L-Band emission of rough surfaces: comparison between experimental data and different modeling approaches

H. Lawrence^{1,2}, F. Demontoux¹, J.-P. Wigneron², A. Mialon³, T.D. Wu⁴, V.L. Mironov⁵, L. Chen⁶, J.-C. Shi⁶, Y. Kerr³ heather.lawrence@ims-bordeaux.fr

¹MCM department, IMS Laboratory UMR 5218, University of Bordeaux 1, France, ²INRA-EPHYSE Laboratory, Villenave d'Ornon, France, ³Centre d'Etudes Spatiales de la Biosphère (CESBIO), Toulouse, France, ⁴Department of Electrical Engineering National Taiwan Ocean University, Keelung, Taiwan, ⁵Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Russia, ⁶Institute for Computational Earth System Science, University of California, Santa Barbara, USA

SMOS Mission

mission will measure the brightness temperature, T_R, at 1.4 GHz in order to retrieve soil moisture over land and salinity over oceans. The soil moisture will be retrieved using an algorithm based on the LMEB (L-Band Microwave Emission of the Biosphere) model.

Brightness Temperature:

microwave Rayleigh-Jeans region, approximation applies:

 $T_B = eT_o$

T_R=brightness temperature T_o=ground temperature e= system emissivity

In forests the soil emission is affected by many different layers

Introduction

Forest Emission

soil moisture

 T_R measured by SMOS **CANOPY** τ- ω model LITTER ROUGHNESS LITTER

SOIL ROUGHNESS Q/H model SOIL LAYER Dobson model

Mironov model

What effect does the litter layer and surface roughness have on the signal from the ground?

Objectives

- 1. Create a 3D numerical model that calculates the emissivity of the 2-layer soil-litter system as a function of many different parameters, including surface roughness, soil moisture, layer depth, angle and polarization.
- 2. Validate this model by comparing against known methods, such as the Method of Moments, as well as experiments.
- 3. Use this model to study the L-Band emission of the soil-litter system in order to develop and validate the SMOS mission LMEB inversion algorithm over forests.

Numerical Modeling Approach based on the Finite Element Method

Model Set-Up

Using Ansys' HFSS software:

Randomly Rough surfaces

- Created using R software©
- measurement profiles
- Soil and Litter moistures inputted as a function of the permittivity constant. This relationship is found using the Mironov model (soil) or measurements (soil, litter)

Boundary conditions

Radiation conditions at the sides and top and layered impedance on the bottom, to prevent edge effects

Further Applications: Heterogeneous Media

This set-up can be extended to model heterogeneous media relatively easily, including for example multiple layers and inclusions.

Future Development

Currently working on the integration of a continuous moisture gradient

2. Near-to-Far Field transformation: The scattered electric field is calculated in the far-field region, at a distance R from the surface, $E_r(\theta_s, \phi_s)$.

3. Calculate the Emissivity from the scattered field, $E_r(\theta_s, \phi_s),$ averaged over approximately 20 surfaces

1. Bistatic scattering coefficient

$$\sigma_{tr}^{0}(\theta_{s}, \phi_{s}; \theta_{i}, \phi_{i}) = \frac{4\pi R^{2} \left| E_{r}(\theta_{s}, \phi_{s}) \right|^{2}}{A_{eff} \left| E_{i}(\theta_{i}, \phi_{i}) \right|^{2}}$$

coefficient, scattering $\sigma^0(\theta, \phi)$: bistatic scattering coefficient (θ_s, ϕ_s) for $(\theta_i, \phi_i) = (\theta, \phi)$

2. Reflectivity

$$\Gamma = \iint_{Upper} \frac{\sigma_{tr}^0 + \sigma_{rr}^0}{4\pi \cos \theta} d\Omega_s$$

3. Emissivity

$$e(\theta, \phi) = 1 - \Gamma_r(\theta, \phi)$$

Model Validation: A bare soil layer with a rough surface

Validation against Method of Moments ref. H.T. Ewe,

Calculation Conditions

Frequency	1.4 GHz
[kơ, klc]	[1, 6]
number of surfaces	14
surface size	1.27m x 1.27m
number of points on a surface	128 x 128
Relative permittivity constant	4+1j
Gaussian wave constant, g	0.4m

Comparison with experimental data SMOSREX 2006 and the AIEM model

→AIEM gaussian surface

→ FEM gaussian surface

¹"A Comparison Study of the Surface Scattering Models and Numerical Model" Presentation, IGARSS 13 July 2001

Conclusions and Perspective

- Good agreement between results of the Method of Moments and the Numerical Model based on the Finite Element Method Next Steps:
- •Validate the model for a two layer soil-litter system, comparing against measurements
- •Create a database of the emissivity of the soil-litter system in forests, to be used to develop and validate the LMEB model for forests

experimental data

AIEM exponential surface

