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The Renewable Resoure Management Nexus:Impulse versus Continuous Harvesting Poliies✩Alain Jean-Mariea, Mabel Tidball∗,b, Mihel Moreaux, Katrin ErdlenbruhdaINRIA and UMR LIRMM, 161 Rue Ada, 34392 Montpellier Cedex 5, Frane.bINRA and UMR LAMETA, 2 plae P. Viala, 34060 Montpellier Cedex 1, Frane.Toulouse Shool of Eonomis, IDEI and UMR LERNA, 21 allée de Brienne, 31 000 Toulouse, Frane.dCemagref and UMR G-EAU, 361 rue JF Breton BP 5095, 34196 Montpellier Cedex 5, Frane.AbstratWe explore the link between ylial and smooth resoure exploitation. We de�ne an impulseontrol framework whih an generate both ylial solutions and steady state solutions. For theylial solution, we establish a link with the disrete time model by Dawid and Kopel [1℄. Forthe steady state solution, we explore the relation to Clark's [2℄ ontinuous ontrol model. Ourmodel an admit onvex and onave pro�t funtions and allows the integration of di�erent stokdependent ost funtions. We show that the strit onvexity of the pro�t funtion is only a speialase of a more general ondition, related to submodularity, that ensures the existene of optimalylial poliies.Key words: optimal ontrol, impulse ontrol, renewable resoure eonomis, submodularityJEL lassi�ation: C61, Q2.1. IntrodutionThere are two opposing types of harvesting poliies for renewable resoures suh as a �shery ora forest. The �rst is a ontinuous harvesting poliy. In a ontinuous time model, at eah point oftime, some portion of the population is harvested. Thus the size of the population never hangesabruptly although the time derivative of the population may be disontinuous. Numerous examplesof suh poliies have been given by Clark [2℄,[3℄ for �sheries. The Faustmann harvesting poliyfor a balaned forest also belongs to this type: only the trees having reahed the optimal fellingage are ut. At the other extreme of the spetrum an impulse poliy onsists in harvesting somesigni�ant part of the population at disrete points of time while leaving the population to evolvein its natural environment between any two onseutive harvest dates. An example is Faustmann'soptimal utting poliy of a single, even-aged, forest stand.At an aggregate level, optimal impulse poliies are quite rare for two main reasons. The �rstbeing that renewable resoures are generally sattered all over the world with spei� harateristisso that synhronized impulse harvesting of so many soures is unlikely. The seond reason is that an
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aggregate impulse poliy would indue hikes in the prie path, thus opening the door for arbitrageopportunities when stokpiling osts are high. The arbitrage possibility stems from the very fatthat stokpiling osts are nil for the resoures left unexploited. As a result, the prie hikes may bearbitraged by moderately hanging the harvest date at a low opportunity ost. However at a mirolevel suh impulse poliies may be optimal, or pro�t maximizing strategies.Termansen [4℄ proposed to onvert Clark's standard ontinuous ontrol model (with one statevariable) into an impulse ontrol model by simply hanging the deision variable: instead of theharvest rate, the ontrol is the harvest amount and the harvest times. Using numerial solutionswith a large but �nite time horizon, she showed that this impulse ontrol model may generatedi�erent types of extreme harvesting regimes: those similar to Faustmann-like rotations and thosesimilar to a steady state solution (see also Touza-Montero and Termansen [5℄ and Tahvonen [6℄,who investigates a similar question in an age-strutured forestry model). However, Termansen onlyexplored the link between the optimal ylial behavior and the Clark-like solutions in the spei�ase where harvest osts are independent of stok levels.Our main objetive is to disuss these relationships more systematially. We revisit Termansen'simpulse ontrol model with in�nite time horizon and solve it ompletely in a very general ase, withgeneral population growth and stok-dependent ost funtions. We haraterize the optimal solutionby reduing it to two oupled optimization problems with two variables eah. This allows us toformulate onditions under whih optimal harvesting behavior is ylial or smooth.The literature on�rms that yles in deterministi models1 may our for various reasons. Indisrete time models, Dawid and Kopel [1, 7℄ showed that stritly onvex gain funtions may leadto optimal ylial solutions, in the absene of stok e�ets. Liski et al. [8℄ demonstrated the o-urrene of yles in a model with inreasing returns to sale and laking adjustment osts, equallyin the absene of stok e�ets. Finally, in early appliations in �sheries eonomis, Hannesson [9℄suggested the pertinene of so-alled pulse-�shing solutions2 and explained their existene by in-reasing returns to sale and the presene of age lasses in the population. But also in ontinuoustime models, small modi�ations of the standard assumptions may lead to ylial solutions. Lewisand Shmalensee [10, 11℄ found that yles an be optimal in presene of inreasing returns to sale,stok e�ets and modest re-entry osts. Wirl [12℄ showed that yles are possible in a model withtwo state variables and stok e�ets (see Clark, Clarke and Munro [13℄.3), by simply introduing aquadrati (instead of linear) ost funtion.Like Wirl, and in ontrast to most other models with optimal ylial harvesting poliies (seefor example Dawid and Kopel [1℄, Liski et al. [8℄, Lewis and Shmalensee [10, 11℄), we suppose theharvest ost funtions to be stok-dependent, suh as the osts proposed by Clark [2℄.We show that the onditions for the existene of ylial solutions involve a lose ombinationof the growth funtion and the ost funtion, thereby emphasizing that the onvexity of the ostfuntion, or its dependene on the stok level, are not the only issues worth onsidering. We thendisuss how a Clark-like steady-state solution emerges as a limit of small and frequent harvestoperations in our model. We also show that we an reprodue and generalize Dawid and Kopel'sresults, although the latter were obtained with a disrete-time model (whereas time is ontinuousin our model) and without stok e�ets.1We do not onsider stohasti models in the following.2Pulse �shing and hattering strategies imply very small jumps in the state variable.3In this model the harvest-gain funtion is onave, whih, aording to Wirl, renders ylial solutions moredi�ult to our. 2



The artile is strutured as follows. We present the impulse ontrol problem in setion 2, weharaterize the type of solution in setion 3 and the optimal yle in setion 4. We then establishthe link to Clark's ontinuous ontrol solution and to Dawid and Kopel's disrete ontrol model insetion 5. The last setion is devoted to the onlusion.2. The impulse ontrol model2.1. The ModelThe resoure dynamisWe onsider a renewable resoure, for whih dynamis, in the absene of any harvest, is givenby:
ẋ(t) = F (x(t)) , t ≥ 0, (1)where x(t) is the size of the population at any time t and F , stationary through time, is the growthrate funtion. The funtion F is assumed to satisfy the following onditions.Assumption 1. There exist real numbers xsup and xs suh that 0 < xs < xsup < +∞. Thefuntion F : (0, xsup) → R is positive over the interval (0, xs) and negative over the interval

(xs, xsup), with F (0) = F (xs) = 0, where limx↓0 F (x) = F (0). The funtion F is measurable andbounded above. It is assumed that the di�erential equation (1) admits a unique solution for everyinitial stok x0 ∈ (0, xsup).The quantity xsup is the supremum of the arrying apaity of the environment. The long-runmaximum sustainable level is xs, the level to whih the population is onverging for any x0 suhthat 0 < x0 < xsup.The harvesting proessWe are interested in the optimal eonomi exploitation of this resoure by a disrete harvestproess, i.e. within the framework of impulse ontrol models.4Aordingly, we de�ne an impulse exploitation poliy IP := {(ti, Ii), i = 1, 2, . . .} as a sequeneof harvesting dates ti and instantaneous harvests Ii, one for eah date. The sequene of dates maybe empty, �nite or in�nite. It is suh that 0 ≤ t1, and ti ≤ ti+1, i = 1, 2, . . . and limi→+∞ ti = +∞.By onvention, we shall assume that if the sequene is �nite with n ≥ 0 values, then ti = +∞ forall i > n.The sequene of harvests must satisfy:
Ii ≥ 0 and xi − Ii ≥ 0 , (2)where

xi = lim
t↑ti

x(t) , with x1 = x0 given if t1 = 0, (3)and suh that the following onstraints hold:
ẋ(t) = F (x(t)) for ti < t < ti+1 with x(ti) = xi − Ii, i = 1, 2, . . . (4)4Impulse ontrol poliies in in�nite horizon onsist in an unbounded sequene of deisions. For the disussion ofimpulse ontrol models, see for example Léonard and Long [14℄, Seierstaed and Sydsaeter [15℄.3



ẋ(t) = F (x(t)) for 0 < t < t1 with x(0) = x0 if t1 > 0. (5)In other words: xi is the size of the population just before the harvesting date ti, and xi− Ii its sizejust after that same date. If t1 = 0, the population x1 is supposed to be inherited from the past,and denoted by x0. Harvests an not be negative nor exeed total population size. The onditions(2)�(5) de�ne the set of feasible IPs, denoted by Fx0 .The harvester's pro�tsMonetary pro�ts generated by any harvest depend upon the size of the ath and the size of thepopulation at the athing time. We assume that the pro�t funtion is stationary through time sothat whatever ti, Ii and xi, the urrent pro�ts at time ti amount to π(xi, Ii). The pro�t funtionis assumed to have the following standard properties.Assumption 2. The funtion π(x, I) is de�ned on the domain D := {(x, I), x ∈ (0, xsup), I ∈
[0, x]}. It is of lass C1, positive and bounded, and suh that π(x, 0) = 0, ∀x ∈ (0, xsup). Thederivative πI(x, I) := (∂π/∂I)(x, I) admits a limit when I ↓ 0 for all x ∈ (0, xsup).Pro�ts are disounted using a onstant instantaneous interest rate, denoted by r, r > 0.The manager's objetive is to hoose some poliy maximizing the sum of the disounted pro�ts,that is, to solve the problem (P):(P) supIP∈Fx0

Π(IP) :=

∞
∑

i=1

e−rti π(xi, Ii) .It is assumed here that the funtion Π is well de�ned over the whole set Fx0 .52.2. The Dynami Programming PrinipleWe use the Dynami Programming approah to solve our problem. The following theoreminsures the existene of a unique value for the problem.Theorem 1. The value funtion
v(x) = supIP∈Fx

Π(IP) (6)is the unique solution of the following variational equation:
v(x) = sup

y∈[0,xsup)
t≥0

e−rt [π(φ(t, x), φ(t, x) − y) + v(y)] , (7)where φ(t, x) is the trajetory of the system at time t, solution of the dynamis (1) with x(0) = x.For this standard proof of dynami programming see Davis [16, Theorem (54.19), page 236℄.5Observe that we formulate our problem with a �sup� and not a �max� beause we are interested in the possibilitythat the maximum is not reahed inside the set Fx0
. 4



3. Redution to Cylial PoliiesIn this setion we investigate the impulse ontrol model and propose an approah for harater-izing its solutions. Our approah is to determine the struture of solutions under the quite generalassumptions of the previous setion. The prie to pay for this generality is that our results do notguarantee the uniqueness of solutions, whih must be examined on a ase-by-ase basis.Our line of argument will be the following. First of all, the Dynami Programming prinipleimplies that, under any optimal poliy for Problem (P), if the stok reahes some level alreadyattained in the past, the ation hosen in the past (to harvest or not to harvest) should stillbe optimal. This mere fat ombined with the positive growth of the stok's natural dynamistends to selet poliies that are ylial in the sense that they let the stok grow to some level,harvest it down so some other level, and repeat. However, it may still be that under the optimalpoliy, the stok never reahes twie the same level. We show that when the gain funtion has aertain submodularity property, suh trajetories an not be optimal. Optimal poliies are thereforeessentially ylial. Moreover, joining the optimal yle must be done with at most one harvest.The optimization problem is then redued to �nding: a) what is the optimal yle; b) what isthe optimal way to reah the optimal yle from a given initial stok. Finding the optimal yle isa relatively simple optimization problem whih we all the �Auxiliary Problem�. But the solutionto this problem may orrespond to degenerate yles, whih we interpret as ontinuous harvestingpoliies à la Clark. We show in the next setion that the submodularity assumption is again thekey to determine whether the optimal yle is a true yle or a degenerate one.We proeed now with the de�nitions and the preise statements of these priniples.3.1. Cylial Poliies and the Auxiliary ProblemCylial poliies. A ylial poliy has two omponents: a yle whih is haraterized by two values
x and x̄ with x < x̄, or equivalently by an interval [x, x̄]; and a transitory part whih desribes howthe trajetory evolves from the initial stok to the yle. The transitory part onsists in, at most,one harvest, suh that the remaining population is less than x̄. We �rst onentrate on the yle.Hene, a yle has two main parameters, whih are suh that 0 ≤ x < x̄ ≤ xs.6 When in itsylial part, a poliy ats as follows: a) let the population grow to x̄; b) harvest until x; andrepeat. Suh a poliy applies only to initial populations x0 ≤ x̄. In other words, the transitory partan be dispensed with only for suh an initial population.Gain under a ylial poliy. We will denote by G(x, x̄, x0) the value of disounted pro�ts in apoliy without the transitory part, applied to an initial population of x0. The omplete de�nitionof the funtion G involves several ases, orresponding to the limit ases for x̄ and x.It is onvenient to de�ne the funtion τ(x, y) as the time neessary for the dynamis to go fromvalue x to y, x ≤ y. It turns out that for all 0 < x ≤ y < xs:

τ(x, y) =

∫ y

x

1

F (u)
du. (8)Sine, by Assumption 1, F (xs) = 0, the integral de�ning τ(x, y) is singular when y = xs. The limitwhen y → xs may therefore be �nite or in�nite, depending on the funtion F . Another feature6Sine x̄ represents the population level until whih the resoure grows before harvesting, there is no point inonsidering x̄ > xs sine the population annot grow to suh a level.5



of Assumption 1 is that F (0) = 0. Consequently, if x(0) = 0, a solution to the dynamis (1) is
x(t) = 0 for all t ≥ 0. This implies the onvention that τ(0, y) = +∞ if y > 0, and τ(0, 0) = 0.7The value of the total pro�t funtion G an be expressed as:i) If 0 ≤ x < x̄ ≤ xs:

G(x, x̄, x0) := π(x̄, x̄ − x)
e−rτ(x0,x̄)

1 − e−rτ(x,x̄)
. (9)The onvention is that: if x = 0, the term exp(−rτ(x, x̄)) should be replaed by 0. Likewise,

exp(−rτ(x, x̄)) and exp(−rτ(x0, x̄)) are 0 if x̄ = xs and limy→xs τ(x, y) = +∞.ii) For x = x̄, Assumption 2 allows to de�ne G by ontinuity as:
G(x, x, x0) = πI(x, 0)

F (x)

r
e−rτ(x0,x) . (10)For the ases x = x̄, the value G is not that of a well-de�ned impulse ontrol poliy, but that ofsome ontinuous harvesting poliy, whih an be seen as a degenerate impulse poliy.Finally, by using the fat that τ(x, y) de�ned in (8) is also de�ned for y ≤ x, expressions (9)and (10) provide values for the funtion G when x0 > x̄ as well. Of ourse, these situations do notorrespond to an implementable harvesting poliy, and the funtion loses its eonomi meaning. Insubsetion 3.3 we will study the transitory part of a ylial poliy for whih the ase x0 > x̄ hasan eonomi meaning.The auxiliary problemHaving de�ned the funtion G(x, x̄, x0) for all 0 ≤ x ≤ x̄ ≤ xs and all 0 ≤ x0 ≤ xs, we nowde�ne the auxiliary problem (AP):(AP) : max

x, x̄; 0≤x≤x̄≤xs

G(x, x̄, x0).Under Assumption 2 it turns out that G is lower semi-ontinuous as a funtion of (x, x̄). Theproblem (AP) has therefore always a solution. For the purpose of the disussion to ome, it isimportant to distinguish the ase where the solution is suh that x = x̄, from the ase where x 6= x̄.We all the �rst situation a �diagonal solution�, and the seond one a �non-diagonal solution�.3.2. Submodularity and Optimal TrajetoriesIn this paragraph, we introdue a submodularity assumption on the pro�t funtion π. Appen-dies A.1 and A.2 provide results on the onsequenes of this assumption on the shape of optimaltrajetories for Problem (P). Consider the following assumption.Assumption 3. The funtion π is suh that:
π(a, a − c) + π(b, b − d) ≤ π(a, a − d) + π(b, b − c) (11)for every d ≤ c ≤ b ≤ a.7This onvention does not mean that limx↓0 τ (x, y) = +∞ in every situation.6



Assumption 3 means that the pro�t generated by a big harvest in a large population, π(a, a−d),augmented by the pro�t resulting from a small harvest in a medium sized population, π(b, b − c),is greater than the sum of pro�ts generated by two medium sized harvests, the �rst in a largepopulation, π(a, a− c), and the seond in a medium sized population, π(b, b − d). At the limit, for
c = b, one big harvest, π(a, a − d), is better than two medium harvests, π(a, a − c) and π(c, c − d),reduing the population to the same level after the harvests, i.e. d. Assumption 3 implies twoessential onsequenes. First, it is more rewarding to harvest a large part of the stok, ratherthan two smaller parts. Seond, at the optimal stok level, regular harvesting poliies are moreworthwhile than irregular poliies, with overlapping stoks.In some situations, we shall refer to a �strit� Assumption 3, meaning that:

π(a, a − c) + π(b, b − d) < π(a, a − d) + π(b, b − c) (12)for every d < c < b < a.The following properties are well-known or easy to hek.Lemma 1. Assume that π satis�es Assumption 3. Then:i) Let g(x, y) = π(x, x − y) be de�ned for 0 ≤ y ≤ x ≤ xsup. Then g is submodular.8ii) If π has seond-order derivatives, then
πxI + πII ≥ 0 .iii) If Assumption 2 holds as well, then the following inequality holds for all z ≤ y ≤ x:

π(x, x − y) + π(y, y − z) ≤ π(x, x − z) . (13)
iv) If π(x, I) = R(I), then R is onvex. Conversely, if R is onvex, Assumption 3 holds.These properties are linked to several eonomi assumptions: Initiating the harvesting proessis ostly (Lemma 1 iii)). Hene, yles are optimal if resoure managers an take advantage ofsome form of eonomies of sale. This is the ase, for instane, if the revenue funtion is onvex,whih is one sub-ondition of Assumption 3 (Lemma 1 iv)) in the ase of stok-independent osts.In addition, when π is linear in I, harvests and resoure stoks are omplementary (Lemma 1

ii)) and hene, any additional harvest, and resulting pro�ts, an only be obtained by waiting andletting the resoure reover, whih omes at a ost. Note that ondition (13), with strit inequality,is lassially required to insure the existene of optimal impulse ontrol poliies (see for instaneDavis [16℄).In ontrast to usual assumptions on the strit onvexity of the pro�t funtion, Assumption 3is more general as it overs the ase of objetive funtions with multiple variables. It applies toonvex-onave pro�t funtions and is independent of any partiular form of the dynamis F (·).8A funtion g(x, y) is submodular if for all a, b, c, d suh that max(c, d) ≤ min(a, b):
g(min(a, b), min(c, d)) + g(max(a, b), max(c, d)) ≤ g(min(a, b), max(c, d)) + g(min(a, b), max(c, d)) .7



3.3. Equivalene between (P) and (AP)Now we are going to show the prinipal relation between problems (P) and (AP). The results ofthis setion are partly based on the property that solutions to Problem (AP) turn out not to dependon x0, as stated in Lemma 8, see Appendix A.3. Consequently, we an talk of solutions (x∗, x̄∗) tothe auxiliary problem (AP) independently of x0. We then make the following assumption:Assumption 4. The problem (AP) has a unique solution, denoted with (x∗, x̄∗), whih is suhthat x∗ < x̄∗.The transitory problemUnder Assumption 4, let us de�ne the following optimization problem (TP), whih formalizesthe �Transitory Problem�. The transitory part of a ylial poliy onsists in a) letting grow thestok until some value x; b) harvesting from x down to y for y ≤ x̄∗; ) applying the yle withthe harvesting interval [x∗, x̄∗] from then on. The question is how to hoose the quantities x and
y. The answer is given by the solutions of the following optimization problem:(TP) : max

x,y;
0≤y≤x≤xs

x0≤x; y≤x̄∗

e−rτ(x0,x) [π(x, x − y) + G(x∗, x̄∗, y)] .The following theorem haraterizes the solutions to the problem (P).Theorem 2. Assume that Assumptions 1�4 hold. Let (x∗(x0), y
∗(x0)) solve the maximization prob-lem (TP). Then the value funtion of (P) is:

v(x0) =







G(x∗, x̄∗, x0) if x0 < x̄∗

e−rτ(x0,x∗(x0)) [π(x∗(x0), x
∗(x0) − y∗(x0)) + G(x∗, x̄∗, y∗(x0))] if xs ≥ x0 ≥ x̄∗.(14)Moreover there exists a solution of (P) whih is ylial and given by:

t1 = τ(x0, x̄
∗), ti = t1 + (i − 1)τ(x∗, x̄∗), i ≥ 1, xi = x̄∗, Ii = x̄∗ − x∗, i = 1, 2, . . . ,if x0 < x̄∗, and
t1 = τ(x0, x

∗(x0)), t2 = τ(y∗(x0), x̄
∗), ti = t2 + (i − 2)τ(x∗, x̄∗), i ≥ 2,

x1 = x∗(x0), I1 = x∗(x0) − y∗(x0), xi = x̄∗, Ii = x̄∗ − x∗, i = 2, . . . ,if x0 ≥ x̄∗.The proof of this result is given in Appendix A.3. The theorem states that any optimal ylialpoliy has a yle part with an harvesting interval [x∗, x̄∗]. It also desribes the nature of thetransitory part of optimal ylial poliies. In the ase x0 < x̄∗, there is no transitory part, andthe yle is joined from the start. In the ase x0 ≥ x̄∗. The transitory part onsists in letting thestok grow until x∗(x0), harvest it down to y∗(x0), then join the yle. The typial form of optimaltrajetories is illustrated in Figure 1.We an now state the following relation between problems (P) and (AP), the proof of whih isprovided in Appendix A.4. 8
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Figure 1: Shape of the optimal trajetory, for x0 > x̄∗ (ase (A)), and x0 ≤ x̄∗ (ase (B))Theorem 3. Let Assumptions 1�3 hold. Then:
i) If Assumption 4 holds as well, then (P) has a solution whih is ylial.

ii) If (P) has a solution, then (P) has a solution whih is ylial, and there exists a solution toproblem (AP) when 0 ≤ x < x̄ ≤ xs.
iii) If the solution of (AP) is on the boundary x = x̄ = x∗, then (P) has no solution.We have therefore shown that there exists a ylial solution to our problem (P) if, and onlyif, the solution to the auxiliary problem (AP) is non-diagonal. In other words, the existene or notof ylial solutions to (P) hinges on the fat that Assumption 4 holds or not. This question isaddressed in the next setion.4. Optimal CylesWe investigate now the problem of loating the solutions to Problem (AP). We have seen thatsolutions always exist, but they may be loated in the interior, or on any of the boundaries x = 0,

x̄ = xs or the diagonal x = x̄.It turns out that ensuring the uniqueness of the solution is not an easy task, even with restritiveyet standard assumptions, as we argue in setion 4.4. We therefore limit our disussion to onditionsrelated to the submodularity Assumption 3. We begin in setion 4.1 with neessary onditions forthe existene of interior solutions and their interpretation. We study the ase of stritly submodularfuntions in setion 4.2, and the ase of funtions both submodular and supermodular in setion4.3. 9



4.1. Interior solutionsNeessary onditions for interior solutions to exist are provided by the �rst order onditions ofthe auxiliary problem, whih we provide as:Lemma 2. If (x, x̄) is a solution to the auxiliary problem (AP) with 0 < x < x̄ < xs (interiorsolution), then the �rst order onditions are given by:
πI =

r

F (x)

e−rτ(x,x̄)

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) , (15)

πx + πI =
r

F (x̄)

1

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) . (16)By rearranging these onditions, we obtain the equivalent:

πI
F (x)

r
=

e−rτ(x,x̄)

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) , (17)

dπ

dx
= πx + πI = πI

F (x)

F (x̄)e−rτ(x,x̄)
. (18)The �rst ondition states that, at the optimum, the marginal gain from harvesting the resoure,weighted with the growth potential at the new resoure stok as ompared to the interest rate,should equal the value of the remaining resoure,9 outome of a maximized rotational harveststream. The seond ondition states that the marginal gain derived from the stok e�et is equal tothe marginal gain from harvesting augmented by a orreting fator, whih depends on the growthdi�erential at the lower and upper limit of the rotational yles, the latter being disounted overtime. More preisely, the greater this growth di�erential, the greater the marginal gain due to theresoure stok.4.2. Strit submodularity of the gain funtionIn this setion, we show that Assumption 3 in the strit sense, together with some tehnialassumptions, is su�ient to exlude diagonal solutions to Problem (AP).Proposition 4. Assume that all maxima xm of the funtion x 7→ G(x, x, x0) are suh that 0 <

xm < xs. If the funtion π has seond-order derivatives and satis�es Assumption 3 in the stritsense (12), then all solutions to Problem (AP) are non-diagonal.The proof is deferred to Appendix A.5.4.3. Exat modularityWe now turn to the ase where Assumption 3 holds with equality in Equation (11), whihamounts to require that the funtion π(x, x− y) be both sub- and supermodular. Using Lemma 1,it is not di�ult to see that if π admits seond-order derivatives, and given that π(x, 0) = 0, thenit must be of the form:
π(x̄, x̄ − x) =

∫ x̄

x

γ(x) dx (19)9Whih is alled the site value in the forest eonomis literature.10



for some integrable funtion γ(·). We shall prove that, under moderate onditions, the problem(AP) does not admit non-diagonal solutions for suh ost funtions.Going bak to the de�nitions of Setion 3.1, we have (see (10)):
Gd(x) := G(x, x, x0) =

1

r
γ(x)F (x)e−rτ(x0 ,x) ,where the hoie of x0 has no impat on the solution of the optimization problem, as we have seen.Proposition 5. Assume that the funtion Gd(·) is of lass C1, and is inreasing, then dereasingfor x ∈ (0, xs), with an unique maximum at xm. Assume that the growth funtion F (·) is suh thatthe integral in (8) diverges when x ↓ 0. Assume �nally that G does not have a maximum at x = 0.Then the solution of Problem (AP) is unique and given by x = x̄ = xm.The proof is deferred to Appendix A.6.4.4. An example of multiple interior solutions to Problem (AP)A ase where Problem (AP) has two distint interior solutions is onstruted as follows. Thestandard logisti funtion F (x) = x(1 − x) is hosen as the growth funtion. It is onave. Thegain funtion is hosen as π(x, I) = a(x̄) × I, with, for some onstant A > 0,

a(x) = 1 + min

{

x

100
, A × (x −

2

3
)

}

.It an be easily veri�ed that π satis�es Assumption 3, sine the funtion a is stritly inreasing. Fi-nally, set r = 0.01. Numerial investigation then reveals that the funtion G(x, x̄, x0) orrespondingto this data has two loal maxima: one with x̄ < 2/3 and one with x̄ > 2/3. The loal optimality ofthe �rst one results from the ombination of a large growth rate with a small gain per yle. Cylesare short for this solution. The seond loal optimum results from the ombination of a smallergrowth rate with a larger gain at eah harvest. The two loal maxima an be given the same valueby setting the onstant A to approximately 1.23.5. Links between Impulse Control Models and Other Control Models5.1. Comparison with Clark's ModelWe may now establish a �rst link between our general impulse ontrol model and the ontinuousontrol model, as proposed by Clark [2℄.Consider a solution of problem (AP) on the boundary x = x̄. The maximization problembeomes:
max

0≤x≤xs

G(x, x, x0),where G is given by (10). The �rst order ondition for this problem is:
πIx(x, 0)F (x) + πI(x, 0)[F ′(x) − r] = 0 . (20)This ondition oinides with the well-known marginal produtivity rule of resoure exploitationwhen πI(x, 0) is the instantaneous pro�t funtion (see for example Clark [2℄ or Clark and Munro11



[3℄). A solution to Equation (20) determines the steady state of the following Clark-like singularoptimal ontrol problem: (CP) max
h(·)

∫ ∞

0
e−rt πI(x(t), 0) h(t) dt ,

ẋ = F (x) − h,for x0 given and 0 ≤ h(t) ≤ hmax for all t. This means that the onditions of a Clark-like steadystate solution an also be triggered by the impulse ontrol model that we propose.5.2. Comparison with Dawid and Kopel's modelIn this setion, we show that Dawid and Kopel's model [1℄ an be embedded within ours, througha judiious hoie of the dynamis, the ost funtion and the disount rate. Then, we explain theorrespondene between the results of [1℄ and ours.5.2.1. Growth funtion and time span assoiated to the growthThe model of Dawid and Kopel is in disrete time. The population dynamis has the form:
xt+1 = f(xt) − ut = min[1, (1 + λ)xt] − utwith xt, ut ≥ 0 ∀t ≥ 0. We proeed by reproduing this behavior for our model. When no harvestingtakes plae, we must have: ẋ(t) = F (x(t)). Suppose:

F (x) = Ax if x < xs = 1 and F (x) = 1 − x if x ≥ 1.It an be veri�ed that this funtion satis�es Assumption 1.10 Integrating the di�erential equation,we �nd that the stok evolves aording to the following funtion:
x(t) = φ(t, x0) = min(x0e

At, 1) .In order to reprodue the dynamis of Dawid and Kopel's disrete-time model, we �x a time duration
∆, and set: xt+1 = φ(∆, xt). The dynamis are equivalent when f(xt) = φ(∆, xt) for all xt, whihis the ase when:

(1 + λ)xt = xte
A∆.We dedue how the marginal growth fator A must be de�ned in terms of Dawid and Kopel's fator

1 + λ:
A =

log(1 + λ)

∆
.Let us ompute the time span neessary for the dynamis to get from x to y in terms of the newnotation: for every x ≤ y ≤ 1,

τ(x, y) =

∫ y

x

1

F (u)
du =

∫ y

x

1

Au
du =

1

A
log

y

x
.10The value of F (x) for x > 1 is arbitrarily hosen to that end.12



5.2.2. Disounted bene�tsFor the undisounted gains π, the orrespondene with Dawid and Kopel's model is made bysetting π(x, I) = R(I). Note that for this partiular form of the gain funtion, Condition (11) isequivalent to the onvexity of R, aording to Lemma 1 iv).Next, the orrespondene for disounting rates in both models is established as follows. Thedisrete-time disount fator being δ and the ontinuous-time disount rate being r, we should have:
δt = e−rt∆, that is: log δ = −r∆. Finally, Dawid and Kopel's introdue a threshold quantity ade�ned as:

a = −
log δ

log(1 + λ)
=

r∆

A∆
=

r

A
.5.2.3. The maximization problemWe proeed with the de�nition of the funtion G whih is the basis of the auxiliary problem(AP). Two ases must be onsidered: diagonal or non-diagonal.Non-Diagonal where x < x̄. In this ase,

G(x, x̄, x0) =
R(x̄ − x)(x0

x̄
)

r
A

1 − (x
x̄
)

r
A

=
R(x̄ − x)(x0

x̄
)a

1 − (x
x̄
)a

. (21)This expression holds even when x̄ = xs = 1 and x = 0.Diagonal where x = x̄. Given that π(x, I) = R(I), we have limI→0 πI(x, I) = R′(0), whene:
G(x, x, x0) = R′(0)

Ax

r

(x0

x

)
r
A

= R′(0)
xa

0

a
x1−a. (22)Dawid and Kopel de�ne the elastiity of gains as the funtion:

ε(x) =
R′(x)x

R(x)
. (23)We have:Lemma 3. The following results hold for all 0 ≤ x ≤ x̄ ≤ 1:

i) If a < 1, then:
0 < ε(x̄ − x) − 1 <

∂G

∂x̄
(x, x̄, x0) < ε(x̄ − x) − a . (24)

ii) If a > 1, then:
ε(x̄ − x) − a <

∂G

∂x̄
(x, x̄, x0) < ε(x̄ − x) − 1 . (25)

iii) If a = 1, then:
1

G(x, x̄, x0)

∂G

∂x̄
(x, x̄, x0) =

1

x̄ − x
(ε(x̄ − x) − 1) > 0 . (26)13



Lemma 4. If a > 1, then
∂G

∂x
< 0 .The proof of these lemmas follows from standard alulations. The fat that ε > 1 follows fromthe onvexity of R and the fat that R(0) = 0.As a onsequene of Lemmas 3 and 4, we have the following optimization results:Lemma 5. The funtion G given by (21) and (22) has the following properties:

i) If a < 1, then there exists a unique (x, x̄), with 0 < x ≤ x̄ = 1, solution to:
max

0≤x≤x̄≤1
G(x, x̄;x0) . (27)

ii) If a > 1, then for all x̄, arg max
0≤x≤1

G(x, x̄;x0) = 0. (28)
iii) If a = 1, then arg max

0≤x≤x̄≤1
G(x, x̄;x0) ∈ [(0, 1)]2 . (29)5.2.4. Relations with the Results by Dawid and KopelAs Dawid and Kopel, we an now show the following results. As long the elastiity of gains ε,averaged over the harvest of one period, is larger than the threshold a, the optimal poliy is to waitand defer harvesting. Inversely, when the average elastiity of gains ε is smaller than a, immediateharvesting is optimal (see [1, Lemma 5℄). When a = 1, the deision maker is indi�erent in hoosingbetween harvesting immediately or harvesting in the next period.Other results of Dawid and Kopel address the question of whether immediate extintion isoptimal or not. These results are reprodued by our analysis as well.6. ConlusionWe have proposed an impulse ontrol framework for the management of renewable resoureswhih is general enough to inlude onave and onvex gain funtions, as well as stok dependentost funtions. The optimal management of the resoure is expressed as optimization problem (P),the solution of whih is shown to satisfy the dynami programming priniple. By introduing thelass of �ylial poliies�, we have redued the solution of Problem (P) to the sequential solutionof two stati optimization problems with two variables eah, whih we an solve. With the helpof the Auxiliary Problem, we an de�ne the optimal yle. With the Transitory Problem, we andesribe the evolution from the initial stok to the yle.Central to our solution framework is the submodularity ondition, whih is neessary for theexistene of yles. This ondition is more general than the strit onvexity of the pro�t funtion,as it also overs the ase of objetive funtions with multiple variables. Thus, the existene ofeonomies of sale is only one possible ondition for the ourrene of yles, whih depends onthe more omplex interation between disounted gains, (stok dependent) ost funtions and thepopulation growth dynamis. 14
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A. AppendixA.1. Submodularity and TrajetoriesWe prove here trajetory omparison results whih are a onsequene of the submodularityAssumption 3. Before stating the results, we need some preliminary explanations.Consider an impulse ontrol poliy ICP whih is suh that there exists i and j with i < j and:
xj − Ij ≤ xi − Ii ≤ xj ≤ xi, that is, overlapping harvests. Denote with a = xi, b = xj, c = xi − Iiand d = xj − Ij . Let ℓ = j − i and δt = tj − ti. Consider the following two modi�ations of thereferene poliy ICP:Poliy A (opy a piee of trajetory from c to b):for k < j, tAk = tk, IA

k = Ik;for k = j, tAj = tj, IA
j = b − c;for k > j, tAk = tk−ℓ + δt, IA

k = Ik−ℓ.Poliy B (remove the piee of trajetory from c to b):for k < i, tBk = tk, IB
k = Ik;for k = i, tBk = tk, IB
k = a − d;for k > i, tBk = tk+ℓ − δt, IB

k = Ik+ℓ.These poliies an be visualized in Figure 2, whih represents the evolution of the population undereah of the three poliies. The triangle represents the rest of the trajetory, whih is the same for allthree poliies, exept for a shift in time. The retangle represents an arbitrary piee of trajetory,whih an possibly exit the range [b, c].11The result is:Lemma 6. Consider an impulse ontrol poliy ICP whih is suh that there exists i and j with
i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi. Then:

i) If Assumption 3 holds in the strit sense (12), then one of poliies A or B onstruted aboveyields stritly larger pro�ts than ICP.
ii) If Assumption 3 holds with equality in (11) and if ICP is optimal, then poliies A and B areoptimal as well.Proof. The disounted pro�ts G assoiated with the original poliy ICP an be written as:

G = V0 + Ri π(a, a − c) + Ri V1 + Rj π(b, b − d) + Rj Vdwhere Ri and Rj are the disounts:
Ri = e−rti Rj = e−rtj ,11The situation where b = c is allowed, in whih ase the piee of trajetory may be empty. In that ase, there isa double harvest at the same instant in time. 16



and where V0, V1 and Vd are the urrent-value gains assoiated with the �rst part of the trajetory,and the piees of the trajetory, respetively, in the intervals (ti, tj) and (tj ,+∞):
V0 =

i−1
∑

k=1

e−rtk π(xk, Ik) V1 =

j−1
∑

k=i+1

e−r(tk−ti) π(xk, Ik)

Vd =

∞
∑

k=j+1

e−r(tk−tj) π(xk, Ik) .The total disounted gains assoiated with poliies A and B are:
GA = V0 + Ri π(a, a − c) + Ri V1 + Rj π(b, b − c) + Rj V1 + Rj ρ π(b, b − d) + Rj ρ Vd

GB = V0 + Ri π(a, a − d) + Ri Vd ,with ρ = Rj/Ri = exp(−r(tj − ti)). Aordingly, modi�ations in pro�ts implied by swithing fromthe original poliy to either A or B are:
G − GA = Rj (π(b, b − d) − π(b, b − c) + Vd − ρπ(b, b − d) − V1 − ρVd)

G − GB = Ri (π(a, a − c) − π(a, a − d) + V1 + ρπ(b, b − d) + ρVd − Vd) .As a onsequene, we have the following identity:
π(a, a − c) + π(b, b − d) − π(a, a − d) − π(b, b − c) =

1

Rj
(G − GA) +

1

Ri
(G − GB) .Under Assumption 3, the left-hand side is negative. If the inequality in (11) is strit, it is evenstritly negative. This implies that one at least of GA or GB is stritly larger than G.If equality holds (11) and the poliy ICP is assumed to be optimal, then GA = GB = G andpoliies A and B are optimal as well.Consequenes of Lemma 6 on the optimality of poliies an be stated as:Corollary 6. Consider an impulse ontrol poliy ICP whih is suh that there exists i and j with

i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi. If Assumption 3 holds in the strit sense (12), then ICPannot be optimal.A.2. Dynami Programming and TrajetoriesIn this appendix, we propose a tehnial result whih is useful in a variety of situations. Thisomparison of trajetories is similar to Lemma 6 but it is provided by the appliation of the DynamiProgramming priniple of Theorem 1.Before stating the result, we need some preliminary explanations. Assume that a poliy P issuh that xi+1 ≥ xi. Let δt = τ(xi − Ii, xi). Consider the following modi�ations of the referenepoliy P :Poliy A (remove the harvesting at ti)for k < i, tAk = tk, IA
k = Ik;for k ≥ i, tAk = tk−1 − δt, IA

k = Ik−1. 17
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Figure 2: The original poliy and its modi�ations A and BPoliy B (opy one the harvesting ourring at ti)for k ≤ i, tBk = tk, IB
k = Ik;for k > i, tBk = tk+1 + δt, IB

k = Ik+1.Poliy C (reprodue in�nitely the harvesting ourring at ti)for k < i, tCk = tk, IC
k = Ik;for k ≥ i, tCk = ti + (k − i)δt, IC

k = Ii.Assume now that the poliy P is suh that xi+1 ∈ (x(t+i−1), xi], where by onvention, t−1 = 0 inthe ase i = 1. In that ase, there exists a time T = ti − τ(xi+1, xi) suh that x(T ) = xi+1. Asabove, let δt = τ(xi − Ii, xi) and de�ne the poliies A, B and C exatly as above.These poliies are illustrated in Figure 3 a) in the �rst ase, and b) in the seond one.We an now state the result:Lemma 7. Consider an impulse ontrol poliy P whih is suh that either xi ∈ (x(t+i ), xi+1] or
xi+1 ∈ (x(t+i−1), xi] for some i. Then, the gain of poliy P is smaller than that of poliies A or Construted above.Proof. Assume �rst that poliy P is suh that xi ∈ (x(t+i ), xi+1], whih implies xi+1 ≥ xi. Let
GP , GA, GB and GC be the total pro�ts for poliies P, A, B and C. Denote with V0 the urrent-valuegains assoiated with the part of the trajetory before ti (whih is ommon to all these poliies)and let Gπ = V0 + e−rtiG̃π for poliies π ∈ { P, A, B, C }. It is easy to see that

G̃P = π(xi, xi − Ii) + e−rδtG̃A

G̃B = π(xi, xi − Ii) + e−rδtG̃P

G̃C = π(xi, xi − Ii) + e−rδtG̃C .18
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Figure 3: The original poliy ICP and its modi�ations A, B and C. The triangle represents the remainder of thetrajetory, whih is ommon to ICP, A and B, up to a shift in time.Consequently, we have the identity: G̃P − G̃B = e−rδt(G̃A − G̃P ). This implies that G̃P ≤
max(G̃A, G̃B). Next, if we have G̃P ≤ G̃B , then we have G̃B ≤ π(xi, xi − Ii) + e−rδtG̃B sothat:

G̃B ≤
π(xi, xi − Ii)

1 − e−rδt
= G̃C .This proves the statement.Consider now the ase xi+1 ∈ (x(t+i−1), xi]. As argued above, the time T = ti − τ(xi+1, xi) issuh that x(T ) = xi+1. Let G̃i be the urrent-value gains of the di�erent poliies at time t = T . Itis lear that:

G̃P = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃A

G̃B = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃P

G̃C = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃C .As a result, we have the same identity: G̃P − G̃B = e−rδt(G̃A − G̃P ), and the rest of the previousreasoning applies.A.3. Proof of Theorem 2The proof is separated into two ases. If x0 is �small enough�, the proof is provided by trajetoryomparison arguments. For the ase of �large� x0, the proof onsists in embedding the optimizationproblems (AP) and (TP) into a more general optimization problem, then solving this more generalproblem. The solution turns out to be provided by (AP) and (TP), and satisfy the dynamiprogramming equation.Throughout the rest of this setion, Assumptions 1 and 2 hold, so that the funtion G is wellde�ned, and Assumption 4 is assumed to hold as well, so that the optimal values for (AP), x∗ and
x̄∗, are well de�ned. 19



Let w(·) be de�ned, as in (14), as:
w(x) =







G(x∗, x̄∗, x) if x < x̄∗

e−rτ(x,x∗(x)) [π(x∗(x), x∗(x) − y∗(x)) + G(x∗, x̄∗, y∗(x))] if xsup ≥ x ≥ x̄∗

(30)where (x∗(x), y∗(x)) is any solution of the problem (TP) with initial population x0 = x.The following result will be useful for the proof. Consider problem (AP). Its solution does notdepend on the initial stok value x0:Lemma 8. Assume that (x∗, x̄∗) solves (AP) for some value of xs > x0 > 0. Then it solves (AP)for every value of x0.Proof. The result follows from the fat that for all x0, x1:
G(x, x̄, x0) = e−rτ(x0,x1) G(x, x̄, x1) .Therefore the two funtions are proportional, with a proportionality fator whih is stritly positiveif 0 < x0 < xs and 0 < x1 < xs. The problems (AP) for x0 and (AP) for x1 have therefore thesame solutions. If x1 = 0, or if x1 = xs and limy↑xs

τ(x, y) = +∞, then G = 0 and any (x∗, x̄∗)maximizes it.A.3.1. Proof for x0 < x̄∗Lemma 9. If Assumptions 3 and 4 hold, then the funtion w(x0) solves the dynami programmingequation (7) for all x0 < x̄∗.Aording to Theorem 1, the value funtion of problem (P) veri�es:
v(x) = max

t≥0
0≤y≤φ(t,x)

e−rt [π(φ(t, x), φ(t, x) − y) + v(y)] (31)
= max

{

max
0≤y≤x

[π(x, x − y) + v(y)] , (32)
max
x̄,y;

x<x̄≤xs
0≤y≤x̄

e−rτ(x,x̄) [π(x̄, x̄ − y) + v(y)]

}

. (33)This breakdown is obtained by separating the ase t = 0 (expression (32)) from the ase t > 0,and performing the hange of variable t = τ(x, x̄) in (33). This hange of variable maps the timeinterval t ∈ (0,+∞) to the interval on populations x̄ ∈ (x, xs) or x̄ ∈ (x, xs], depending on whether
τ(x, y) diverges or not when x ↓ 0.We must show that the funtion w(x), de�ned in (30), is a solution of Equation (31).By assumption, x < x̄∗. Replaing v(y) by its value in (31), the right-hand side an be written
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as:
M = max

{

max
0≤y≤x

[π(x, x − y) + G(x∗, x̄∗, y)] , (34)
max

x<x̄≤xs
0≤y<x̄∗

e−rτ(x,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] , (35)
max

x<x̄≤xs
x̄∗≤y≤x̄

e−rτ(x,x̄)

[

π(x̄, x̄ − y) (36)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

]}

.We reognize in the term (35) the problem (TP). We prove �rst that this is the largest of the three.Consider, for some y = y0, the value in brakets in (36). It orresponds to a poliy P with twoharvests x̄ → y0 and x∗(y0) → y∗(y0). Two ases may happen, aording to whih of x̄ and x∗(y0)is the largest.Case x̄ ≥ x∗(y0): in this ase, these two harvests are overlapping (sine y∗(y0) < x̄∗ ≤ y0), inwhih ase Lemma 6 applies. The poliy P is dominated by at least one of two modi�ations. If thedominating poliy is the one exluding the seond harvest, then its value is present in (35) when y hasthe value y∗(y0). If the dominating poliy is the one with an additional harvest, then it is obvious(see for instane the proof of Lemma 7) that the poliy with a ylial harvesting with interval
[x̄∗, y] is even better. But this poliy provides a gain equal to π(x̄, x̄ − y) + e−τ(y,x̄∗)G(y, x̄∗, y) ≤
π(x̄, x̄−y)+e−τ(y,x̄∗)G(x∗, x̄∗, y). Poliy P is therefore again dominated by some poliy representedin (35).Case x̄ < x∗(y0): in this ase, Lemma 7 applies, and poliy P is dominated by at least one oftwo modi�ations. Either the dominating poliy is the modi�ation �A� without a seond harvest:its gain is one of the values in (35). Or the dominating poliy is the one with a ylial harvesting.The reasoning above then applies and there is a value in (35) whih dominates the value in (36).We have shown that (36) is smaller than (35).Next, we show that (34) is dominated by (35). Eah y in (34) orresponds to some poliy Py forwhih the two �rst harvests are x → y and x̄∗ → x. Sine x is smaller than x̄∗, we are one morein the situation of Lemma 7. The poliy Py is therefore dominated: either by the poliy A whihonsists in diretly applying the yle with interval [x∗, x̄∗], or by the ylial poliy with interval
[y, x]. This one is in turn dominated by the ylial poliy A aording to Assumption 4. In bothases, Py is dominated by C. Sine the gain assoiated with C is present in (35) (with x̄ = x̄∗ and
y = x∗), the term in (34) is dominated by the term in (35).At this stage, we have proved that (35) dominates the two other terms, so that:

M = max
x<x̄≤xs
0≤y<x̄∗

e−rτ(x,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] .It now remains to be proved that the maximum in the right-hand side is reahed at x̄ = x̄∗ and
y = x∗. Eah value of the right-hand side is the gain of some poliy P for whih the two �rstharvests are x1 = x̄ and x2 = x̄∗. Whether x̄ < x̄∗ or x̄ > x̄∗, the appliation of Lemma 7 impliesthat P is dominated: either by poliy �A� whih has the value G(x∗, x̄∗, x), or by poliy �C� whihhas the value G(y, x̄, x) < G(x∗, x̄∗, x) by Assumption 4 and Lemma 8.21



The value of M is readily seen to be e−rτ(x,x̄∗)G(x∗, x̄∗, x̄∗) = G(x∗, x̄∗, x) = w(x). The funtion
w solves the Bellman equation for x < x̄∗.A.3.2. Proof for x0 ≥ x̄∗Lemma 10. If Assumptions 3 and 4 hold, then the funtion w(x0) solves the dynami programmingequation for all xs ≥ x0 ≥ x̄∗.Proof. Replaing v(y) by its value in (31), the right-hand side an be written as:

M ′ = max

{

max
0≤y<x̄∗

[π(x0, x0 − y) + G(x∗, x̄∗, y)] , (37)
max

x̄∗≤y≤x0

[

π(x0, x0 − y) (38)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

]

,

max
x0<x̄≤xs
0≤y<x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] , (39)
max

x0<x̄≤xs
x̄∗≤y≤x̄

e−rτ(x0,x̄)

[

π(x̄, x̄ − y) (40)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

]}

.Following the reasoning in proof of Lemma 9, the terms (38) and (40) are respetively dominatedby (37) and (39). There remains:
M ′ = max

{

max
0≤y≤x̄∗

[π(x0, x0 − y) + G(x∗, x̄∗, y)] ,

max
x0<x̄≤xs
0≤y≤x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)]

}

= max
x0≤x̄≤xs
0≤y≤x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] .This is the de�nition of Problem (TP). The solution is therefore (x∗(x0), y
∗(x0)), whih onludesthe proof.A.4. Proof of Theorem 3The statement i) of Theorem 3 is a diret onsequene of Theorem 2.For statement ii), we need the following result, whih is a orollary of Assumption 3 andLemma 6.Lemma 11. If Assumption 3 holds, then for every solution to problem (P) whih is not ylial,there exists a ylial solution with the same value.22



Proof. It is �rst neessary to haraterize what a non-ylial solution may be. From the de�nitionof ylial poliies in Setion 3.1, it an be seen by inspetion (see also Figure 1) that the set ofpossible values for the population x(t) is made of at most two intervals inluded in [0, xs], andthat every single value a) is either reahed one only, b) or is reahed an in�nite number of timesaording to a periodi sequene s1, s1 + T, s1 + 2T, . . . for some T > 0, ) or is 0. A solutionwhih is not ylial would therefore: i) either reah population values in more than three disjointintervals, ii) or reah some value v 6= 0 a number of times whih is neither 1 nor in�nity, iii) orreah some value v 6= 0 aording to a sequene of instants whih is not periodi.The �rst step is to exlude non-ylial solutions to (P) whih are suh that x(s) = x(t) forsome s < t. For suh a poliy (A), onsider the smallest suh t. Let (B) be the poliy whih onsistsin performing the same harvests as (A) up to time t, next applying the optimal ylial poliy withinitial population x(t) but shifted in time by t units. The values reahed by poliy (B) are reahedeither one or an in�nite number of times at periodi intervals. As a onsequene of Theorem 1,the value funtion of poliy (B) is the same as (A). Therefore, a poliy whih is suh that ii) or iii)an be replaed by a ylial one.The seond step is to eliminate poliies of type i). For suh poliies, there exists some i < jand a sequene of values a > b ≥ c > d, suh that for some i, xi = a, Ii = a − c, and xj = b,
Ij = b− d. Aording to Lemma 6, suh a poliy annot be optimal if Assumption 3 stritly holds.In the other ase, the poliy an be replaed with another poliy with the same total pro�t butwith one less harvest. If this poliy is not ylial, an indution is applied to onstrut a ylialpoliy whih produes the same pro�t as the original one.Aording to this lemma, we know that we an restrit our attention to ylial solutions of(P). Suh solutions are haraterized by Theorem 2. Their ylial part is given by an harvestinginterval [x∗, x̄∗] whih is neessarily an interior solution of (AP).Finally, statement iii) is a onsequene of statement ii): if (P) had a solution, the solution of(AP) would be a non-diagonal solution.A.5. Proof of Proposition 4Proof. First, observe that the identity π(x, 0) = 0 implies that for all x, πx(x, 0) = 0 and
πxx(x, 0) = 0. Taking this into aount and developing G in a neighborhood of the diagonal
x = x̄ = x using a Taylor series, we obtain:

G(x + h, x + k, x0) ∼= G(x, x, x0) +
F (x)

r
e−rτ(x0,x)B(x, h, k), (41)where, introduing ǫ = h − k,

B(x, h, k) =
ǫ

2

[

πII(x, 0) −
r − F ′(x)

F (x)
πI(x, 0)

]

+ h

[

r − F ′(x)

F (x)
πI(x, 0) + πxI(x, 0)

]

.Any maximum xm of the funtion G(x, x, x0) satis�es the �st-order ondition B(xm, h, h) = 0 forsu�iently small values of h. Therefore,
0 =

r − F ′(xm)

F (xm)
πI(xm, 0) + πxI(xm, 0) .23



Consequently,
B(xm, h, k) =

ǫ

2

[

πII(xm, 0) −
r − F ′(xm)

F (xm)
πI(xm, 0)

]

=
ǫ

2
(πII + πxI)(xm, 0) .From Lemma 1 ii), adapted to the strit inequality in (12), we know that (πII + πxI)(xm, 0) > 0.Therefore, for any small deviations h and ǫ > 0 towards the interior of the domain, B(xm, h, h−ε) >

0, and we onlude that there are values of G(x, x̄, x0) whih are larger than G(xm, xm, x0). Thesolution to (AP) thus annot be on the diagonal.A.6. Proof of Proposition 5First of all, we an rule out solutions of (AP) with x = 0, by assumption. We an also rule outsolutions with x̄ = xs beause, under the assumption, limx↓0 τ(x, y) = +∞, whih implies in turnthat G(y, xs, x0) = 0.Next, we rule out interior solutions. Aording to Lemma 2, speialized to integral gain fun-tions, an interior solution 0 < x < x̄ < xs should satisfy the system of equations:
γ(x) =

r

F (x)

e−rτ(x,x̄)

1 − e−rτ(x,x̄)

∫ x̄

x

γ(u) du (42)
γ(x̄) =

r

F (x̄)

1

1 − e−rτ(x,x̄)

∫ x̄

x

γ(u) du . (43)Here, the onstant x0 is still arbitrary. It is easily seen that the system of equations (42)�(43) isequivalent to (44)�(45), where:
γ(x)F (x)e−rτ(x0,x) = γ(x̄)F (x̄)e−rτ(x0,x̄) (44)

γ(x)F (x) − r

∫ x

x0

γ(u) du = γ(x̄)F (x̄) − r

∫ x̄

x0

γ(u) du . (45)Condition (44) is in turn equivalent to Gd(x) = Gd(x̄), while (45) an be written as ϕ(x) = ϕ(x̄),with the de�nition:
ϕ(x) =

1

r
γ(x)F (x) −

∫ x

x0

γ(u) du .It is onvenient here to pik as x0 the value xm provided by the hypothesis. For this hoie, wehave Gd(xm) = ϕ(xm) = γ(xm)F (xm)/r. We now prove that x < xm, then ϕ(x) < Gd(x) and if
x > xm, then ϕ(x) > Gd(x). Indeed, di�erentiation of ϕ readily gives:

ϕ′(x) = G′
d(x) erτ(xm,x) .The value of e−rτ(xm,x) is positive and larger than 1 if xm > x, and is smaller than 1 if xm < x.But aording to the hypothesis, G′

d(x) ≥ 0 if xm > x and G′
d(x) ≤ 0 if xm < x. All these fats�nally imply that ϕ′(x) ≤ G′

d(x) for all x. This in turn implies the property stated above.But then for any x < x̄ suh that Gd(x) = Gd(x̄), the hypothesis implies x < xm < x̄. Therefore,we have:
ϕ(x) > Gd(x) = Gd(x̄) > ϕ(x̄) ,24



whih exludes the possibility that ϕ(x) = ϕ(x̄). We have therefore proved that no interior solutionexists.There remain the solutions on the boundary x = x̄. Again appealing to the hypothesis, themaximum on this boundary, and therefore the global maximum, is x = x̄ = xm. This onludesthe proof.

25



Documents de Recherche parus en 20091

 
 

 
 
 
DR n°2009 - 01  :  Cécile BAZART and Michael PICKHARDT 

« Fighting Income Tax Evasion with Positive Rewards: 
Experimental Evidence » 

 
DR n°2009 - 02  :  Brice MAGDALOU, Dimitri DUBOIS, Phu NGUYEN-VAN  

« Risk and Inequality Aversion in Social Dilemmas » 
 
DR n°2009 - 03  :  Alain JEAN-MARIE, Mabel TIDBALL, Michel MOREAUX, Katrin 
   ERDLENBRUCH 

« The Renewable Resource Management Nexus : Impulse versus 
Continuous Harvesting Policies » 

 
 
 
 
 
 
 

                                                           
1 La liste intégrale des Documents de Travail du LAMETA parus depuis 1997 est disponible sur le site internet : 
http://www.lameta.univ-montp1.fr 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contact : 
 

Stéphane MUSSARD  :     mussard@lameta.univ-montp1.fr 




