A2 ensures that the optimal constant

h is strictly smaller than h.7 Assumption A3 implies that t�0(ht) is increasing in t. We use

this assumption to prove the optimal solution is unique (see Proposition 1 below) and to

show that the equilibrium outcome under credit constraint and imperfect property rights

results in a lower cumulative technology transfer (see section 3.4). Clearly, the function

�(H) = (K=
)H
 where 0 < 
 � 1 and K > 0 satis�es A3.

We assume that the foreign �rm and the local �rm form a joint venture. We �rst consider

the ideal case where contracts can be enforced costlessly. In this case the joint venture

chooses a time path of technology transfer and production that maximizes the joint surplus.

In analyzing this ideal case, our focus is on e¢ ciency. The surplus sharing rule under this

�rst-best scenario is not important for our purposes.

After characterising the �rst-best (e¢ cient) time path of technology transfer, we discuss

whether this path can be achieved if the local �rm can at any time break away from the

joint venture and become a stand-alone entity that captures all the post-breakaway pro�t

(we assume that after the breakaway, the joint venture vanishes, and the multinational �rm

leaves the host country). The answer will depend on what kind of contracts are feasible,

in particular, on whether the local �rm has access to a perfect credit market, and whether

the multinational is entitled to compensation by the local �rm after the breakaway (i.e.

whether property rights are perfectly enforceable). In the absence of a perfect credit market

and a perfect property rights regime, we show that the foreign �rm must design a second-

best contract. We show that the second-best contract involves a slower pace of technology

transfer, and a lower level of cumulative technology transfer. We argue that this outcome

could be detrimental to the host country.

2.2 The �rst-best solution

For simplicity, we assume that the discount rate is zero. The joint-surplus maximization

problem is to choose a time path h(t) over the time horizon T to maximize

V =

Z T

0

[�(H(t))� C(h(t))] dt (4)

subject to _H(t) = h(t), H(0) = H0 = 0 and 0 � h � h.

Let us simplify the problem by restricting the set of admissible time paths of technology

transfer, so that it consists of the following two-parameter family of piece-wise constant

7As shown in the Appendix, assumption A2 can be replaced by a weaker assumption.
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functions (the case where h(t) is not constrained to be piece-wise constant is analysed in a

companion paper):8

h(t) =

�
h if t 2 [0; tS]
0 if t 2 (tS; T ]

(5)

where tS is the �technology-transfer-stopping time�, beyond which there will be no further

technology transfer, and h is a constant transfer rate, to be chosen. After the time tS, the

level of technological knowledge of the joint venture is a constant, denoted by HS where

HS � htS.The optimization problem of the joint venture then reduces to that of choosing

two numbers h and tS to maximize

V (h; tS) =

Z tS

0

[�(ht)� C(h)] dt+ [T � tS] � (htS) (6)

subject to 0 � h � h and 0 � tS � T .

Proposition 1: The solution of the (�rst-best) optimization problem (6) of the joint venture

exists, is unique, and has the following properties:

(i) The rate of technology transfer h� during the time interval [0; t�S] is strictly positive and

strictly below the upper bound h.

(ii) The stopping time t�S is strictly positive and is smaller than the time horizon T:

(iii) The marginal bene�t (over the remaining time horizon) of the technological knowledge

stock at the stopping time t�S is just equal to the average absorption cost:

(T � t�S)�
0(h�t�S) =

C(h�)

h�
: (7)

(iv) At the optimal technology transfer rate h�, the excess of the marginal absorption cost over

the average absorption cost is just equal to average of the marginal contribution of technology

to pro�t over the transfer phase:

C 0(h�)� C(h�)

h�
=
1

t�S

Z t�S

0

�
@

@h
�(h�t)

�
dt (8)

Proof : See Appendix 1.

Remark 2: Since C(h) > 0 for any h > 0 and H(0) = 0, the assumption that �(H) = 0

when H = 0 implies that, for any h > 0, there exists an initial time interval called the

8In the companion paper, the optimal path h� (t) looks similar. It is maximal during the �rst few periods,
then gradually decreases, becoming zero strictly before the horizon T . The main di¤erence appears in the
determination of the optimal second best �ow of side payment wC (:). Indeed, when h (t) can vary from one
period to the next, the multinational can induce the local �rm to delay the breakaway by accelerating the
technology transfer instead of increasing the �ow of side payments.
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�loss-making phase�over which the joint venture�s net cash �ow, �(ht)� C(h), is negative.

This phase ends at time t+(h) which is de�ned, for any given h > 0, as follows:

t+(h) � min
�
tS; sup

t
ft 2 [0; T ] : �(ht) < C(h)g

�
(9)

Example 1: Assume �(H) = K � (1=
)H
 where K > 0, 0 < 
 � 1 and C(h) = (c=�)h�

where � > 1 and c > 0. Then using equations (7) and (8) we get:

t�S =

�
(�� 1) (
 + 1)

1 + (�� 1) (
 + 1)

�
T; h� =

�
�K

c (�� 1) (
 + 1)

� 1
��


(t�S)



��
 (10)

and

t+ (h�) = min

�
t�S;
� 
c
�K

� 1


(h�)

��




�
: (11)

Thus the cumulative transfer is

h�t�S =

�
�K

c (�� 1) (
 + 1)

� 1
��

�

(�� 1) (
 + 1)
1 + (�� 1) (
 + 1)T

� �
��


(12)

In the rest of the paper, we will illustrate our results with the three following numerical

examples:

h� t�S t+ (h�)

Example 1a
T = 30; 
 = 1; � = 2; c = 1; K = 2

40 20 10

Example 1b
T = 30; 
 = 1

2
; � = 2; c = 1; K = 2

' 5:04 18 2

Example 1c
T = 30; 
 = 1; � = 5

4
; c = 1; K = 0:1

' 39 10 10

2.3 Implementation of the �rst best when the local �rm cannot
break away

Denote by V (h�; t�S) the net pro�t of the joint venture under the �rst-best solution. Let us

assume that the local �rm would form a joint venture with the foreign �rm only if the payo¤

to the owner of the local �rm is at least equal to its reservation level RL. We consider only the

case where RL < V (h�; t�S). Assume there are many potential local �rms. Then the foreign

�rm will o¤er the local �rm the payo¤RL, and keep to itself the di¤erence V (h�; t�S)�RL.

Suppose it is possible to enforce a contract that speci�es that the joint venture will not

be dissolved before the end of the �xed time horizon T . Then the foreign �rm will be able to

implement the �rst best technology transfer scheme that we found above. In the following

sections, we turn to the more interesting case where the local �rm is not bound to any

long-term contract.
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3 Joint venture contracts when the local �rm can break
away

We now turn to the real world situation where the local �rm can break away at any time,

taking with it the technological knowledge that has been transferred, without having to

compensate the multinational. For simplicity, we assume that after the breakaway, the

multinational is unable to produce in the host country. The local �rm can break away at

any time 0 � tB � T and become a stand-alone �rm in the local market, bene�ting from

the cumulative amount of technology transfer up to that date, H (tB). In this section, we

assume the following market failures:

Credit market failure (C1): The local �rm cannot borrow any money, hence the multina-

tional has to bear all the losses of the joint venture during the loss-making phase [0; t+ (h)],

where t+(h) is as de�ned by equation (9) (the multinational �rm is not subject to any credit

constraint). The multinational �rm cannot ask the local �rm to post a bond which the latter

would have to forfeit if it breaks away (the local �rm cannot raise money for such a bond).

Property rights failure (C2): The multinational cannot get any compensation payments

from the local �rm after the breakaway time tB.

Without the credit market failure, the multinational �rm would be able to ask the local

�rm to pay as soon as it receives any technology transfer. Without the property rights

failure, the prospect of having to compensate the multinational would deter the local �rm

from breaking away. Let us make clear the meaning of (C1) and (C2) above by describing

the payo¤ function of the multinational and that of the local �rm.

We assume that the multinational �rm can credibly commit to honor any contract it

o¤ers. This assumption seems reasonable, because multinational �rms operate in many

countries and over a long time horizon, so it has an interest in keeping a good reputation.

Then we can without loss of generality suppose that the multinational o¤ers a contract which

speci�es that it collects all the pro�ts of the joint venture, and pays the local �rm a �ow of

side payments w(t) for all t until the local �rm breakaway.

After the breakaway, if C2 does not hold, the multinational can successfully ask for a

�ow of compensation payment � (t) from the local �rm, to be paid from tB to T . In the rest

of this paper we analyse di¤erent situations where the �ows w(:) and �(:) are constrained.

The total payo¤s of the multinational �rm and of the local �rm are, respectively,

VM �
Z tB

0

[�(H (t))� C(h (t))� w (t)] dt+

TZ
tB

� (t) dt; (13)
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and

VL �
tBZ
0

w (t) dt+

TZ
tB

[�(H (t))� � (t)] dt: (14)

The payo¤ implications of the market failures (C1) and (C2) are described below.

C1: The local �rm cannot borrow: In this case, at all time t, the local �rm�s cumulative

net cash �ow up to time t, denoted by NL(t); must be non-negative. Thus

0 � NL (t) �

8>><>>:
tR
0

w (�) d� if t 2 [0; tB]
tBR
0

w (�) d� +
tR
tB

[�(H (�))� � (�)] d� if t 2 (tB; T ]
(15)

C2: The multinational cannot obtain from the local �rm any compensation payment

after the breakaway time:

� (t) = 0 for t 2 (tB; T ] (16)

The goals of this section are (a) to show that when both constraints (15) and (16) hold

the �rst-best technology transfer scheme is in general not achievable, and (b) to characterize

the second-best technology transfer scheme. In a later section, we will point out that if one

of these two assumptions is completely removed, the �rst-best can be recovered.

3.1 Technology transfer with two market imperfections

We now consider the case where the local �rm can break away, there is no credit market,

and the multinational cannot get any side payment after the breakaway.

Using the constraint that �(t) = 0 and the fact that �(H (t)) � 0, the borrowing con-

straint C1, condition (15), can be simpli�ed to

0 �
tZ
0

w (�) d� for all t 2 [0; tB] : (17)

For simplicity, from this point we assume that the reservation value RL is 0. Then the

participation constraint VL � RL is satis�ed when the borrowing constraint (17) holds.

Then, the program of the multinational can be written as

max
h;tS ;w(:)

VM =

Z tB

0

[�(H (t))� C(h (t))� w (t)] dt (18)

subject to 0 � tS � T; 0 � h � h, the incentive constraint

tB = argmax
t2[0;T ]

�
VL =

Z t

0

w (�) d� + (T � t)�(H(t))

�
(19)
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and the credit constraint (17).

Here H(t) =
R t
0
h(�)d� ; and

h(t) =

�
h if t 2 [0;min (tS; tB)]
0 if t 2 (min (tS; tB) ; T ]

(20)

3.2 The local �rm�s secure payo¤

Let us consider what would happen if during the pro�t-making phase, the multinational �rm

takes 100% of the pro�t and does not make any side transfer to the local �rm. Under this

scenario, clearly the local �rm has an incentive to break away at or before the time tS (after

tS, it has nothing to lose by breaking away). The local �rm wants to choose a breakaway

time tB 2 [0; tS]. Given that w(:) = 0 identically, the payo¤ to the local �rm if it breaks

away at time tB is

V 0
L (h; tB) = (T � tB)�(H(tB)) (21)

where

H(tB) =

�
htB if tB < tS
htS if tB � tS

(22)

Here the superscript 0 in V 0
L indicates that the local �rm�s share of pro�t before the breakaway

time is identically zero. Given (h; tS), the local �rm knows that if it breaks away at time

tS, it will get (T � tS)�(htS). If it breaks away at some earlier time tB < tS, it will get

(T � tB)�(htB). The local �rm must choose tB in [0; tS], to maximize

R(h; tB) � (T � tB)�(htB) where tB 2 [0; tS] (23)

Lemma 1: Given that w(:) = 0 identically (i.e. there is no side transfer from the multina-

tional to the local �rm),

(i) If

(T � tS)�
0(htS)h� �(htS) � 0 (24)

the local �rm will break away at the planned transfer-stopping time tS, and earns the payo¤

(T � tS)�(htS).

(ii) If

(T � tS)�
0(htS)h� �(htS) < 0 (25)

the local �rm will break away at a unique btB(h); strictly earlier than the planned transfer-
stopping time tS; and earn the (secure) payo¤

V L(h) � (T � btB(h))�(hbtB(h)): (26)
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(iii) In both cases, a small increase in h will increase the local �rm�s payo¤ by
�
T � btB(h)��0(hbtB(h))btB(h) >

0 where, in the �rst case, btB(h) = tS, and in the second case, btB(h) satis�ed the interior �rst
order condition:

(T � btB(h))�0(hbtB(h))h� �(hbtB(h)) = 0 (27)

Proof: The function R(h; tB) is strictly concave over (0; tS) ; because

@2R(h; tB)

(@tB)2
= (T � tB)�

00(htB)h
2 � 2�0(htB)h < 0 (28)

Consider the derivative of R(h; tB) with respect to tB;

@R(h; tB)

@tB
= (T � tB)�

0(htB)h� �(htB) (29)

Thus if (T � tS)�
0(htS)h � �(htS) � 0 then, due to the strict concavity of R(h; tB) in tB;

we know (T � tB)�
0(htB)h � �(htB) > 0 for all tB < tS, and it follows that the local �rm

will choose tB = tS. If (T � tS)�
0(htS)h � �(htS) < 0 then R(h; tB) attains its maximum

at some tB < tS. To prove (iii), note that in the case of btB = tS (corner solution), if

after a small increase in h, the corner solution btB = tS remains optimal, then @V L(h)=@h =�
T � btB(h)��0(hbtB(h))btB(h) where btB(h) = tS. In the case of an interior solution, btB(h) < tS,

di¤erentiation of (26) gives

@V L(h)=@h =
�
T � btB(h)��0(hbtB(h))btB(h) (30)

+
�
(T � btB(h))�0(hbtB(h))h� �(hbtB(h))	 dtB

dh

But the term inside the curly brackets f:::g is zero. This concludes the proof.
Remark 3: Strictly speaking, the (secure) pro�t should be written as

V L(h; tS) � (T � btB(h; tS))�(hbtB(h; tS))): (31)

However, this formalism is quite unnecessary.

Example 2: Use the speci�cation of example 1. Independently of the value of h, if tS > 


+1

T

;condition (25) is satis�ed, and the local �rm will break away at btB = 


+1

T < tS . If

tS � 


+1

T , condition (24) is satis�ed, and the local �rm will break away at btB = tS (see

Appendix 2).

Using the parameters of example 1a, the interior-breakaway condition (25) becomes tS >

15. In Figure 1, the curve V (h�; tS); where h� = 40; shows that the multinational payo¤

under the �rst-best scenario is single-peaked in tS, and its optimal tS is t�S = 20: Now, given

h� = 40 and t�S = 20, under the imperfect property rights regime, the local �rm can break
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away at time tB and earns a payo¤ R(h�; tB). We �nd that R(h�; tB) is non-monotone in

tB: if the local �rm (�rm L) breaks away too early, it has too little knowledge capital to

take away. If it breaks away too late, it has a lot of knowledge capital to take away, but too

little remaining time before the end of the time horizon. The local �rm will break away atbtB (h�) = 15. This shows that the �rst-best scheme in example 1a, (h�; t�S) = (40; 20) ; is not
implementable (in the absence of any side payment).

Fig. 1: Case where the local �rm breaks away before the �rst best transfer-stopping time.

(btB (h�) < t�S)

(T = 30; 
 = 1, � = 2, c = 1; K = 2; h = h� = 20).

Using the parameters of example 1c condition (24) becomes tS � 15. This shows that the
�rst-best scheme in example 1c, (h�; t�S) = (39; 10) is implementable (but the multinational

does not get the pro�t that it would get if the joint venture were a wholly owned subsidiary).

The local �rm will break away at time btB (h�) = t�S = 10.

10 20 30

­1000

0

1000

ts

V(h*,ts)

R(h*,ts)

V(h*,ts)­R(h*,ts)

t*s= t=15

Fig. 2: Case where the local �rm breaks away at the �rst best transfer-stopping time

(btB (h�) = t�S = 10).

(T = 30; 
 = 1, � = 5
4
, c = 1; K = 0:1; h = h� ' 39)

Figure 2 illustrates the case where the local �rm would prefer that the transfer stops

later than the �rst-best stopping-time, so that when it breaks away it will get a higher

stock of knowledge. The local �rm�s preferred transfer stopping-time is t = 15. But, since

the multinational chooses to stop the technology transfer at t�S = 10, the local �rm has an

incentive to break away at the same time.
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3.3 Incentive compatible contract under credit constraint

Given that the local �rm must have non-negative cash �ow at all time, and that, in the

absence of transfer payment from the multinational, it can secure the pro�t V L(h) = (T �btB(h))�(hbtB(h)) by breaking away at an optimal day, the multinational �rm must design a

contract (with transfer payments) that maximizes its payo¤, subject to the constraint that

the local �rm earns at least V L(h).

In the absence of side payments, if the local �rm stays with the joint venture until a

later date tCB > btB(h), it loses an amount V L(h) � (T � tCB)�(ht
C
B). (Here, the superscript

c in tCB indicates that it is induced by a contractual �ow of side payments, as will be seen

below.)Therefore, if the multinational wishes to induce the local �rm to break away no

sooner than tCB, it has to pay the local �rm a compensation F equal to the loss of delaying

the breakaway, V L(h)� (T � tCB)�(ht
C
B).

More precisely, given any desired date tCB > btB(h), we can show that there exists a

multiplicity of �ows of side payments wC (:) (see Appendix 4) such that (a) the local �rm,

responding to such incentives, will choose to break away at time tCB and (b) the total side

payment is minimal with respect to the incentive constraint and the borrowing constraint.

All these solutions satisfyZ btB(h)
0

wC (t) dt = 0 and
Z tCB

btB(h)w
C (t) dt+ (T � tCB)�(ht

C
B) = V L(h) (32)

These �ows have the same present value. The only di¤erence between the various incentive-

compatible �ows wC (:) is how the �ow is spread out between btB(h) and tCB. The intuition is
as follows.

Firm M (the multinational) can o¤er to pay �rm L (the local �rm) a lump sum F at

a contractual time tCB if L actually breaks away at time t
C
B or at any later date, so that

�rm L�s total payo¤ is F+ (T � tCB)�(ht
C
B). If L breaks away at any time tB before t

C
B,

it will simply get the payo¤ R(h; tB) = (T � tB)�(htB). Since L can always ensure the

payo¤ V L(h) by breaking away at time btB(h), �rm M�s o¤er would be accepted only if F+

(T � tCB)�(ht
C
B) � V L(h).

Alternatively, instead of giving the lump sum F at the time tCB, �rm M can spread

the payment of this total amount over time, from time btB(h) to time tCB, and still ensure
that �rm L has no incentive to break away before tCB. Recall that F = V L(h) � R(h; tB),

and that R(h; tB) is decreasing in tB for all tB > btB(h). So, for any sequence of dates
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ft1 < t2 < t3 < ::: < tng where btB(h) < t1 < tn = tCB, it holds that

F = [V L(h)�R(h; t1)]

+ [R(h; t1)�R(h; t2)] + :::+ [R(h; tn�1)�R(h; tn)] (33)

� F1 + F2 + ::+ Fn (34)

where each Fi is positive. FirmM can then o¤er the following contract to �rm L: I will pay

you Fi at time ti if up to time ti you are still part of the joint venture. Clearly, breaking

away at any time t � tCB does not give �rm L any advantage in comparison to staying in the

joint venture until time tCB.

The above argument supposes that payments are made in small amounts at a large

number of discrete points of time. We can take the limit as the size of these time intervals

go to zero, and n goes to in�nity. This yields a continuous �ow wC(t) such that wC(t) =

�dR(h;t)
dt

> 0 for t 2 (btB(h); tCB]. Remark that this �ow is increasing in t because R(h; t) is
concave in t, dw

C(t)
dt

= �d2R(h;t)
dt2

> 0.

All the above side transfer payments schemes have the same e¤ect on the local �rm�s quit-

ting time. We can therefore focus, without loss of generality, on the following particular �ow

of side payments (which concentrates at a point of time, i.e. the �ow becomes a mass). The

multinational o¤ers to pay the local �rm a lump sum amount F � 0 if the latter breaks away
at a speci�ed time tCB . Since the multinational does not want to overpay the local �rm, the

lump sum F will be just enough to make the local �rm indi¤erent between (a) breaking away

at btB(h) thus earning the secured pay-o¤ V L(h), and (b) breaking away at the contractual

breakaway time tCB, thus earning F +
�
T � tCB

�
�(htCB). Thus F +

�
T � tCB

�
�(htCB) = V L(h).

Therefore the side payment written in the contract is

ew (tB) = � 0 if tB < tCB
V L(h)�

�
T � tCB

�
�(htCB) if tB = tCB

(35)

Let us now make use of the incentive constraint (35) to determine the multinational�s

optimal choice of both h and tCB to maximize its own payo¤:

eVM =

Z tCB

0

[�(ht)� C(h)] dt+
�
T � tCB

�
�(htCB)� V L(h) (36)

The �rst order condition with respect to tCB is

@ eVM
@tCB

= (T � tCB)h
C�0(hCtCB)� C(hC) = 0 (37)

This condition has the same form as the �rst best condition (see equation (7)), except of

course the value h is in general not the same. The �rst order condition with respect to h is
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@ eVM
@h

=
@V

@h
� @V L(h)

@h
= 0 (38)

or Z tCB

0

�
��0(hC�)� C 0(hC)

�
d� + (T � tCB)�

0 �hCtCB� tCB (39)

�
�
T � btB(hC)��0(hCbtB(hC))btB(hC) = 0

Example 3: Using the parameters of example 1b, btB (h) = 10; then V L(h) = 40
p
10h.

0 2 4 6 8 10 12 14
0

200

400

600

800

h

V(h,t*s)

V
V(h,t*s)­V

h*

_L(h)
_L(h)

Fig. 3: The secure value of the local �rm and the pace of technology transfer.

(T = 30; 
 = 1, � = 1
2
, c = 1; K = 2; t = t�S = 18)

Figure 3 illustrates that, given the �rst best transfer-stopping time t�S = 18, if the local

�rm can secure V L(h) (which is increasing in h), the multinational has an incentive to reduce

the pace of technology transfer to h ' 3:93 lower than h� ' 5:04.

3.4 Comparison with the �rst best

In this sub-section, we show that the second-best scheme described above implies that i) the

multinational will choose a slower transfer rate hC < h� and ii) the cumulative technology

transfer is also lower. We prove this for the general case (where the pro�t function �(H) is

concave), and provide an explicit solution for the case of a linear pro�t function �(H) = KH,

K > 0 in Appendix 3.

First, let us show that the two equations (37) and (39) yield (hC ; tCB) with h
C < h� and

tCB > t�S, where (h
�; t�S) is the solution of the system of �rst order conditions in the �rst best

case studied in Section 2. For easy reference, we reproduce that system below:

@VM
@h

=

Z t�S

0

[��0(h��)� C 0(h�)] d� + (T � t�S)�
0 (h�t�S) t

�
S = 0 (40)
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@VM
@tS

= (T � t�S)h
��0(ht�S)� C(h�) = 0 (41)

To show that hC < h� and tCB > tS, we use the following method. Let � be an indicator,

which can take any value between zero and 1. Consider the following system of equations:

W1 �
Z t

0

[��0(h�)� C 0(h)] d� + (T � t)�0 (ht) t (42)

��
�
T � btB(h)��0(hbtB(h))btB(h) = 0

W2 � (T � t)h�0(ht)� C(h) = 0 (43)

Clearly, if � = 1, the system (42)-(43) is equivalent to the system of equations (37)-(39) and

thus yield (h; t) = (hC ; tCB), and if � = 0, the system (42)-(43) is equivalent to the system of

equations (41)-(40) and thus yield (h; t) = (h�; t�S). For an arbitrary � 2 [0; 1], the solution
of the system is denoted by

�eh(�);et(�)�.
We now show that eh(�) is decreasing in � and et(�) is increasing in �. Let W11 be the

partial derivative of W1 with respect to h, W22 be the partial derivative of W2 with respect

to t, W12 be the partial derivative of W1 with respect to t, etc. Then we have the following

system of equations: �
W11 W12

W21 W22

� �
deh
det
�
=

�
�W1�

0

�
d� (44)

Then
deh
d�
=

�W1�W22

W11W22 �W21W12

(45)

det
d�
=

W1�W21

W11W22 �W21W12

(46)

Now, by the second order condition, W11W22 �W21W12 > 0: Hence deh=d� is negative if and
only if �W1�W22 < 0

NowW1� = �
�
T � btB(h)��0(hbtB(h))btB(h) < 0, and by the second order conditionW22 <

0. This proves that eh(�) is decreasing in �.
We now show that W21 < 0, where W21 = �C 0 + (T � t)(ht�00 + �0).Using (43),

�C 0 + (T � t)�0 = �C 0 + C(h)

h
< 0 (47)

where the strict inequality follows from the assumption on C(h): average cost is smaller than

marginal cost. It follows that W21 < 0. This proves that et(�) is increasing in �.
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Let us compare the total quantity of technology transfer in the �rst best case H� � h�t�S

and the quantity in the second best case HC � hCtCB. Let eH (�) � eh(�)et(�). Then
d eH (�)
d�

=
deh(�)
d�

� et(�) + det(�)
d�

� eh(�): (48)

Using (45) and (46)
d eH
d�

=
�W1�

W11W22 �W21W12

hetW22 � ehW21

i
: (49)

Since �W1� > 0 and W11W22�W21W12 > 0, d eH=d� is negative if and only if hetW22 � ehW21

i
is negative. This term can be rewritten as

etW22 � ehW21 = eH h��0 + (T � et)eh�00i� eh h(T � et)� eH�00 + �0
�
� C 0

i
(50)

Then etW22 � ehW21 = eh �C 0 � (T � et)�0 � et�0� : (51)

Using assumption A3 (�0 (H) +H�00 (H) > 0 for all H > 0) we have

1et
Z et
0

h
��0(eh�)i d� � et�0( eH): (52)

Using (42) we obtain

et�0( eH) � C 0(eh)� (T � et)�0 � eH�+ �et
h
T � btB(eh)i �0(ehbtB(eh))btB(eh): (53)

Then, if � > 0, et�0( eH) > C 0(eh) � (T � et)�0 � eH� : Using this inequality and (51), we getetW22 � ehW21 < 0:This proves that HC < H�.

The following proposition summarizes the �nding of this section:

Proposition 2: To counter the local �rm�s opportunistic behavior, the multinational �rm

designs a second best scheme that involves a slower rate of technology transfer (thus reducing

the local �rm�s secure payo¤ ) and a lower total cumulative technology transfer. It also o¤ers

side payments to the local �rm to delay the breakaway time. The side payments can be in the

form of a continuous �ow that increases with time, or a lump sum payable at a contracted

breakaway time.

Example 4: Use the parameters of example 1a.
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Fig. 4: The secure value of the local �rm and the pace of technology transfer.

(T = 30; 
 = 1, � = 2, c = 1; K = 2)

Figure 4 shows that the maximum joint pro�t is smaller in the second-best scheme (see

the two curves at the top of �gure 4, from the dash curve to the thick curve). To counter

the local �rm�s incentive to quit early (at btB (h�) = 10), the multinational �rm reduces

the pace of technology transfer from h� = 40 to hC ' 16:8 (see the two curves at the

bottom of �gure 3, from the dash curve to the thick curve) while increasing the technology

transfer stopping time from t�S = 20 to t
C
B ' 25:8: In this case, the multinational �rm gets

V
�
hC ; tCB

�
� V L

�
hC
�
:

4 Implementation of �rst-best technology transfer with
one market imperfection

In this section, we brie�y indicate that if we relax one of the two assumptions C1 or C2,

there exists a contract which implements the �rst best technology transfer.

Case A: Perfect credit market and no compensation payment after the breakaway

Assume that the local �rm is not liable to make compensation payments after the break-

away time, i.e. C2 holds: � (t) = 0 for all t between tB and T . The multinational asks the

local �rm to pay it up-front the value of the joint venture, V (h�; t�S), and gives the local �rm

the right to collect at each point of time t in (0; t�S) the net cash �ow �(h�t)�C(h�). Hence
the local �rm�s breakaway at time t�S as it has to solve the �rst best program.

Case B: Imperfect credit market and compensation payment must be made after

the breakaway
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In this case, the multinational pays the losses from 0 to t+ (h),

t+(h)Z
0

[�(h�t)� C(h�)] dt < 0; (54)

and gives the local �rm the right to collect the positive cash �ow �(h�t) � C(h�) for all

t between t+ (h) and t�S. In return, the local �rm must, during the phase [t+(h); T ] , pay

gradually to the multinational the total amount V (h�; t�S)�
t+(h)R
0

[�(h�t)� C(h�)] dt in such

a way that the local �rm�s net cash �ow is non-negative at each point of time.

5 The E¤ect of a Fall in Transfer Costs on the Intensity
of Technology Transfer

In this section, we obtain some comparative static results on parametric changes on the

technology-transfer cost function, explain their e¤ects on the duration and the pace of tech-

nology transfer. The parametric changes may be interpreted as changes in transfer costs of

a given technology, or as a comparison of di¤erent transfer costs associated with di¤erent

technologies. Transfer costs may fall because of an exogenous change in communication

technology. Does a fall in transfer costs a¤ect the �rst-best and second-best intensity of

transfer in the same way? In this section, we show how an exogenous fall in transfer costs

may impact the intensity of technology transfer, both under the �rst-best scenario (perfect

property rights) and under the second-best scenario. For simplicity, we will assume the

pro�t function is linear, �(H) = KH, and consider two di¤erent interpretations of a �fall in

transfer cost�. We call these Type I and Type II fall in transfer cost, respectively. In both

cases, the upper-bound on feasible transfer rate is denoted by h.

5.1 Type I fall in transfer costs

Consider the convex transfer cost function C(h) = b(h=h)� where � > 1 and b > 0. Then

C(0) = 0 and C(h) = 1. An increase in � is called a Type I fall in transfer costs. It has two

e¤ects. First, C(h) becomes lower for any h 2
�
0; h
�
. We call this the �cost-saving e¤ect�.

Second, when � increases, the marginal cost of transfer becomes lower for small h (near

h = 0) but it becomes higher for h near the upper-bound h.9 We call this the �convexity-

9Since C 0(h) = �h(h=h)��1 we get

d lnC 0(h)

d�
=
1

�
+ ln

�
h

h

�
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modifying e¤ect�. Intuitively, the �rst e¤ect favors an increase in h, i.e., a speeding-up of

technology transfer, and the second e¤ect favors an increase in h if h is small, and a decrease

in h if h is large. What is the net e¤ect on h? We can show that the answer depends crucially

on the size of two exogenous variables, namely the maximum feasible transfer rate h, and

the length of the time horizon, T . We obtain the following results (the proofs of which are

in Appendix 5).

Result A1 (on transfer rate)

In the �rst-best scenario, a Type I fall in transfer cost (an increase in �) will result in

a lengthening of the transfer phase, [0; t�S] : It will also result in an increase of transfer rate

(i.e., an increase in h) in the case where h or T are small enough so that hT � b=K).

However, in the case where hT > b=K, an increase in � will result in an increase in h only

if the existing � is greater than a threshold level e�; if � < e�, a small increase in � will

result in a decrease in h.10

The intuition behind Result 1 is as follows. If hT is small, then the optimal h� is small,

therefore the �convexity-modifying e¤ect�works in the same direction as the �cost saving�

e¤ect. If hT is large, then the optimal h� is large, therefore �convexity-modifying e¤ect�and

�cost saving�e¤ect work in opposite directions. The cost saving e¤ect is stronger only if �

is large enough.

Result A2 (on �rst-best accumulated transfer)

The e¤ect of a Type I fall in transfer cost on total transfer, h�t�S, depends on the size of

the maximum feasible accumulated transfer hT . If hT � b=K, then h�t�S will increase with

�. If hT > b=K, an increase in � will lead to an increase in h�t�S only if the existing � is

greater than a threshold level b� < e�; if � < b�, a small increase in � will lead to a decrease
in h�t�S.

For � > e�, an increase in � increases both h� and t�S (from Result A1 above) so clearly

h�t�S increases. Given hT > b=K, if � 2 (b�; e�) the t�S-lengthening e¤ect of a small increase
in � outweighs the h�-decreasing e¤ect of a small increase in �, therefore h�t�S increases,

while if � < b� the latter e¤ects dominates, so h�t�S decreases.

Result A3 (on the second-best case)11

(i) In the second-best scenario, a Type I fall in transfer cost (i.e., an increase in �) will

increase the �contractual�breakup time tCB.

is positive for h near h and negative for h near zero.
10The threshold level is dependent (in fact increasing) in hT . Note also that we assume an interior solution,

h� < h, for which it is necessary and su¢ cient that 2�� 1 > hTK=b.
11We restrict attention to interior second-best solutions, hC < h. A su¢ cient condition for this is hTK=b <

2�� 1.
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(ii)The ratio tCB=t
�
S is greater than unity; it decreases if � increases.

(iii) The ratio hC=h� is smaller than unity; it increases if � increases.

(iv) If hT � b=K, then, hC increases with �.

(v) If hT > b=K, there exists e�c > 1 such that hC increases with � for � � e�c.
(vi) If hT > 1

2�
p
2
b=K, there exists � such that hC decreases with � for � 2 (1; �) and

increases with � for � > �.

5.2 Type II fall in transfer costs

In the example considered above, it was assumed that C(h) = b(h=h)� where � > 1 and

b > 0. Clearly a decrease in b also represents a fall (but of a di¤erent type) in transfer costs.

When b decreases, this reduces transfer cost at any given h, and unambiguously reduces the

marginal cost of transfer, regardless of whether h is near zero or near h.

When b decreases, there are two e¤ects on the cost function. First, for h given, the cost

of transfer decreases. This e¤ect tends to favor an increase in h. Second, the cost curve

becomes less convex, as marginal cost falls. This is the "convexity or curvature" e¤ect. This

convexity e¤ect favors an increase in h. In contrast to the previous example where there

were two e¤ects that could go in opposite directions, here the two e¤ects are going in the

same direction. This explains why our results (presented below) for a Type II fall in transfer

costs are not ambiguous. We obtain the following result (see Appendix 5).

Result B: In both the �rst-best and second-best scenarios, a Type II fall in transfer costs

(a decrease in b) will not a¤ect the duration of the transfer ( t�S and t
C
B). It results in an

increase of transfer rate (i.e., an increase in h� and hC) and an increase of the amount of

technology transferred (h�t�S and h
CtCB).

6 Concluding Remarks

Our model seems to be the �rst theoretical formulation of the problem of choice of the pace

of technology transfer from a multinational �rm to a joint venture in a host country, with

special emphasis on the time-compression costs of technology transfer. We have shown that

when the host country cannot enforce joint venture contract, the multinational will have

an incentive to reduce both the pace of technology transfer and the cumulative amount of

technology transfer even if the duration of the transfer is longer. In other words, transfer

is both reduced and delayed. The sign of the comparative statics of a �fall in technology-

transfer costs�on the pace of transfer (both in the �rst-best and second-best scenarios) is
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shown to depend on the life-span of the product, T , and the maximum feasible speed of

transfer, h.

A major implication of our model is that if the host country�s legal system is not su¢ -

ciently strong to prevent breakaway by local �rms, the multinational will reduce and delay

the technology transfer. To the extent that technology transfers in one industry have positive

spillover e¤ects to other industries in the host country, this country loses out by its inability

to enforce contracts.

While the motive of our study is to shed light on technology transfer in a joint-venture,

clearly our model can be applied to other situations involving the stability of relationships,

such as employer-employee contracts, where the employee can learn from working in the �rm

and leave the �rm once he has accumulated su¢ cient human capital.

Appendices

Appendix 1: Proof of Proposition 1

The choice set 
 de�ned by 
 =
�
(h; tS) : 0 � h � h and 0 � tS � T

	
is a compact set.

The objective function (6) is continuous in the variables h; tS over the compact set 
. By

Weierstrass theorem, there exists a maximum, which we denote by (h�; t�S).

Next, we show that the maximum must be in the interior of the admissible set 
. Since

�(0) = C(0) = 0 and T�0(0) > C 0(0) � 0, the function V (h; tS) is strictly positive for some
positive h su¢ ciently close to zero, for all tS. Since V (0; tS) = 0 and V (h; 0) = 0, it follows

that the optimum must occurs at some t�S > 0 and h� > 0. To prove (i) and (ii) above, it

remains to show that an optimum cannot occur at any point on the line tS = T nor on the

line h = h. To take into account the constraints T � tS � 0 and h� h � 0, we introduce the
associated Lagrange multipliers � � 0 and � � 0. The Lagrangian is

L =

Z tS

0

[�(ht)� C(h)] dt+ (T � tS)� (htS) + �(T � tS) + �(h� h) (A.1)

The �rst order conditions are

[T � t�S] �
0 (h�t�S)h

� � C(h�)� � = 0, (A.2)

�(T � t�S) = 0; � � 0; T � t�S � 0;

Z tS

0

[t�0(h�t)� C 0(h�)] dt+ (T � t�S)�
0 (h�t�S) t

�
S � � = 0, (A.3)

�(h� h) = 0; � � 0; h� h� � 0
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Since C(h�) > 0, condition (A.2) implies that T � t�S > 0. (The intuition behind this result

is simple: there is no point to transfer technology near the end of the time horizon T ). Thus

� = 0 and hence (A.2) reduces to

(T � t�S)�
0 (h�t�S) =

C(h�)

h�
(A.4)

To show that h� < h, let us suppose that h� = h. Then, using (A.4), and h� = h, condition

(A.3) gives

C 0(h)t�S �
C(h)

h�
t�S � C 0(h)t�S �

C(h)

h
t�S + � (A.5)

=

Z tS

0

t�0(ht)dt � �0(0)

Z tS

0

tdt =
�0(0)(t�S)

2

2

which violates assumption A2.12 Thus h� < h. This concludes the proof that (h�; t�S) is in

the interior of 
.

It follows that Z tS

0

[t�0(h�t)] dt = C 0(h�)t�S � (T � t�S)�
0 (h�t�S) t

�
S (A.6)

=

�
C 0(h�)� C(h�)

h�

�
t�S

It remains to verify the second order conditions. Recall that the FOCs at an interior

maximum is

V1 � VtS = (T � tS)�
0 (htS)h� C(h) = 0 (A.7)

V2 � Vh =

Z tS

0

[t�0(ht)] dt+ (T � tS)�
0 (htS) tS � tSC

0(h) = 0 (A.8)

The SOCs are

V11 = ��0 (htS)h+ (T � tS)�
00 (hts) (h)

2 < 0 (A.9)

V22 =

Z tS

0

�
t2�00(ht)

�
dt� tSC

00(h) + (T � tS)�
00 (htS) (tS)

2 < 0 (A.10)

� � V11V22 � (V12)2 > 0 (A.11)

Clearly V11 < 0 and V22 < 0. It remains to check that � > 0 at (t�S; h
�). Note that

V12 = (T � tS)�
00 (htS)htS + [(T � tS)�

0 (htS)� C 0(h)] = (A.12)

12Note that we can replace assumption A2 by the following. Assumption A2�:

C 0(h)� C(h)
h�

>
�0(0)t�S
2
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(T � tS)�
00 (htS)htS +

�
C(h)

h
� C 0(h)

�
< 0 (A.13)

(making use of (A.4)).

Consider the curve tS =  (h) de�ned by (A.7) in the space (h; tS) where h is measured

along the horizontal axis. The slope of this curve is

 0(h) =
dtS
dh

j = �
V12
V11

< 0 (A.14)

Along this curve

(T � tS)�
0 (htS) =

C(h)

h
(A.15)

as h! 0, tS ! T , and as tS ! 0, h! eh where eh is de�ned by T�0(0) = C(eh)eh .

Next consider the curve tS = �(h) de�ned by (A.8). The slope of this curve is

�0(h) =
dtS
dh

j�= �
V22
V12

< 0 (A.16)

Along this curve Z tS

0

�
t�0(ht)

tS�0(0)

�
dt+ (T � tS)

�0 (htS)

�0(0)
=
C 0(h)

�0(0)
(A.17)

As h ! 0, tS ! 2T , and as tS ! 0,h ! bh where bh is de�ned by T�0(0) = C 0
�bh� : Since

C 0(h) > C(h)=h, it follows that bh < eh. Thus the curve �(h) must intersect the curve  (h)
from above (at least once). At that intersection, the slope of the �(h) curve must be more

negative (i.e. steeper) than the slope of the  (h) curve, that is

�V22
V12

< �V12
V11

(A.18)

hence V11V22 > (V12)
2.Thus the SOC is satis�ed at that intersection.

Finally, we can show that under assumption A3, the two curves �(h) and  (h) intersect

exactly once, that is, we show that � > 0 whenever the FOCS are satis�ed. It is easy to see

that A3 implies that t�0 (ht) is an increasing function of t.

We note the following facts. First,

(V12)
2 = [(T � tS)�

00 (htS)htS]
2
+

�
C(h)

h
� C 0(h)

�2
+ 2(T � tS)�

00 (htS)htS

�
C(h)

h
� C 0(h)

�
(A.19)

Secondly,

V11V22 >
�
(T � tS)�

00 (htS) (h)
2 � �0 (htS)h

	
(A.20)

�
�
(T � tS)�

00 (htS) (tS)
2 � C 00(h)tS

	
(A.21)
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= [(T � tS)�
00 (htS)htS]

2
+ C 00(h)�0 (htS)htS

� (T � tS)�
0 (htS)�

00 (htS)h(tS)
2 � C 00(h)�00 (htS) tS(h)

2 (T � tS)

= [(T � tS)�
00 (htS)htS]

2 � (T � tS)�
00 (htS)htS [�

0 (htS) tS + hC 00(h)]

+C 00(h)�0 (htS)htS

Hence

� � � (T � tS)�
00 (htS)htS

�
�0 (htS) tS + hC 00(h)� 2

�
C 0(h)� C(h)

h

��
(A.22)

+C 00(h)�0 (htS)htS �
�
C(h)

h
� C 0(h)

�2
(A.23)

Using the implication of assumption A1 stated in (3), which can be written as hC 00(h) >�
C 0(h)� C(h)

h

�
, we have

� >

��
C 0(h)� C(h)

h

�
� (T � tS)�

00 (htS)htS

�
(A.24)

�
�
�0 (htS) tS �

�
C 0(h)� C(h)

h

��
: (A.25)

It remains to show that �0 (htS) tS >
�
C 0(h)� C(h)

h

�
. With (A.6), we know that�

C 0(h�)� C(h�)

h�

�
t�S =

Z tS

0

[t�0(h�t)] dt: (A.26)

If A3 holds, t�0(h�t) is increasing in t (remark 1). Then �0 (htS) tS >
R tS
0
[t�0(h�t)] dt :We

conclude that � > 0.

Appendix 2: The local �rm�s optimal breakaway time

Consider the isoelastic pro�t function �(H) = (1=
)H
 where 0 < 
 < 1. Then equation

(27) gives a unique btB(h) that is independent of h :
(T � tB)H


�1h =
1



H
 (A.27)

so

H


�
T

tB
� 1 + 





�
= 0 (A.28)

Thus btB = 


1 + 

T: (A.29)

Appendix 3: The incentive compatible contract when �(H) is linear
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The �rst order condition ((37) and (39))of the program can be rewritten as

K(T � tCB)h� C (h) = 0; (A.30)

K

�
tCB
�2
2

� tCBC
0(h) +K(T � tCB)t

C
B �K

T 2

4
= 0: (A.31)

Equivalently,

K(T � tCB)h� C (h) = 0; (A.32)

K

�
tCB
�2
2

+ tCB

�
C (h)

h
� C 0(h)

�
�K

T 2

4
= 0: (A.33)

Replacing C (h) = c
�
h�, we have h

K(T � tCB)�
c

�
h��1

i
h = 0; (A.34)

K

�
tCB
�2
2

� ctCB

�
1� 1

�

�
h��1 �K

T 2

4
= 0: (A.35)

If h > 0

�K(T � tCB) = ch��1; (A.36)

K

�
tCB
�2
2

� ctCB

�
1� 1

�

�
h��1 �K

T 2

4
= 0: (A.37)

Or,

�K(T � tCB) = ch��1; (A.38)

K

�
tCB
�2
2

� tCB [�� 1] (T � tCB)�K
T 2

4
= 0: (A.39)

The solution is:

tCB =
�� 1 +

q
(�� 1)2 + �� 1=2
2�� 1 T; (A.40)

�K(T � tCB) = c
�
hC
���1

: (A.41)

The contractual breakaway time is

tCB =
�� 1 +

p
(�� 1)2 + (�� 0:5)
2�� 1 T > t�S =

2(�� 1)
2�� 1 T (A.42)

This implies that

T � tCB
T

=
��

p
(�� 1)2 + (�� 0:5)
2�� 1 � �

2�� 1 > 0 (A.43)
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where � > 0 and

�� 1 < 0 (A.44)

The transfer rate is

hC =

�
�K(T � tCB)

c

�1=(��1)
=

�
�K�T

(2�� 1)c

�1=(��1)
< h� (A.45)

because � < 1.

The optimal lump sum F is

F �� = V L(h)�
�
T � tCB

�
�(hCtCB) = (A.46)�

T � btB(hC)��(hCbtB(hC))� �T � tCB
�
�(hCtCB) (A.47)

To prove that F �� > 0; it su¢ ces to show that btB(hC) < tCB . Using Lemma 1, part (i),

we know that btB(hC) < tCB if (T � tCB)�
0(hCtCB)h

C � �(hCtCB) < 0. Since � is linear, this

condition reduces to

(T � tCB)h
C � tCBh

C < 0 (A.48)

i.e.

T < 2tCB (A.49)

This condition is satis�ed, because, from (A.42)

tCB
T
=
�� 1 +

p
(�� 1)2 + (�� 0:5)
2�� 1 >

1

2
(A.50)

where the strict inequality follows from

2
p
(�� 1)2 + (�� 0:5) > 1 (A.51)

i.e.

4
�
(�� 1)2 + (�� 0:5)

�
> 1 (A.52)

which is true because � > 1.)

Appendix 4: Properties of side transfer schemes

Consider a given contractual breakaway time tCB with t
C
B > btB (h), where btB (h) is the

�default breakaway time� found in Lemma 1, i.e, the time the local �rm would choose to

break away in the absence of the �ow w(:). Given tCB, the multinational will choose the

minimal total �ow of side payment that satis�es the incentive constraint, the participation
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constraint and the borrowing constraint. Formally, the multinational �nds a function w(:)

that solves:

min
w(:)

"Z tCB

0

w (t) dt

#
(A.53)

such that (a) the �ow induces the local �rm to choose tCB, i.e. such that

tCB = argmax
tB

�
VL =

Z tB

0

w (t) dt+ (T � tB)�(H(tB))

�
(A.54)

and (b) the side payment at any time t is non-negative, i.e.

0 �
tZ
0

w (�) d� if t 2
�
0; tCB

�
: (A.55)

Let wC (:) denote a solution of this program.(We allow the function w (t) to have a mass at

isolated points.)

Lemma 2: A �ow of side payments wC (:) is optimal if and only if the following conditions

are satis�ed.

(a) the local �rm receives no payment prior to its �default breakaway time� btB(h):Z btB(h)
0

wC (t) dt = 0; (A.56)

(b) the sum of the accumulated side payments and the local �rm�s stand-alone pro�t after

tCB just equals its secured pro�t V L(h) :Z tCB

0

wC (t) dt+ (T � tCB)�(ht
C
B) = (T � btB(h))�(hbtB(h)) � V L(h) (A.57)

(c) and, for any time t where btB (h) � t � tCB, the total payo¤ to the local �rm is inferior

to its secured pro�t V L(h):

0 �
Z t

btB(h)w
C (�) d� � (T � btB(h))�(hbtB(h))� (T � tB)�(htB) (A.58)

Proof:

(i) Proof of su¢ ciency: It is easy to verify that when wC (:) satis�es conditions (A.56),

(A.57) and (A.58) it is a solution of (A.53).

(ii) Proof of necessity: Consider a solution of (A.53). We show that it must satisfy

conditions (A.56), (A.57) and (A.58).

To show the necessity of condition (A.57), suppose that wC (:) does not satisfy condition

(A.57). If the left-hand side of (A.57) is strictly smaller than V L(h), the local would not
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choose tCB and hence the incentive constraint (A.54) is violated. If the left-hand side of (A.57)

is strictly greater than V L(h), then the multinational can reduces it costs by o¤ering less

side payments.

Next, we show the necessity of condition (A.58). If wC (:) does not satisfy the left

inequality of condition (A.58) then condition (A.55) is not satis�ed. If wC (:) does not

satisfy the right inequality part of condition (A.58), then there exists etB within the interval�btB (h) ; tCB� such thatZ etB
btB(h)w

C (t) dt > (T � btB(h))�(hbtB(h))� (T � etB)�(hetB) (A.59)

From the incentive constraint (A.54), from the local �rm�s point of view, by de�nition of tCB,etB does not dominate tCB, i.e.Z tCB

etB wC (t) dt � (T � etB)�(hetB)� (T � tCB)�(H(t
C
B)) (A.60)

Adding inequalities (A.59) and (A.60) we haveZ tCB

0

wC (t) dt+ (T � tCB)�(H(t
C
B)) >

Z btB(h)
0

wC (t) dt+ (T � btB(h))�(hbtB(h)) (A.61)

Thus wC (:) fails to minimize the total �ow of side payments
R tCB
0
wC (t) dt.

Finally, we show the necessity of (A.56). Suppose that wC (:) does not satisfy condition

(A.56), i.e. Z btB(h)
0

wC (t) dt > 0; (A.62)

Using the incentive constraint (A.54), we obtainZ tCB

0

wC (t) dt+ (T � tCB)�(H(t
C
B)) �

Z btB(h)
0

wC (t) dt+ (T � btB (h))�(hbtB (h))
> (T � btB (h))�(hbtB (h)) (A.63)

This implies that wC (:) does not minimize the total �ow of side payments
R tCB
0
wC (t) dt.

Appendix 5: E¤ects of reduced transfer cost on �rst-best and second-best trans-

fer schemes

Proof of Results A1-A2: For the cost function C(h) = b(h=h)� where � > 1 and b >

0, consider an increase in �. The �rst-best FOCs give (K=b)(T � t�S) = h��1=(h)� and

(T � t�S)(�� 1) = t�S=2. Hence
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0 < t�S =

�
1� 1

2�� 1

�
T

If hTK=b < 2� � 1 (condition for an interior solution), the optimal quantity of knowledge
transferred at t � t�S is

h�(�) = h

�
hTK=b

2�� 1

� 1
��1

< h

Then

ln(h�=h) =
1

�� 1 ln
�

1

2�� 1

�
+

1

�� 1 ln
�
hTK=b

�
(A.64)

The �rst term on the RHS of (A.64) is increasing in � :

d

d�

�
�1
�� 1 ln (2�� 1)

�
=

1

(�� 1)2
�
ln(2�� 1)� 1 + 1

(2�� 1)

�
> 0

because lnx � 1 + (1=x) > 0 for all positive x 6= 1.(Recall: let f(x) be a strictly concave
function, f(x) � f(q) > f 0(x)(x � q) for x 6= q; take f(x) = lnx and consider x 6= q = 1,

then, applying the above inequality we get lnx � 1
x
(x� 1) = 1 � 1

x
). The second term on

the RHS of (A.64) is increasing in � if and only if ln
�
hTK=b

�
< 0. So the RHS of (A.64) is

increasing in � if hTK=b < 1. If hTK=b > 1 then

d

d�
ln(h�=h) =

1

(�� 1)2
�
ln(2�� 1)� 1 + 1

(2�� 1) � ln
�
hTK=b

��
which is equal to zero at a unique �, say e� > 1.
By a similar argument, if hTK=b � 1; then the total cumulative technology transfer

H�(�) = h�(�)t�S(�) increases with �; while if hTK=b > 1; there exists b� > 1 such that

H�(�) decreases with � for 1 � � � b�; and H�(�) increases with � for � � b�.
Proof of Results A3:

The FOCs for the second best situation areZ t

0

[��0(h�)� C 0(h)] d� + (T � t)�0 (ht) t (A.65)

�
�
T � btB(h)��0(hbtB(h))btB(h) = 0
(T � t)h�0(ht)� C(h) = 0 (A.66)

Where btB(h) =Min

 
argmax
tB2[0;T ]

[(T � tB)�(htB)] ; t
C
B

!
. Here, argmax

tB2[0;T ]
[(T � tB)�(htB)] =

T
2
. Suppose for the moment that tCB � T

2
(we will later verify that this holds at the second-

best optimum). Then the FOCs can be rewritten as

K
t2

2
� �b

h��1�
h
�� t+K(T � t)t� KT 2

4
= 0 (A.67)
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K(T � t)h� b

�
h

h

��
= 0 (A.68)

Remark that in this case, the only di¤erence with the �rst best case is the constant term

� (KT )2

4
, hence the second order conditions are also satis�ed.

We can compute the second best duration and pace of technology transfer:

tCB (�) =
�� 1 +

q
(�� 1)2 + �� 1

2

2�� 1 T

>
�� 1 +

q
(�� 1)2 + �� 1

2

2�� 2 T >
T

2

De�ne, for � � 1,

D(�) � ��
r
(�� 1)2 + �� 1

2
< 1

The second-best rate of transfer is

hC (�) =

�
D(�)

2�� 1hT
K

b

� 1
��1

h

which is less than h, given that hT K
b
< 2�� 1:

@tCB
@�

(�) =
1

(2�� 1)2

"
2

r
(�� 1)2 + �� 1

2
� 1
#
> 0

because 2
q
(�� 1)2 + �� 1

2
� 1 > 0 for all � > 1. The ratio tCB (�) =t�S(�) decreases with �.

Let ' (�) � ln
�
hC(�)
h�(�)

�
. Its derivative is

'0 (�) = � 1

(�� 1)2
ln (D(�))

+
1

(�� 1)D(�)

241� 2�� 1

2
q
(�� 1)2 + �� 1

2

35
The �rst term is positive and the second term is also positive. So '0 (�) > 0.

Because the ratio hC(�)
h�(�) is increasing in �, it follows that when h

�(�) is increasing in �,

hC (�) must be increasing in � at a faster rate. Now, for hT K
b
� 1, we conclude that hC(�)

increases with �. For hT K
b
> 1, then for � � e�, where e� is the threshold beyond which

h�(�) increases with �, hC(�) must be increasing in �. But clearly, by continuity, hC(�)

must also be increasing in � for all � belonging to some range (�; e�) where1 < � < e�, and
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hC(�) is decreasing in � for all � 2 (1; �). Let us show the existence of this threshold �.
For this purpose, let us de�ne

bh(�) �  2�p2
2�� 1 hT

K

b

! 1
��1

h

We can show that if hTK=b > 1
2�
p
2
, there exists ee� > 1 (where ee� < e�) such that bh (�)

decreases with � for 1 � � � ee�; and bh (�) increases with � for � � ee�: Now de�ne

 (�) � ln

 
hC (�)bh (�)

!
=

1

�� 1 ln
�
D(�)

2�
p
2

�

Then 
0(�) < 0 for all � > 1. So when bh (�) is decreasing, hC (�) must be decreasing at
a faster rate. And when bh (�) is increasing, hC (�) may be decreasing (at a slower rate) or
increasing. It follows that there exists a threshold � 2

�ee�; e�� such that hC (�) is decreasing
if and only if � < �.
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