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The Renewable Resour
e Management Nexus:Impulse versus Continuous Harvesting Poli
ies✩Alain Jean-Mariea, Mabel Tidball∗,b, Mi
hel Moreaux
, Katrin Erdlenbru
hdaINRIA and UMR LIRMM, 161 Rue Ada, 34392 Montpellier Cedex 5, Fran
e.bINRA and UMR LAMETA, 2 pla
e P. Viala, 34060 Montpellier Cedex 1, Fran
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onomi
s, IDEI and UMR LERNA, 21 allée de Brienne, 31 000 Toulouse, Fran
e.dCemagref and UMR G-EAU, 361 rue JF Breton BP 5095, 34196 Montpellier Cedex 5, Fran
e.Abstra
tWe explore the link between 
y
li
al and smooth resour
e exploitation. We de�ne an impulse
ontrol framework whi
h 
an generate both 
y
li
al solutions and steady state solutions. For the
y
li
al solution, we establish a link with the dis
rete time model by Dawid and Kopel [1℄. Forthe steady state solution, we explore the relation to Clark's [2℄ 
ontinuous 
ontrol model. Ourmodel 
an admit 
onvex and 
on
ave pro�t fun
tions and allows the integration of di�erent sto
kdependent 
ost fun
tions. We show that the stri
t 
onvexity of the pro�t fun
tion is only a spe
ial
ase of a more general 
ondition, related to submodularity, that ensures the existen
e of optimal
y
li
al poli
ies.Key words: optimal 
ontrol, impulse 
ontrol, renewable resour
e e
onomi
s, submodularityJEL 
lassi�
ation: C61, Q2.1. Introdu
tionThere are two opposing types of harvesting poli
ies for renewable resour
es su
h as a �shery ora forest. The �rst is a 
ontinuous harvesting poli
y. In a 
ontinuous time model, at ea
h point oftime, some portion of the population is harvested. Thus the size of the population never 
hangesabruptly although the time derivative of the population may be dis
ontinuous. Numerous examplesof su
h poli
ies have been given by Clark [2℄,[3℄ for �sheries. The Faustmann harvesting poli
yfor a balan
ed forest also belongs to this type: only the trees having rea
hed the optimal fellingage are 
ut. At the other extreme of the spe
trum an impulse poli
y 
onsists in harvesting somesigni�
ant part of the population at dis
rete points of time while leaving the population to evolvein its natural environment between any two 
onse
utive harvest dates. An example is Faustmann'soptimal 
utting poli
y of a single, even-aged, forest stand.At an aggregate level, optimal impulse poli
ies are quite rare for two main reasons. The �rstbeing that renewable resour
es are generally s
attered all over the world with spe
i�
 
hara
teristi
sso that syn
hronized impulse harvesting of so many sour
es is unlikely. The se
ond reason is that an
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aggregate impulse poli
y would indu
e hikes in the pri
e path, thus opening the door for arbitrageopportunities when sto
kpiling 
osts are high. The arbitrage possibility stems from the very fa
tthat sto
kpiling 
osts are nil for the resour
es left unexploited. As a result, the pri
e hikes may bearbitraged by moderately 
hanging the harvest date at a low opportunity 
ost. However at a mi
rolevel su
h impulse poli
ies may be optimal, or pro�t maximizing strategies.Termansen [4℄ proposed to 
onvert Clark's standard 
ontinuous 
ontrol model (with one statevariable) into an impulse 
ontrol model by simply 
hanging the de
ision variable: instead of theharvest rate, the 
ontrol is the harvest amount and the harvest times. Using numeri
al solutionswith a large but �nite time horizon, she showed that this impulse 
ontrol model may generatedi�erent types of extreme harvesting regimes: those similar to Faustmann-like rotations and thosesimilar to a steady state solution (see also Touza-Montero and Termansen [5℄ and Tahvonen [6℄,who investigates a similar question in an age-stru
tured forestry model). However, Termansen onlyexplored the link between the optimal 
y
li
al behavior and the Clark-like solutions in the spe
i�

ase where harvest 
osts are independent of sto
k levels.Our main obje
tive is to dis
uss these relationships more systemati
ally. We revisit Termansen'simpulse 
ontrol model with in�nite time horizon and solve it 
ompletely in a very general 
ase, withgeneral population growth and sto
k-dependent 
ost fun
tions. We 
hara
terize the optimal solutionby redu
ing it to two 
oupled optimization problems with two variables ea
h. This allows us toformulate 
onditions under whi
h optimal harvesting behavior is 
y
li
al or smooth.The literature 
on�rms that 
y
les in deterministi
 models1 may o

ur for various reasons. Indis
rete time models, Dawid and Kopel [1, 7℄ showed that stri
tly 
onvex gain fun
tions may leadto optimal 
y
li
al solutions, in the absen
e of sto
k e�e
ts. Liski et al. [8℄ demonstrated the o
-
urren
e of 
y
les in a model with in
reasing returns to s
ale and la
king adjustment 
osts, equallyin the absen
e of sto
k e�e
ts. Finally, in early appli
ations in �sheries e
onomi
s, Hannesson [9℄suggested the pertinen
e of so-
alled pulse-�shing solutions2 and explained their existen
e by in-
reasing returns to s
ale and the presen
e of age 
lasses in the population. But also in 
ontinuoustime models, small modi�
ations of the standard assumptions may lead to 
y
li
al solutions. Lewisand S
hmalensee [10, 11℄ found that 
y
les 
an be optimal in presen
e of in
reasing returns to s
ale,sto
k e�e
ts and modest re-entry 
osts. Wirl [12℄ showed that 
y
les are possible in a model withtwo state variables and sto
k e�e
ts (see Clark, Clarke and Munro [13℄.3), by simply introdu
ing aquadrati
 (instead of linear) 
ost fun
tion.Like Wirl, and in 
ontrast to most other models with optimal 
y
li
al harvesting poli
ies (seefor example Dawid and Kopel [1℄, Liski et al. [8℄, Lewis and S
hmalensee [10, 11℄), we suppose theharvest 
ost fun
tions to be sto
k-dependent, su
h as the 
osts proposed by Clark [2℄.We show that the 
onditions for the existen
e of 
y
li
al solutions involve a 
lose 
ombinationof the growth fun
tion and the 
ost fun
tion, thereby emphasizing that the 
onvexity of the 
ostfun
tion, or its dependen
e on the sto
k level, are not the only issues worth 
onsidering. We thendis
uss how a Clark-like steady-state solution emerges as a limit of small and frequent harvestoperations in our model. We also show that we 
an reprodu
e and generalize Dawid and Kopel'sresults, although the latter were obtained with a dis
rete-time model (whereas time is 
ontinuousin our model) and without sto
k e�e
ts.1We do not 
onsider sto
hasti
 models in the following.2Pulse �shing and 
hattering strategies imply very small jumps in the state variable.3In this model the harvest-gain fun
tion is 
on
ave, whi
h, a

ording to Wirl, renders 
y
li
al solutions moredi�
ult to o

ur. 2



The arti
le is stru
tured as follows. We present the impulse 
ontrol problem in se
tion 2, we
hara
terize the type of solution in se
tion 3 and the optimal 
y
le in se
tion 4. We then establishthe link to Clark's 
ontinuous 
ontrol solution and to Dawid and Kopel's dis
rete 
ontrol model inse
tion 5. The last se
tion is devoted to the 
on
lusion.2. The impulse 
ontrol model2.1. The ModelThe resour
e dynami
sWe 
onsider a renewable resour
e, for whi
h dynami
s, in the absen
e of any harvest, is givenby:
ẋ(t) = F (x(t)) , t ≥ 0, (1)where x(t) is the size of the population at any time t and F , stationary through time, is the growthrate fun
tion. The fun
tion F is assumed to satisfy the following 
onditions.Assumption 1. There exist real numbers xsup and xs su
h that 0 < xs < xsup < +∞. Thefun
tion F : (0, xsup) → R is positive over the interval (0, xs) and negative over the interval

(xs, xsup), with F (0) = F (xs) = 0, where limx↓0 F (x) = F (0). The fun
tion F is measurable andbounded above. It is assumed that the di�erential equation (1) admits a unique solution for everyinitial sto
k x0 ∈ (0, xsup).The quantity xsup is the supremum of the 
arrying 
apa
ity of the environment. The long-runmaximum sustainable level is xs, the level to whi
h the population is 
onverging for any x0 su
hthat 0 < x0 < xsup.The harvesting pro
essWe are interested in the optimal e
onomi
 exploitation of this resour
e by a dis
rete harvestpro
ess, i.e. within the framework of impulse 
ontrol models.4A

ordingly, we de�ne an impulse exploitation poli
y IP := {(ti, Ii), i = 1, 2, . . .} as a sequen
eof harvesting dates ti and instantaneous harvests Ii, one for ea
h date. The sequen
e of dates maybe empty, �nite or in�nite. It is su
h that 0 ≤ t1, and ti ≤ ti+1, i = 1, 2, . . . and limi→+∞ ti = +∞.By 
onvention, we shall assume that if the sequen
e is �nite with n ≥ 0 values, then ti = +∞ forall i > n.The sequen
e of harvests must satisfy:
Ii ≥ 0 and xi − Ii ≥ 0 , (2)where

xi = lim
t↑ti

x(t) , with x1 = x0 given if t1 = 0, (3)and su
h that the following 
onstraints hold:
ẋ(t) = F (x(t)) for ti < t < ti+1 with x(ti) = xi − Ii, i = 1, 2, . . . (4)4Impulse 
ontrol poli
ies in in�nite horizon 
onsist in an unbounded sequen
e of de
isions. For the dis
ussion ofimpulse 
ontrol models, see for example Léonard and Long [14℄, Seierstaed and Sydsaeter [15℄.3



ẋ(t) = F (x(t)) for 0 < t < t1 with x(0) = x0 if t1 > 0. (5)In other words: xi is the size of the population just before the harvesting date ti, and xi− Ii its sizejust after that same date. If t1 = 0, the population x1 is supposed to be inherited from the past,and denoted by x0. Harvests 
an not be negative nor ex
eed total population size. The 
onditions(2)�(5) de�ne the set of feasible IPs, denoted by Fx0 .The harvester's pro�tsMonetary pro�ts generated by any harvest depend upon the size of the 
at
h and the size of thepopulation at the 
at
hing time. We assume that the pro�t fun
tion is stationary through time sothat whatever ti, Ii and xi, the 
urrent pro�ts at time ti amount to π(xi, Ii). The pro�t fun
tionis assumed to have the following standard properties.Assumption 2. The fun
tion π(x, I) is de�ned on the domain D := {(x, I), x ∈ (0, xsup), I ∈
[0, x]}. It is of 
lass C1, positive and bounded, and su
h that π(x, 0) = 0, ∀x ∈ (0, xsup). Thederivative πI(x, I) := (∂π/∂I)(x, I) admits a limit when I ↓ 0 for all x ∈ (0, xsup).Pro�ts are dis
ounted using a 
onstant instantaneous interest rate, denoted by r, r > 0.The manager's obje
tive is to 
hoose some poli
y maximizing the sum of the dis
ounted pro�ts,that is, to solve the problem (P):(P) supIP∈Fx0

Π(IP) :=

∞
∑

i=1

e−rti π(xi, Ii) .It is assumed here that the fun
tion Π is well de�ned over the whole set Fx0 .52.2. The Dynami
 Programming Prin
ipleWe use the Dynami
 Programming approa
h to solve our problem. The following theoreminsures the existen
e of a unique value for the problem.Theorem 1. The value fun
tion
v(x) = supIP∈Fx

Π(IP) (6)is the unique solution of the following variational equation:
v(x) = sup

y∈[0,xsup)
t≥0

e−rt [π(φ(t, x), φ(t, x) − y) + v(y)] , (7)where φ(t, x) is the traje
tory of the system at time t, solution of the dynami
s (1) with x(0) = x.For this standard proof of dynami
 programming see Davis [16, Theorem (54.19), page 236℄.5Observe that we formulate our problem with a �sup� and not a �max� be
ause we are interested in the possibilitythat the maximum is not rea
hed inside the set Fx0
. 4



3. Redu
tion to Cy
li
al Poli
iesIn this se
tion we investigate the impulse 
ontrol model and propose an approa
h for 
hara
ter-izing its solutions. Our approa
h is to determine the stru
ture of solutions under the quite generalassumptions of the previous se
tion. The pri
e to pay for this generality is that our results do notguarantee the uniqueness of solutions, whi
h must be examined on a 
ase-by-
ase basis.Our line of argument will be the following. First of all, the Dynami
 Programming prin
ipleimplies that, under any optimal poli
y for Problem (P), if the sto
k rea
hes some level alreadyattained in the past, the a
tion 
hosen in the past (to harvest or not to harvest) should stillbe optimal. This mere fa
t 
ombined with the positive growth of the sto
k's natural dynami
stends to sele
t poli
ies that are 
y
li
al in the sense that they let the sto
k grow to some level,harvest it down so some other level, and repeat. However, it may still be that under the optimalpoli
y, the sto
k never rea
hes twi
e the same level. We show that when the gain fun
tion has a
ertain submodularity property, su
h traje
tories 
an not be optimal. Optimal poli
ies are thereforeessentially 
y
li
al. Moreover, joining the optimal 
y
le must be done with at most one harvest.The optimization problem is then redu
ed to �nding: a) what is the optimal 
y
le; b) what isthe optimal way to rea
h the optimal 
y
le from a given initial sto
k. Finding the optimal 
y
le isa relatively simple optimization problem whi
h we 
all the �Auxiliary Problem�. But the solutionto this problem may 
orrespond to degenerate 
y
les, whi
h we interpret as 
ontinuous harvestingpoli
ies à la Clark. We show in the next se
tion that the submodularity assumption is again thekey to determine whether the optimal 
y
le is a true 
y
le or a degenerate one.We pro
eed now with the de�nitions and the pre
ise statements of these prin
iples.3.1. Cy
li
al Poli
ies and the Auxiliary ProblemCy
li
al poli
ies. A 
y
li
al poli
y has two 
omponents: a 
y
le whi
h is 
hara
terized by two values
x and x̄ with x < x̄, or equivalently by an interval [x, x̄]; and a transitory part whi
h des
ribes howthe traje
tory evolves from the initial sto
k to the 
y
le. The transitory part 
onsists in, at most,one harvest, su
h that the remaining population is less than x̄. We �rst 
on
entrate on the 
y
le.Hen
e, a 
y
le has two main parameters, whi
h are su
h that 0 ≤ x < x̄ ≤ xs.6 When in its
y
li
al part, a poli
y a
ts as follows: a) let the population grow to x̄; b) harvest until x; andrepeat. Su
h a poli
y applies only to initial populations x0 ≤ x̄. In other words, the transitory part
an be dispensed with only for su
h an initial population.Gain under a 
y
li
al poli
y. We will denote by G(x, x̄, x0) the value of dis
ounted pro�ts in apoli
y without the transitory part, applied to an initial population of x0. The 
omplete de�nitionof the fun
tion G involves several 
ases, 
orresponding to the limit 
ases for x̄ and x.It is 
onvenient to de�ne the fun
tion τ(x, y) as the time ne
essary for the dynami
s to go fromvalue x to y, x ≤ y. It turns out that for all 0 < x ≤ y < xs:

τ(x, y) =

∫ y

x

1

F (u)
du. (8)Sin
e, by Assumption 1, F (xs) = 0, the integral de�ning τ(x, y) is singular when y = xs. The limitwhen y → xs may therefore be �nite or in�nite, depending on the fun
tion F . Another feature6Sin
e x̄ represents the population level until whi
h the resour
e grows before harvesting, there is no point in
onsidering x̄ > xs sin
e the population 
annot grow to su
h a level.5



of Assumption 1 is that F (0) = 0. Consequently, if x(0) = 0, a solution to the dynami
s (1) is
x(t) = 0 for all t ≥ 0. This implies the 
onvention that τ(0, y) = +∞ if y > 0, and τ(0, 0) = 0.7The value of the total pro�t fun
tion G 
an be expressed as:i) If 0 ≤ x < x̄ ≤ xs:

G(x, x̄, x0) := π(x̄, x̄ − x)
e−rτ(x0,x̄)

1 − e−rτ(x,x̄)
. (9)The 
onvention is that: if x = 0, the term exp(−rτ(x, x̄)) should be repla
ed by 0. Likewise,

exp(−rτ(x, x̄)) and exp(−rτ(x0, x̄)) are 0 if x̄ = xs and limy→xs τ(x, y) = +∞.ii) For x = x̄, Assumption 2 allows to de�ne G by 
ontinuity as:
G(x, x, x0) = πI(x, 0)

F (x)

r
e−rτ(x0,x) . (10)For the 
ases x = x̄, the value G is not that of a well-de�ned impulse 
ontrol poli
y, but that ofsome 
ontinuous harvesting poli
y, whi
h 
an be seen as a degenerate impulse poli
y.Finally, by using the fa
t that τ(x, y) de�ned in (8) is also de�ned for y ≤ x, expressions (9)and (10) provide values for the fun
tion G when x0 > x̄ as well. Of 
ourse, these situations do not
orrespond to an implementable harvesting poli
y, and the fun
tion loses its e
onomi
 meaning. Insubse
tion 3.3 we will study the transitory part of a 
y
li
al poli
y for whi
h the 
ase x0 > x̄ hasan e
onomi
 meaning.The auxiliary problemHaving de�ned the fun
tion G(x, x̄, x0) for all 0 ≤ x ≤ x̄ ≤ xs and all 0 ≤ x0 ≤ xs, we nowde�ne the auxiliary problem (AP):(AP) : max

x, x̄; 0≤x≤x̄≤xs

G(x, x̄, x0).Under Assumption 2 it turns out that G is lower semi-
ontinuous as a fun
tion of (x, x̄). Theproblem (AP) has therefore always a solution. For the purpose of the dis
ussion to 
ome, it isimportant to distinguish the 
ase where the solution is su
h that x = x̄, from the 
ase where x 6= x̄.We 
all the �rst situation a �diagonal solution�, and the se
ond one a �non-diagonal solution�.3.2. Submodularity and Optimal Traje
toriesIn this paragraph, we introdu
e a submodularity assumption on the pro�t fun
tion π. Appen-di
es A.1 and A.2 provide results on the 
onsequen
es of this assumption on the shape of optimaltraje
tories for Problem (P). Consider the following assumption.Assumption 3. The fun
tion π is su
h that:
π(a, a − c) + π(b, b − d) ≤ π(a, a − d) + π(b, b − c) (11)for every d ≤ c ≤ b ≤ a.7This 
onvention does not mean that limx↓0 τ (x, y) = +∞ in every situation.6



Assumption 3 means that the pro�t generated by a big harvest in a large population, π(a, a−d),augmented by the pro�t resulting from a small harvest in a medium sized population, π(b, b − c),is greater than the sum of pro�ts generated by two medium sized harvests, the �rst in a largepopulation, π(a, a− c), and the se
ond in a medium sized population, π(b, b − d). At the limit, for
c = b, one big harvest, π(a, a − d), is better than two medium harvests, π(a, a − c) and π(c, c − d),redu
ing the population to the same level after the harvests, i.e. d. Assumption 3 implies twoessential 
onsequen
es. First, it is more rewarding to harvest a large part of the sto
k, ratherthan two smaller parts. Se
ond, at the optimal sto
k level, regular harvesting poli
ies are moreworthwhile than irregular poli
ies, with overlapping sto
ks.In some situations, we shall refer to a �stri
t� Assumption 3, meaning that:

π(a, a − c) + π(b, b − d) < π(a, a − d) + π(b, b − c) (12)for every d < c < b < a.The following properties are well-known or easy to 
he
k.Lemma 1. Assume that π satis�es Assumption 3. Then:i) Let g(x, y) = π(x, x − y) be de�ned for 0 ≤ y ≤ x ≤ xsup. Then g is submodular.8ii) If π has se
ond-order derivatives, then
πxI + πII ≥ 0 .iii) If Assumption 2 holds as well, then the following inequality holds for all z ≤ y ≤ x:

π(x, x − y) + π(y, y − z) ≤ π(x, x − z) . (13)
iv) If π(x, I) = R(I), then R is 
onvex. Conversely, if R is 
onvex, Assumption 3 holds.These properties are linked to several e
onomi
 assumptions: Initiating the harvesting pro
essis 
ostly (Lemma 1 iii)). Hen
e, 
y
les are optimal if resour
e managers 
an take advantage ofsome form of e
onomies of s
ale. This is the 
ase, for instan
e, if the revenue fun
tion is 
onvex,whi
h is one sub-
ondition of Assumption 3 (Lemma 1 iv)) in the 
ase of sto
k-independent 
osts.In addition, when π is linear in I, harvests and resour
e sto
ks are 
omplementary (Lemma 1

ii)) and hen
e, any additional harvest, and resulting pro�ts, 
an only be obtained by waiting andletting the resour
e re
over, whi
h 
omes at a 
ost. Note that 
ondition (13), with stri
t inequality,is 
lassi
ally required to insure the existen
e of optimal impulse 
ontrol poli
ies (see for instan
eDavis [16℄).In 
ontrast to usual assumptions on the stri
t 
onvexity of the pro�t fun
tion, Assumption 3is more general as it 
overs the 
ase of obje
tive fun
tions with multiple variables. It applies to
onvex-
on
ave pro�t fun
tions and is independent of any parti
ular form of the dynami
s F (·).8A fun
tion g(x, y) is submodular if for all a, b, c, d su
h that max(c, d) ≤ min(a, b):
g(min(a, b), min(c, d)) + g(max(a, b), max(c, d)) ≤ g(min(a, b), max(c, d)) + g(min(a, b), max(c, d)) .7



3.3. Equivalen
e between (P) and (AP)Now we are going to show the prin
ipal relation between problems (P) and (AP). The results ofthis se
tion are partly based on the property that solutions to Problem (AP) turn out not to dependon x0, as stated in Lemma 8, see Appendix A.3. Consequently, we 
an talk of solutions (x∗, x̄∗) tothe auxiliary problem (AP) independently of x0. We then make the following assumption:Assumption 4. The problem (AP) has a unique solution, denoted with (x∗, x̄∗), whi
h is su
hthat x∗ < x̄∗.The transitory problemUnder Assumption 4, let us de�ne the following optimization problem (TP), whi
h formalizesthe �Transitory Problem�. The transitory part of a 
y
li
al poli
y 
onsists in a) letting grow thesto
k until some value x; b) harvesting from x down to y for y ≤ x̄∗; 
) applying the 
y
le withthe harvesting interval [x∗, x̄∗] from then on. The question is how to 
hoose the quantities x and
y. The answer is given by the solutions of the following optimization problem:(TP) : max

x,y;
0≤y≤x≤xs

x0≤x; y≤x̄∗

e−rτ(x0,x) [π(x, x − y) + G(x∗, x̄∗, y)] .The following theorem 
hara
terizes the solutions to the problem (P).Theorem 2. Assume that Assumptions 1�4 hold. Let (x∗(x0), y
∗(x0)) solve the maximization prob-lem (TP). Then the value fun
tion of (P) is:

v(x0) =







G(x∗, x̄∗, x0) if x0 < x̄∗

e−rτ(x0,x∗(x0)) [π(x∗(x0), x
∗(x0) − y∗(x0)) + G(x∗, x̄∗, y∗(x0))] if xs ≥ x0 ≥ x̄∗.(14)Moreover there exists a solution of (P) whi
h is 
y
li
al and given by:

t1 = τ(x0, x̄
∗), ti = t1 + (i − 1)τ(x∗, x̄∗), i ≥ 1, xi = x̄∗, Ii = x̄∗ − x∗, i = 1, 2, . . . ,if x0 < x̄∗, and
t1 = τ(x0, x

∗(x0)), t2 = τ(y∗(x0), x̄
∗), ti = t2 + (i − 2)τ(x∗, x̄∗), i ≥ 2,

x1 = x∗(x0), I1 = x∗(x0) − y∗(x0), xi = x̄∗, Ii = x̄∗ − x∗, i = 2, . . . ,if x0 ≥ x̄∗.The proof of this result is given in Appendix A.3. The theorem states that any optimal 
y
li
alpoli
y has a 
y
le part with an harvesting interval [x∗, x̄∗]. It also des
ribes the nature of thetransitory part of optimal 
y
li
al poli
ies. In the 
ase x0 < x̄∗, there is no transitory part, andthe 
y
le is joined from the start. In the 
ase x0 ≥ x̄∗. The transitory part 
onsists in letting thesto
k grow until x∗(x0), harvest it down to y∗(x0), then join the 
y
le. The typi
al form of optimaltraje
tories is illustrated in Figure 1.We 
an now state the following relation between problems (P) and (AP), the proof of whi
h isprovided in Appendix A.4. 8



sto
k

time

(A)

(B)x̄∗

x
(B)
0

x∗

x∗(x0)

x
(A)
0

y∗(x0)

Figure 1: Shape of the optimal traje
tory, for x0 > x̄∗ (
ase (A)), and x0 ≤ x̄∗ (
ase (B))Theorem 3. Let Assumptions 1�3 hold. Then:
i) If Assumption 4 holds as well, then (P) has a solution whi
h is 
y
li
al.

ii) If (P) has a solution, then (P) has a solution whi
h is 
y
li
al, and there exists a solution toproblem (AP) when 0 ≤ x < x̄ ≤ xs.
iii) If the solution of (AP) is on the boundary x = x̄ = x∗, then (P) has no solution.We have therefore shown that there exists a 
y
li
al solution to our problem (P) if, and onlyif, the solution to the auxiliary problem (AP) is non-diagonal. In other words, the existen
e or notof 
y
li
al solutions to (P) hinges on the fa
t that Assumption 4 holds or not. This question isaddressed in the next se
tion.4. Optimal Cy
lesWe investigate now the problem of lo
ating the solutions to Problem (AP). We have seen thatsolutions always exist, but they may be lo
ated in the interior, or on any of the boundaries x = 0,

x̄ = xs or the diagonal x = x̄.It turns out that ensuring the uniqueness of the solution is not an easy task, even with restri
tiveyet standard assumptions, as we argue in se
tion 4.4. We therefore limit our dis
ussion to 
onditionsrelated to the submodularity Assumption 3. We begin in se
tion 4.1 with ne
essary 
onditions forthe existen
e of interior solutions and their interpretation. We study the 
ase of stri
tly submodularfun
tions in se
tion 4.2, and the 
ase of fun
tions both submodular and supermodular in se
tion4.3. 9



4.1. Interior solutionsNe
essary 
onditions for interior solutions to exist are provided by the �rst order 
onditions ofthe auxiliary problem, whi
h we provide as:Lemma 2. If (x, x̄) is a solution to the auxiliary problem (AP) with 0 < x < x̄ < xs (interiorsolution), then the �rst order 
onditions are given by:
πI =

r

F (x)

e−rτ(x,x̄)

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) , (15)

πx + πI =
r

F (x̄)

1

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) . (16)By rearranging these 
onditions, we obtain the equivalent:

πI
F (x)

r
=

e−rτ(x,x̄)

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) , (17)

dπ

dx
= πx + πI = πI

F (x)

F (x̄)e−rτ(x,x̄)
. (18)The �rst 
ondition states that, at the optimum, the marginal gain from harvesting the resour
e,weighted with the growth potential at the new resour
e sto
k as 
ompared to the interest rate,should equal the value of the remaining resour
e,9 out
ome of a maximized rotational harveststream. The se
ond 
ondition states that the marginal gain derived from the sto
k e�e
t is equal tothe marginal gain from harvesting augmented by a 
orre
ting fa
tor, whi
h depends on the growthdi�erential at the lower and upper limit of the rotational 
y
les, the latter being dis
ounted overtime. More pre
isely, the greater this growth di�erential, the greater the marginal gain due to theresour
e sto
k.4.2. Stri
t submodularity of the gain fun
tionIn this se
tion, we show that Assumption 3 in the stri
t sense, together with some te
hni
alassumptions, is su�
ient to ex
lude diagonal solutions to Problem (AP).Proposition 4. Assume that all maxima xm of the fun
tion x 7→ G(x, x, x0) are su
h that 0 <

xm < xs. If the fun
tion π has se
ond-order derivatives and satis�es Assumption 3 in the stri
tsense (12), then all solutions to Problem (AP) are non-diagonal.The proof is deferred to Appendix A.5.4.3. Exa
t modularityWe now turn to the 
ase where Assumption 3 holds with equality in Equation (11), whi
hamounts to require that the fun
tion π(x, x− y) be both sub- and supermodular. Using Lemma 1,it is not di�
ult to see that if π admits se
ond-order derivatives, and given that π(x, 0) = 0, thenit must be of the form:
π(x̄, x̄ − x) =

∫ x̄

x

γ(x) dx (19)9Whi
h is 
alled the site value in the forest e
onomi
s literature.10



for some integrable fun
tion γ(·). We shall prove that, under moderate 
onditions, the problem(AP) does not admit non-diagonal solutions for su
h 
ost fun
tions.Going ba
k to the de�nitions of Se
tion 3.1, we have (see (10)):
Gd(x) := G(x, x, x0) =

1

r
γ(x)F (x)e−rτ(x0 ,x) ,where the 
hoi
e of x0 has no impa
t on the solution of the optimization problem, as we have seen.Proposition 5. Assume that the fun
tion Gd(·) is of 
lass C1, and is in
reasing, then de
reasingfor x ∈ (0, xs), with an unique maximum at xm. Assume that the growth fun
tion F (·) is su
h thatthe integral in (8) diverges when x ↓ 0. Assume �nally that G does not have a maximum at x = 0.Then the solution of Problem (AP) is unique and given by x = x̄ = xm.The proof is deferred to Appendix A.6.4.4. An example of multiple interior solutions to Problem (AP)A 
ase where Problem (AP) has two distin
t interior solutions is 
onstru
ted as follows. Thestandard logisti
 fun
tion F (x) = x(1 − x) is 
hosen as the growth fun
tion. It is 
on
ave. Thegain fun
tion is 
hosen as π(x, I) = a(x̄) × I, with, for some 
onstant A > 0,

a(x) = 1 + min

{

x

100
, A × (x −

2

3
)

}

.It 
an be easily veri�ed that π satis�es Assumption 3, sin
e the fun
tion a is stri
tly in
reasing. Fi-nally, set r = 0.01. Numeri
al investigation then reveals that the fun
tion G(x, x̄, x0) 
orrespondingto this data has two lo
al maxima: one with x̄ < 2/3 and one with x̄ > 2/3. The lo
al optimality ofthe �rst one results from the 
ombination of a large growth rate with a small gain per 
y
le. Cy
lesare short for this solution. The se
ond lo
al optimum results from the 
ombination of a smallergrowth rate with a larger gain at ea
h harvest. The two lo
al maxima 
an be given the same valueby setting the 
onstant A to approximately 1.23.5. Links between Impulse Control Models and Other Control Models5.1. Comparison with Clark's ModelWe may now establish a �rst link between our general impulse 
ontrol model and the 
ontinuous
ontrol model, as proposed by Clark [2℄.Consider a solution of problem (AP) on the boundary x = x̄. The maximization problembe
omes:
max

0≤x≤xs

G(x, x, x0),where G is given by (10). The �rst order 
ondition for this problem is:
πIx(x, 0)F (x) + πI(x, 0)[F ′(x) − r] = 0 . (20)This 
ondition 
oin
ides with the well-known marginal produ
tivity rule of resour
e exploitationwhen πI(x, 0) is the instantaneous pro�t fun
tion (see for example Clark [2℄ or Clark and Munro11



[3℄). A solution to Equation (20) determines the steady state of the following Clark-like singularoptimal 
ontrol problem: (CP) max
h(·)

∫ ∞

0
e−rt πI(x(t), 0) h(t) dt ,

ẋ = F (x) − h,for x0 given and 0 ≤ h(t) ≤ hmax for all t. This means that the 
onditions of a Clark-like steadystate solution 
an also be triggered by the impulse 
ontrol model that we propose.5.2. Comparison with Dawid and Kopel's modelIn this se
tion, we show that Dawid and Kopel's model [1℄ 
an be embedded within ours, througha judi
ious 
hoi
e of the dynami
s, the 
ost fun
tion and the dis
ount rate. Then, we explain the
orresponden
e between the results of [1℄ and ours.5.2.1. Growth fun
tion and time span asso
iated to the growthThe model of Dawid and Kopel is in dis
rete time. The population dynami
s has the form:
xt+1 = f(xt) − ut = min[1, (1 + λ)xt] − utwith xt, ut ≥ 0 ∀t ≥ 0. We pro
eed by reprodu
ing this behavior for our model. When no harvestingtakes pla
e, we must have: ẋ(t) = F (x(t)). Suppose:

F (x) = Ax if x < xs = 1 and F (x) = 1 − x if x ≥ 1.It 
an be veri�ed that this fun
tion satis�es Assumption 1.10 Integrating the di�erential equation,we �nd that the sto
k evolves a

ording to the following fun
tion:
x(t) = φ(t, x0) = min(x0e

At, 1) .In order to reprodu
e the dynami
s of Dawid and Kopel's dis
rete-time model, we �x a time duration
∆, and set: xt+1 = φ(∆, xt). The dynami
s are equivalent when f(xt) = φ(∆, xt) for all xt, whi
his the 
ase when:

(1 + λ)xt = xte
A∆.We dedu
e how the marginal growth fa
tor A must be de�ned in terms of Dawid and Kopel's fa
tor

1 + λ:
A =

log(1 + λ)

∆
.Let us 
ompute the time span ne
essary for the dynami
s to get from x to y in terms of the newnotation: for every x ≤ y ≤ 1,

τ(x, y) =

∫ y

x

1

F (u)
du =

∫ y

x

1

Au
du =

1

A
log

y

x
.10The value of F (x) for x > 1 is arbitrarily 
hosen to that end.12



5.2.2. Dis
ounted bene�tsFor the undis
ounted gains π, the 
orresponden
e with Dawid and Kopel's model is made bysetting π(x, I) = R(I). Note that for this parti
ular form of the gain fun
tion, Condition (11) isequivalent to the 
onvexity of R, a

ording to Lemma 1 iv).Next, the 
orresponden
e for dis
ounting rates in both models is established as follows. Thedis
rete-time dis
ount fa
tor being δ and the 
ontinuous-time dis
ount rate being r, we should have:
δt = e−rt∆, that is: log δ = −r∆. Finally, Dawid and Kopel's introdu
e a threshold quantity ade�ned as:

a = −
log δ

log(1 + λ)
=

r∆

A∆
=

r

A
.5.2.3. The maximization problemWe pro
eed with the de�nition of the fun
tion G whi
h is the basis of the auxiliary problem(AP). Two 
ases must be 
onsidered: diagonal or non-diagonal.Non-Diagonal where x < x̄. In this 
ase,

G(x, x̄, x0) =
R(x̄ − x)(x0

x̄
)

r
A

1 − (x
x̄
)

r
A

=
R(x̄ − x)(x0

x̄
)a

1 − (x
x̄
)a

. (21)This expression holds even when x̄ = xs = 1 and x = 0.Diagonal where x = x̄. Given that π(x, I) = R(I), we have limI→0 πI(x, I) = R′(0), when
e:
G(x, x, x0) = R′(0)

Ax

r

(x0

x

)
r
A

= R′(0)
xa

0

a
x1−a. (22)Dawid and Kopel de�ne the elasti
ity of gains as the fun
tion:

ε(x) =
R′(x)x

R(x)
. (23)We have:Lemma 3. The following results hold for all 0 ≤ x ≤ x̄ ≤ 1:

i) If a < 1, then:
0 < ε(x̄ − x) − 1 <

∂G

∂x̄
(x, x̄, x0) < ε(x̄ − x) − a . (24)

ii) If a > 1, then:
ε(x̄ − x) − a <

∂G

∂x̄
(x, x̄, x0) < ε(x̄ − x) − 1 . (25)

iii) If a = 1, then:
1

G(x, x̄, x0)

∂G

∂x̄
(x, x̄, x0) =

1

x̄ − x
(ε(x̄ − x) − 1) > 0 . (26)13



Lemma 4. If a > 1, then
∂G

∂x
< 0 .The proof of these lemmas follows from standard 
al
ulations. The fa
t that ε > 1 follows fromthe 
onvexity of R and the fa
t that R(0) = 0.As a 
onsequen
e of Lemmas 3 and 4, we have the following optimization results:Lemma 5. The fun
tion G given by (21) and (22) has the following properties:

i) If a < 1, then there exists a unique (x, x̄), with 0 < x ≤ x̄ = 1, solution to:
max

0≤x≤x̄≤1
G(x, x̄;x0) . (27)

ii) If a > 1, then for all x̄, arg max
0≤x≤1

G(x, x̄;x0) = 0. (28)
iii) If a = 1, then arg max

0≤x≤x̄≤1
G(x, x̄;x0) ∈ [(0, 1)]2 . (29)5.2.4. Relations with the Results by Dawid and KopelAs Dawid and Kopel, we 
an now show the following results. As long the elasti
ity of gains ε,averaged over the harvest of one period, is larger than the threshold a, the optimal poli
y is to waitand defer harvesting. Inversely, when the average elasti
ity of gains ε is smaller than a, immediateharvesting is optimal (see [1, Lemma 5℄). When a = 1, the de
ision maker is indi�erent in 
hoosingbetween harvesting immediately or harvesting in the next period.Other results of Dawid and Kopel address the question of whether immediate extin
tion isoptimal or not. These results are reprodu
ed by our analysis as well.6. Con
lusionWe have proposed an impulse 
ontrol framework for the management of renewable resour
eswhi
h is general enough to in
lude 
on
ave and 
onvex gain fun
tions, as well as sto
k dependent
ost fun
tions. The optimal management of the resour
e is expressed as optimization problem (P),the solution of whi
h is shown to satisfy the dynami
 programming prin
iple. By introdu
ing the
lass of �
y
li
al poli
ies�, we have redu
ed the solution of Problem (P) to the sequential solutionof two stati
 optimization problems with two variables ea
h, whi
h we 
an solve. With the helpof the Auxiliary Problem, we 
an de�ne the optimal 
y
le. With the Transitory Problem, we 
andes
ribe the evolution from the initial sto
k to the 
y
le.Central to our solution framework is the submodularity 
ondition, whi
h is ne
essary for theexisten
e of 
y
les. This 
ondition is more general than the stri
t 
onvexity of the pro�t fun
tion,as it also 
overs the 
ase of obje
tive fun
tions with multiple variables. Thus, the existen
e ofe
onomies of s
ale is only one possible 
ondition for the o

urren
e of 
y
les, whi
h depends onthe more 
omplex intera
tion between dis
ounted gains, (sto
k dependent) 
ost fun
tions and thepopulation growth dynami
s. 14



We have shown that our impulse 
ontrol model 
an generate 
y
li
al solutions and �degenerate�
y
li
al solutions whi
h 
orrespond to a smooth steady state solution. The e
onomi
 and biologi
al
onsequen
es of these two types of equilibria might be very di�erent, espe
ially if threshold valuesexist. For example, the 
y
li
al solution may temporarily deplete the population underneath thelevel that would be desirable for the maintenan
e of the food-
hain. These 
onsequen
es are nottaken into a

ount in our model.Our impulse 
ontrol model 
an generate the steady state solution that Clark des
ribed for hisone state variable model with a 
on
ave growth fun
tion. We 
an also repli
ate the 
y
li
al poli
iesdes
ribed by Dawid and Kopel in a dis
rete time framework with a quasi-linear growth fun
tion.This allows us to 
laim that our model is a �meta-model�. The link between these models 
an beexpressed through their responsiveness to the submodularity 
ondition.Re
ent bioe
onomi
 models have strengthened the importan
e of un
ertainty, for example linkedto whether 
onditions or to the availability of sto
ks. Further resear
h 
ould in
lude su
h un
ertaintyand also 
onsider the manager's risk aversion in a similar impulse 
ontrol framework. E
onometri
appli
ations 
ould help to 
he
k whether 
ontinuous or dis
rete representations of the harvestde
isions are more appropriate in pra
ti
e, and how to spe
ify growth and 
ost fun
tions. Dependingon the fun
tional forms 
hosen, the optimal harvesting poli
ies 
an then be de�ned within the aboveframework.Referen
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A. AppendixA.1. Submodularity and Traje
toriesWe prove here traje
tory 
omparison results whi
h are a 
onsequen
e of the submodularityAssumption 3. Before stating the results, we need some preliminary explanations.Consider an impulse 
ontrol poli
y ICP whi
h is su
h that there exists i and j with i < j and:
xj − Ij ≤ xi − Ii ≤ xj ≤ xi, that is, overlapping harvests. Denote with a = xi, b = xj, c = xi − Iiand d = xj − Ij . Let ℓ = j − i and δt = tj − ti. Consider the following two modi�
ations of thereferen
e poli
y ICP:Poli
y A (
opy a pie
e of traje
tory from c to b):for k < j, tAk = tk, IA

k = Ik;for k = j, tAj = tj, IA
j = b − c;for k > j, tAk = tk−ℓ + δt, IA

k = Ik−ℓ.Poli
y B (remove the pie
e of traje
tory from c to b):for k < i, tBk = tk, IB
k = Ik;for k = i, tBk = tk, IB
k = a − d;for k > i, tBk = tk+ℓ − δt, IB

k = Ik+ℓ.These poli
ies 
an be visualized in Figure 2, whi
h represents the evolution of the population underea
h of the three poli
ies. The triangle represents the rest of the traje
tory, whi
h is the same for allthree poli
ies, ex
ept for a shift in time. The re
tangle represents an arbitrary pie
e of traje
tory,whi
h 
an possibly exit the range [b, c].11The result is:Lemma 6. Consider an impulse 
ontrol poli
y ICP whi
h is su
h that there exists i and j with
i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi. Then:

i) If Assumption 3 holds in the stri
t sense (12), then one of poli
ies A or B 
onstru
ted aboveyields stri
tly larger pro�ts than ICP.
ii) If Assumption 3 holds with equality in (11) and if ICP is optimal, then poli
ies A and B areoptimal as well.Proof. The dis
ounted pro�ts G asso
iated with the original poli
y ICP 
an be written as:

G = V0 + Ri π(a, a − c) + Ri V1 + Rj π(b, b − d) + Rj Vdwhere Ri and Rj are the dis
ounts:
Ri = e−rti Rj = e−rtj ,11The situation where b = c is allowed, in whi
h 
ase the pie
e of traje
tory may be empty. In that 
ase, there isa double harvest at the same instant in time. 16



and where V0, V1 and Vd are the 
urrent-value gains asso
iated with the �rst part of the traje
tory,and the pie
es of the traje
tory, respe
tively, in the intervals (ti, tj) and (tj ,+∞):
V0 =

i−1
∑

k=1

e−rtk π(xk, Ik) V1 =

j−1
∑

k=i+1

e−r(tk−ti) π(xk, Ik)

Vd =

∞
∑

k=j+1

e−r(tk−tj) π(xk, Ik) .The total dis
ounted gains asso
iated with poli
ies A and B are:
GA = V0 + Ri π(a, a − c) + Ri V1 + Rj π(b, b − c) + Rj V1 + Rj ρ π(b, b − d) + Rj ρ Vd

GB = V0 + Ri π(a, a − d) + Ri Vd ,with ρ = Rj/Ri = exp(−r(tj − ti)). A

ordingly, modi�
ations in pro�ts implied by swit
hing fromthe original poli
y to either A or B are:
G − GA = Rj (π(b, b − d) − π(b, b − c) + Vd − ρπ(b, b − d) − V1 − ρVd)

G − GB = Ri (π(a, a − c) − π(a, a − d) + V1 + ρπ(b, b − d) + ρVd − Vd) .As a 
onsequen
e, we have the following identity:
π(a, a − c) + π(b, b − d) − π(a, a − d) − π(b, b − c) =

1

Rj
(G − GA) +

1

Ri
(G − GB) .Under Assumption 3, the left-hand side is negative. If the inequality in (11) is stri
t, it is evenstri
tly negative. This implies that one at least of GA or GB is stri
tly larger than G.If equality holds (11) and the poli
y ICP is assumed to be optimal, then GA = GB = G andpoli
ies A and B are optimal as well.Consequen
es of Lemma 6 on the optimality of poli
ies 
an be stated as:Corollary 6. Consider an impulse 
ontrol poli
y ICP whi
h is su
h that there exists i and j with

i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi. If Assumption 3 holds in the stri
t sense (12), then ICP
annot be optimal.A.2. Dynami
 Programming and Traje
toriesIn this appendix, we propose a te
hni
al result whi
h is useful in a variety of situations. This
omparison of traje
tories is similar to Lemma 6 but it is provided by the appli
ation of the Dynami
Programming prin
iple of Theorem 1.Before stating the result, we need some preliminary explanations. Assume that a poli
y P issu
h that xi+1 ≥ xi. Let δt = τ(xi − Ii, xi). Consider the following modi�
ations of the referen
epoli
y P :Poli
y A (remove the harvesting at ti)for k < i, tAk = tk, IA
k = Ik;for k ≥ i, tAk = tk−1 − δt, IA

k = Ik−1. 17
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Figure 2: The original poli
y and its modi�
ations A and BPoli
y B (
opy on
e the harvesting o

urring at ti)for k ≤ i, tBk = tk, IB
k = Ik;for k > i, tBk = tk+1 + δt, IB

k = Ik+1.Poli
y C (reprodu
e in�nitely the harvesting o

urring at ti)for k < i, tCk = tk, IC
k = Ik;for k ≥ i, tCk = ti + (k − i)δt, IC

k = Ii.Assume now that the poli
y P is su
h that xi+1 ∈ (x(t+i−1), xi], where by 
onvention, t−1 = 0 inthe 
ase i = 1. In that 
ase, there exists a time T = ti − τ(xi+1, xi) su
h that x(T ) = xi+1. Asabove, let δt = τ(xi − Ii, xi) and de�ne the poli
ies A, B and C exa
tly as above.These poli
ies are illustrated in Figure 3 a) in the �rst 
ase, and b) in the se
ond one.We 
an now state the result:Lemma 7. Consider an impulse 
ontrol poli
y P whi
h is su
h that either xi ∈ (x(t+i ), xi+1] or
xi+1 ∈ (x(t+i−1), xi] for some i. Then, the gain of poli
y P is smaller than that of poli
ies A or C
onstru
ted above.Proof. Assume �rst that poli
y P is su
h that xi ∈ (x(t+i ), xi+1], whi
h implies xi+1 ≥ xi. Let
GP , GA, GB and GC be the total pro�ts for poli
ies P, A, B and C. Denote with V0 the 
urrent-valuegains asso
iated with the part of the traje
tory before ti (whi
h is 
ommon to all these poli
ies)and let Gπ = V0 + e−rtiG̃π for poli
ies π ∈ { P, A, B, C }. It is easy to see that

G̃P = π(xi, xi − Ii) + e−rδtG̃A

G̃B = π(xi, xi − Ii) + e−rδtG̃P

G̃C = π(xi, xi − Ii) + e−rδtG̃C .18
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Figure 3: The original poli
y ICP and its modi�
ations A, B and C. The triangle represents the remainder of thetraje
tory, whi
h is 
ommon to ICP, A and B, up to a shift in time.Consequently, we have the identity: G̃P − G̃B = e−rδt(G̃A − G̃P ). This implies that G̃P ≤
max(G̃A, G̃B). Next, if we have G̃P ≤ G̃B , then we have G̃B ≤ π(xi, xi − Ii) + e−rδtG̃B sothat:

G̃B ≤
π(xi, xi − Ii)

1 − e−rδt
= G̃C .This proves the statement.Consider now the 
ase xi+1 ∈ (x(t+i−1), xi]. As argued above, the time T = ti − τ(xi+1, xi) issu
h that x(T ) = xi+1. Let G̃i be the 
urrent-value gains of the di�erent poli
ies at time t = T . Itis 
lear that:

G̃P = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃A

G̃B = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃P

G̃C = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃C .As a result, we have the same identity: G̃P − G̃B = e−rδt(G̃A − G̃P ), and the rest of the previousreasoning applies.A.3. Proof of Theorem 2The proof is separated into two 
ases. If x0 is �small enough�, the proof is provided by traje
tory
omparison arguments. For the 
ase of �large� x0, the proof 
onsists in embedding the optimizationproblems (AP) and (TP) into a more general optimization problem, then solving this more generalproblem. The solution turns out to be provided by (AP) and (TP), and satisfy the dynami
programming equation.Throughout the rest of this se
tion, Assumptions 1 and 2 hold, so that the fun
tion G is wellde�ned, and Assumption 4 is assumed to hold as well, so that the optimal values for (AP), x∗ and
x̄∗, are well de�ned. 19



Let w(·) be de�ned, as in (14), as:
w(x) =







G(x∗, x̄∗, x) if x < x̄∗

e−rτ(x,x∗(x)) [π(x∗(x), x∗(x) − y∗(x)) + G(x∗, x̄∗, y∗(x))] if xsup ≥ x ≥ x̄∗

(30)where (x∗(x), y∗(x)) is any solution of the problem (TP) with initial population x0 = x.The following result will be useful for the proof. Consider problem (AP). Its solution does notdepend on the initial sto
k value x0:Lemma 8. Assume that (x∗, x̄∗) solves (AP) for some value of xs > x0 > 0. Then it solves (AP)for every value of x0.Proof. The result follows from the fa
t that for all x0, x1:
G(x, x̄, x0) = e−rτ(x0,x1) G(x, x̄, x1) .Therefore the two fun
tions are proportional, with a proportionality fa
tor whi
h is stri
tly positiveif 0 < x0 < xs and 0 < x1 < xs. The problems (AP) for x0 and (AP) for x1 have therefore thesame solutions. If x1 = 0, or if x1 = xs and limy↑xs

τ(x, y) = +∞, then G = 0 and any (x∗, x̄∗)maximizes it.A.3.1. Proof for x0 < x̄∗Lemma 9. If Assumptions 3 and 4 hold, then the fun
tion w(x0) solves the dynami
 programmingequation (7) for all x0 < x̄∗.A

ording to Theorem 1, the value fun
tion of problem (P) veri�es:
v(x) = max

t≥0
0≤y≤φ(t,x)

e−rt [π(φ(t, x), φ(t, x) − y) + v(y)] (31)
= max

{

max
0≤y≤x

[π(x, x − y) + v(y)] , (32)
max
x̄,y;

x<x̄≤xs
0≤y≤x̄

e−rτ(x,x̄) [π(x̄, x̄ − y) + v(y)]

}

. (33)This breakdown is obtained by separating the 
ase t = 0 (expression (32)) from the 
ase t > 0,and performing the 
hange of variable t = τ(x, x̄) in (33). This 
hange of variable maps the timeinterval t ∈ (0,+∞) to the interval on populations x̄ ∈ (x, xs) or x̄ ∈ (x, xs], depending on whether
τ(x, y) diverges or not when x ↓ 0.We must show that the fun
tion w(x), de�ned in (30), is a solution of Equation (31).By assumption, x < x̄∗. Repla
ing v(y) by its value in (31), the right-hand side 
an be written

20



as:
M = max

{

max
0≤y≤x

[π(x, x − y) + G(x∗, x̄∗, y)] , (34)
max

x<x̄≤xs
0≤y<x̄∗

e−rτ(x,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] , (35)
max

x<x̄≤xs
x̄∗≤y≤x̄

e−rτ(x,x̄)

[

π(x̄, x̄ − y) (36)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

]}

.We re
ognize in the term (35) the problem (TP). We prove �rst that this is the largest of the three.Consider, for some y = y0, the value in bra
kets in (36). It 
orresponds to a poli
y P with twoharvests x̄ → y0 and x∗(y0) → y∗(y0). Two 
ases may happen, a

ording to whi
h of x̄ and x∗(y0)is the largest.Case x̄ ≥ x∗(y0): in this 
ase, these two harvests are overlapping (sin
e y∗(y0) < x̄∗ ≤ y0), inwhi
h 
ase Lemma 6 applies. The poli
y P is dominated by at least one of two modi�
ations. If thedominating poli
y is the one ex
luding the se
ond harvest, then its value is present in (35) when y hasthe value y∗(y0). If the dominating poli
y is the one with an additional harvest, then it is obvious(see for instan
e the proof of Lemma 7) that the poli
y with a 
y
li
al harvesting with interval
[x̄∗, y] is even better. But this poli
y provides a gain equal to π(x̄, x̄ − y) + e−τ(y,x̄∗)G(y, x̄∗, y) ≤
π(x̄, x̄−y)+e−τ(y,x̄∗)G(x∗, x̄∗, y). Poli
y P is therefore again dominated by some poli
y representedin (35).Case x̄ < x∗(y0): in this 
ase, Lemma 7 applies, and poli
y P is dominated by at least one oftwo modi�
ations. Either the dominating poli
y is the modi�
ation �A� without a se
ond harvest:its gain is one of the values in (35). Or the dominating poli
y is the one with a 
y
li
al harvesting.The reasoning above then applies and there is a value in (35) whi
h dominates the value in (36).We have shown that (36) is smaller than (35).Next, we show that (34) is dominated by (35). Ea
h y in (34) 
orresponds to some poli
y Py forwhi
h the two �rst harvests are x → y and x̄∗ → x. Sin
e x is smaller than x̄∗, we are on
e morein the situation of Lemma 7. The poli
y Py is therefore dominated: either by the poli
y A whi
h
onsists in dire
tly applying the 
y
le with interval [x∗, x̄∗], or by the 
y
li
al poli
y with interval
[y, x]. This one is in turn dominated by the 
y
li
al poli
y A a

ording to Assumption 4. In both
ases, Py is dominated by C. Sin
e the gain asso
iated with C is present in (35) (with x̄ = x̄∗ and
y = x∗), the term in (34) is dominated by the term in (35).At this stage, we have proved that (35) dominates the two other terms, so that:

M = max
x<x̄≤xs
0≤y<x̄∗

e−rτ(x,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] .It now remains to be proved that the maximum in the right-hand side is rea
hed at x̄ = x̄∗ and
y = x∗. Ea
h value of the right-hand side is the gain of some poli
y P for whi
h the two �rstharvests are x1 = x̄ and x2 = x̄∗. Whether x̄ < x̄∗ or x̄ > x̄∗, the appli
ation of Lemma 7 impliesthat P is dominated: either by poli
y �A� whi
h has the value G(x∗, x̄∗, x), or by poli
y �C� whi
hhas the value G(y, x̄, x) < G(x∗, x̄∗, x) by Assumption 4 and Lemma 8.21



The value of M is readily seen to be e−rτ(x,x̄∗)G(x∗, x̄∗, x̄∗) = G(x∗, x̄∗, x) = w(x). The fun
tion
w solves the Bellman equation for x < x̄∗.A.3.2. Proof for x0 ≥ x̄∗Lemma 10. If Assumptions 3 and 4 hold, then the fun
tion w(x0) solves the dynami
 programmingequation for all xs ≥ x0 ≥ x̄∗.Proof. Repla
ing v(y) by its value in (31), the right-hand side 
an be written as:

M ′ = max

{

max
0≤y<x̄∗

[π(x0, x0 − y) + G(x∗, x̄∗, y)] , (37)
max

x̄∗≤y≤x0

[

π(x0, x0 − y) (38)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

]

,

max
x0<x̄≤xs
0≤y<x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] , (39)
max

x0<x̄≤xs
x̄∗≤y≤x̄

e−rτ(x0,x̄)

[

π(x̄, x̄ − y) (40)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

]}

.Following the reasoning in proof of Lemma 9, the terms (38) and (40) are respe
tively dominatedby (37) and (39). There remains:
M ′ = max

{

max
0≤y≤x̄∗

[π(x0, x0 − y) + G(x∗, x̄∗, y)] ,

max
x0<x̄≤xs
0≤y≤x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)]

}

= max
x0≤x̄≤xs
0≤y≤x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] .This is the de�nition of Problem (TP). The solution is therefore (x∗(x0), y
∗(x0)), whi
h 
on
ludesthe proof.A.4. Proof of Theorem 3The statement i) of Theorem 3 is a dire
t 
onsequen
e of Theorem 2.For statement ii), we need the following result, whi
h is a 
orollary of Assumption 3 andLemma 6.Lemma 11. If Assumption 3 holds, then for every solution to problem (P) whi
h is not 
y
li
al,there exists a 
y
li
al solution with the same value.22



Proof. It is �rst ne
essary to 
hara
terize what a non-
y
li
al solution may be. From the de�nitionof 
y
li
al poli
ies in Se
tion 3.1, it 
an be seen by inspe
tion (see also Figure 1) that the set ofpossible values for the population x(t) is made of at most two intervals in
luded in [0, xs], andthat every single value a) is either rea
hed on
e only, b) or is rea
hed an in�nite number of timesa

ording to a periodi
 sequen
e s1, s1 + T, s1 + 2T, . . . for some T > 0, 
) or is 0. A solutionwhi
h is not 
y
li
al would therefore: i) either rea
h population values in more than three disjointintervals, ii) or rea
h some value v 6= 0 a number of times whi
h is neither 1 nor in�nity, iii) orrea
h some value v 6= 0 a

ording to a sequen
e of instants whi
h is not periodi
.The �rst step is to ex
lude non-
y
li
al solutions to (P) whi
h are su
h that x(s) = x(t) forsome s < t. For su
h a poli
y (A), 
onsider the smallest su
h t. Let (B) be the poli
y whi
h 
onsistsin performing the same harvests as (A) up to time t, next applying the optimal 
y
li
al poli
y withinitial population x(t) but shifted in time by t units. The values rea
hed by poli
y (B) are rea
hedeither on
e or an in�nite number of times at periodi
 intervals. As a 
onsequen
e of Theorem 1,the value fun
tion of poli
y (B) is the same as (A). Therefore, a poli
y whi
h is su
h that ii) or iii)
an be repla
ed by a 
y
li
al one.The se
ond step is to eliminate poli
ies of type i). For su
h poli
ies, there exists some i < jand a sequen
e of values a > b ≥ c > d, su
h that for some i, xi = a, Ii = a − c, and xj = b,
Ij = b− d. A

ording to Lemma 6, su
h a poli
y 
annot be optimal if Assumption 3 stri
tly holds.In the other 
ase, the poli
y 
an be repla
ed with another poli
y with the same total pro�t butwith one less harvest. If this poli
y is not 
y
li
al, an indu
tion is applied to 
onstru
t a 
y
li
alpoli
y whi
h produ
es the same pro�t as the original one.A

ording to this lemma, we know that we 
an restri
t our attention to 
y
li
al solutions of(P). Su
h solutions are 
hara
terized by Theorem 2. Their 
y
li
al part is given by an harvestinginterval [x∗, x̄∗] whi
h is ne
essarily an interior solution of (AP).Finally, statement iii) is a 
onsequen
e of statement ii): if (P) had a solution, the solution of(AP) would be a non-diagonal solution.A.5. Proof of Proposition 4Proof. First, observe that the identity π(x, 0) = 0 implies that for all x, πx(x, 0) = 0 and
πxx(x, 0) = 0. Taking this into a

ount and developing G in a neighborhood of the diagonal
x = x̄ = x using a Taylor series, we obtain:

G(x + h, x + k, x0) ∼= G(x, x, x0) +
F (x)

r
e−rτ(x0,x)B(x, h, k), (41)where, introdu
ing ǫ = h − k,

B(x, h, k) =
ǫ

2

[

πII(x, 0) −
r − F ′(x)

F (x)
πI(x, 0)

]

+ h

[

r − F ′(x)

F (x)
πI(x, 0) + πxI(x, 0)

]

.Any maximum xm of the fun
tion G(x, x, x0) satis�es the �st-order 
ondition B(xm, h, h) = 0 forsu�
iently small values of h. Therefore,
0 =

r − F ′(xm)

F (xm)
πI(xm, 0) + πxI(xm, 0) .23



Consequently,
B(xm, h, k) =

ǫ

2

[

πII(xm, 0) −
r − F ′(xm)

F (xm)
πI(xm, 0)

]

=
ǫ

2
(πII + πxI)(xm, 0) .From Lemma 1 ii), adapted to the stri
t inequality in (12), we know that (πII + πxI)(xm, 0) > 0.Therefore, for any small deviations h and ǫ > 0 towards the interior of the domain, B(xm, h, h−ε) >

0, and we 
on
lude that there are values of G(x, x̄, x0) whi
h are larger than G(xm, xm, x0). Thesolution to (AP) thus 
annot be on the diagonal.A.6. Proof of Proposition 5First of all, we 
an rule out solutions of (AP) with x = 0, by assumption. We 
an also rule outsolutions with x̄ = xs be
ause, under the assumption, limx↓0 τ(x, y) = +∞, whi
h implies in turnthat G(y, xs, x0) = 0.Next, we rule out interior solutions. A

ording to Lemma 2, spe
ialized to integral gain fun
-tions, an interior solution 0 < x < x̄ < xs should satisfy the system of equations:
γ(x) =

r

F (x)

e−rτ(x,x̄)

1 − e−rτ(x,x̄)

∫ x̄

x

γ(u) du (42)
γ(x̄) =

r

F (x̄)

1

1 − e−rτ(x,x̄)

∫ x̄

x

γ(u) du . (43)Here, the 
onstant x0 is still arbitrary. It is easily seen that the system of equations (42)�(43) isequivalent to (44)�(45), where:
γ(x)F (x)e−rτ(x0,x) = γ(x̄)F (x̄)e−rτ(x0,x̄) (44)

γ(x)F (x) − r

∫ x

x0

γ(u) du = γ(x̄)F (x̄) − r

∫ x̄

x0

γ(u) du . (45)Condition (44) is in turn equivalent to Gd(x) = Gd(x̄), while (45) 
an be written as ϕ(x) = ϕ(x̄),with the de�nition:
ϕ(x) =

1

r
γ(x)F (x) −

∫ x

x0

γ(u) du .It is 
onvenient here to pi
k as x0 the value xm provided by the hypothesis. For this 
hoi
e, wehave Gd(xm) = ϕ(xm) = γ(xm)F (xm)/r. We now prove that x < xm, then ϕ(x) < Gd(x) and if
x > xm, then ϕ(x) > Gd(x). Indeed, di�erentiation of ϕ readily gives:

ϕ′(x) = G′
d(x) erτ(xm,x) .The value of e−rτ(xm,x) is positive and larger than 1 if xm > x, and is smaller than 1 if xm < x.But a

ording to the hypothesis, G′

d(x) ≥ 0 if xm > x and G′
d(x) ≤ 0 if xm < x. All these fa
ts�nally imply that ϕ′(x) ≤ G′

d(x) for all x. This in turn implies the property stated above.But then for any x < x̄ su
h that Gd(x) = Gd(x̄), the hypothesis implies x < xm < x̄. Therefore,we have:
ϕ(x) > Gd(x) = Gd(x̄) > ϕ(x̄) ,24



whi
h ex
ludes the possibility that ϕ(x) = ϕ(x̄). We have therefore proved that no interior solutionexists.There remain the solutions on the boundary x = x̄. Again appealing to the hypothesis, themaximum on this boundary, and therefore the global maximum, is x = x̄ = xm. This 
on
ludesthe proof.
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