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1 Introduction

This paper describes the algorithm used to solve the model with incomplete markets
and aggregate risk (Model B) of Den Haan, Judd, and Juillard (2008). The algorithm
solves for the policy functions using projection methods. We use a simulation pro-
cedure to reduce the dimension of the set of state variables, but the simulation step
plays a minor role in the solution procedure and the algorithm can be run without
it. In contrast, a simulation step is a key part to obtain the aggregate laws of motion
in the most widely used algorithm to solve this type of model, i.e., the algorithm of
Krusell and Smith (1998). Using simulated data to solve for aggregate policy rules
has two disadvantages. First, by introducing sampling noise the policy functions
themselves become stochastic. This e¤ect can be reduced by using long samples,
but sampling noise disappears at a slow rate. Second� and more importantly� the
values of the state variables used to �nd the best �t for the aggregate law of motion
are endogenous and are typically clustered around their means. But accuracy can
be improved by using values that are more spread out.1 In particular, the numerical
literature advocates the use of Chebyshev nodes to ensure uniform convergence and
the procedure used here allows for this e¢ cient choice of grid points.
Using projection procedures to solve a model with a continuum of agents typically

requires a parameterization of the cross-sectional distribution.2 Here we improve on
the procedure proposed in Den Haan (1997) by using reference moments, an idea
originally proposed by Reiter (2008). These reference moments are used to improve
the shape of the approximate distribution, but they are not state variables; using
them reduces the dimensionality of the problem. If these moments are not state
variables one needs information from outside the algorithm to pin down their values.
This is why a simulation procedure is used, but this is the only role of simulated
data in our algorithm. The philosophy that underlies our algorithm is similar to the
one in Reiter (2008). The di¤erences are mainly in terms of implementation where
our�s is less cumbersome.
Algan, Allais, and Den Haan (2008) (AAD hereafter) propose a new procedure

to simulate cross-sections of a continuum of agents. The most common procedure
to simulate models with a continuum of agents consists of using a �nite number of
agents and a random number generator to draw the idiosyncratic shocks. Conse-
quently, the results are subject to cross-sectional sampling variation. Models with

1Recall that the standard errors of regression coe¢ cients, �2X 0X, are lower when the x-values
are more spread out.

2Den Haan and Rendahl (2008) show that aggregation without explicit distributional assump-
tions is possible when the individual policy functions are linear in the coe¢ cients. They implicitly
obtain information about the distribution by approximating some auxiliary policy rules.
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a continuum of agents do not have this property and most solution procedures are
based on this lack of sampling variation.3 AAD show that sampling variation can
be substantial and that properties of the laws of motion may be overlooked because
of the presence of cross-sectional noise. In this note, we compare three procedures
that all avoid cross-sectional sampling variation.

2 Algorithm

This section provides an overview of the key ingredients of the algorithm.4

Projection method The numerical solution of the incomplete markets model
with aggregate uncertainty in Den Haan, Judd, and Juillard (2008) consists of a
policy function k0("; k; a; s; 	k), where " is the (exogenous) individual employment
status, k the individual capital stock, a the exogenous aggregate state, s a set
of variables that characterizes the cross-sectional joint distribution of capital and
employment status, and 	k the coe¢ cients of the policy function. s refers to the
beginning-of-period distribution after the new employment status has been observed.
A projection method consists of the following steps.

� Construct a grid of the state variables.

� At each grid point we can de�ne an error term given values for ", k, a, and s
as fuE("; k; a; s; 	k) = 1
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3For example, solution procedures typically specify that next period�s distribution is fully de-
termined by the current distribution and aggregate shocks.

4A more in depth discussion can be found in Algan, Allais, and Den Haan (2008).
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HereK stands for the aggregate capital stock, u the unemployment rate, which
is determined by the aggregate exogenous state, and p for the probability of
next period�s exogenous random variables being equal to "0 and a0 given that
today�s values are " and a. Because of the non-negativity constraint on k0 the
relevant Euler-equation error is de�ned as

uE("; k; a; s; 	k) =

� fuE("; k; a; s; 	k) if k0 > 0
0 if k0 = 0 and fuE � 0

� 	k is found by minimizing some objective criterion on the values of uE at the
nodes of the grid.

Two things are needed to be able to evaluate uE. First, s and a must pin down
K. If K would be an element of s then this would be trivial. Second, it must be
possible to obtain the values of s0 as a function of a, a0, and s. This can be done if s
implies an actual cross-sectional distribution. The cross-sectional distribution of the
current period together with the individual policy function can then determine the
characteristics of next period�s distribution (and thus s0) using standard quadrature
techniques. Next, we explain how this can be done.

Linking s to a cross-sectional distribution Let the �rst NM moments of the
strictly positive capital holdings of agents with employment status ! be given by ��
m!;j, with j 2 f1; � � � ; NMg and suppose that these are elements of s:5 To link
this set of moments with a density we approximate the density of individual capital
holdings with a �exible functional form P (k; �!) and choose the parameters �! such
that the moments coincide with those speci�ed. The following functional form is
used.

P (k; �!) = �!0 exp

0BBBBB@
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To completely characterize the cross-sectional distribution one would also need to
include the fraction of agents at the constraint in s. The advantage of this particular
functional form is that the coe¢ cients �!1 ; � � � ; �!NM can be found with the following
minimization routine.

min
�!1 ;�

!
2 ;��� ;�!N

M

1Z
0

P (k; �!)dk: (4)

5An arrow pointing left (right) denotes beginning (end) of period.
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The reason is that the �rst-order conditions of this minimization problem are
exactly the conditions that the �rst NM moments are equal to the set of speci�ed
moments.
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(5)

AAD show that the minimization problem is convex, which means that the �rst-
order conditions are monotone and thus easy to solve.6 The coe¢ cient �w0 is de-
termined by the condition that the density integrates to one. By increasing the
number of moments one increases the order of the approximating polynomial and
the accuracy of the approximation.
The approximating densities are used to determine s0 and are not necessarily of

interest to the researcher. In fact, it may very well be the case that accurate predic-
tions of s0 can be obtained with approximating densities that are not accurate in all
aspects. We document this in Section 3 by showing that an approximating density
with continuous support (for strictly postive capital levels) can accurately predict
next period�s moments even though the true cross-sectional density has points with
positive point mass, i.e., the CDF is discountinous.

Reference moments The elements of s ful�ll two roles. First, they are a state
variable and second they provide information about the shape of the distribution.
For example, it is possible that the second-order moment is not important as a state
variable because it doesn�t vary very much but is still important to shape the distri-
bution. If this happens one can reduce the cost of the algorithm by using reference
moments. These moments are not state variables but are used to determine the
cross-sectional density. The question arises how to get information on the refer-
ence moments. One possibility would be to use the solution of the model without
aggregate uncertainty. Another possibility, and the one that is chosen here, would

6For alternative speci�cations of the functional form one would have to solve the coe¢ cients
from a system like (5) which is not guaranteed to be a well de�ned problem.
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be to start with a guess on the reference moments, solve the model using the algo-
rithm described above, and then simulate the economy to update the information
on the reference moments. The reference moments could, without any additional
complication, be a function of the included aggregate state variables.

Discussion of choices made Several choices were motivated by convenience. For
example, similarity to choices made in other numerical work. Here we discuss two
choices that the reader should be aware o¤. In the description of the algorithm given
above, we assumed that the policy function for capital is approximated. One can also
approximate the consumption choice or the conditional expectation and we chose
the latter.7 We approximate the conditional expectation using Chebyshev polyno-
mials. This and a grid constructed using Chebyshev nodes leads to several desirable
convergence properties.8 But there are also disadvantages. First, the conditional
expectation displays a sharp non-di¤erentiability at the lowest level of k at which
the agents chooses a zero capital stock, k. For k � k the conditional expectation
does not have to be approximated so we simply approximate the conditional expec-
tation on those grid points at which the constraint is not binding. But this means
not using the full set of Chebyshev nodes and some of the optimality properties may
be lost. Moreover, the conditional expectation has other� less pronounced� non-
di¤erentiabilities due to the interaction of the constraint and the discrete support of
".9 In this particular problem these disadvantages are minor because the constaint
only binds at very low levels of k, but when the constraint plays a more important
role the reader should seriously consider using splines.
The other choice that the reader should be aware of is that we parameterize the

law of motion relating s0 to the current-period aggregate state variables. Condi-
tional on this law we then solve for the individual policy rules and then update the
aggregate law of motion by projecting the calculated values of s0 on the grid on the
approximating functional form. Given the accuracy of the obtained �t there is no
harm in this procedure, but there really is no reason for this two-step procedure.
Even if one would like an approximating aggregate law of motion then it would be
better to solve the model using the algorithm outlined above and then simply get
an approximation for the aggregate law after one has obtained the solution of the
model. Further information on the choices made can be found in the appendix and
in AAD.

7Some motivation for choosing the conditional expectation is given in Christiano and Fischer
(2000).

8See Judd (1998).
9See Den Haan (1997) and especially Figure 2.
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3 Simulating a continuum cross-section of agents

Simulation procedures ful�ll an important role in the numerical analysis of models
with heterogeneous agent models. The popular procedure of Krusell and Smith
(1998) uses simulated cross-sectional moments to determine the aggregate law of
motion. Even in our algorithm� that is designed to avoid simulation procedures� we
still use a simulation procedure to reduce the dimension of the set of state variables
while keeping an accurate shape of the cross-sectional density. And even if the
algorithm does not rely on a simulation procedure at all, then many characteristics
of the solution can only be determined using a simulation procedure.
Given the importance of simulation procedured it is important to compare al-

ternatives. The most popular procedure is to use a �nite set of agents and to use a
random number generator to determine the realizations of the idiosyncratic shocks.
But this means that the outcome is subject to cross-sectional sampling variation,
whereas both the model and the algorithm typically rely on there being none. AAD
show that this sampling variation can be substantial especially for the smaller group
in the population, i.e., the unemployed.
There are, however, procedures that avoid cross-sectional sampling variation, but

to the best of our knowledge these have not been compared. Section 3.1 outlines
three di¤erent simulation procedures, Section 3.2 compares the three simulation
procedures for the model discussed here and for a model in which the CDF displays
substantial discontinuities.

3.1 Three simulation procedures

To simplify the exposition we explain how to simulate across time a cross-sectional
distribution of capital holdings when there are no shocks and no constraint, that is,
when the policy function for k0 is given by k(k).10

10For most sensible choices of k+1(k) the distribution would then converge towards a single
point. Adding stochastic elements that would prevent this is easy, but would make the exposition
somewhat more tedious.
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3.1.1 Simulation procedure of AAD

Let ft(k) be the distribution of capital holdings in period t and let f1 be given.11,12

Calculate the �rst NM moments of the distribution of k0 using quadrature methods
and k0(k) and f1.13 Using the procedure discussed in Section 2 one can then obtain
the density f2(k) that corresponds to these moments.14 Iteration on this proce-
dure gives a time series ft(k). Given ft(k) any characteristic of the cross-sectional
distribution can be calculated.

3.1.2 Grid-based procedure of Young15

Construct a grid of capital holdings, �i, �j = 0; � � � ; N , and let p�jt be equal to the
mass of agents with a capital stock equal to ��j. We have

NX
�j=0

p
�j
t = 1:

Calculate the values for pjt+1 using the following algorithm.

� Initialize by setting pjt+1 = 0 for all j.

� Calculate the values of pjt+1 using the following procedure for �j = 0; � � � ; N .

�Calculate k0(��j). Let j be such that �j � k0(��j) < �j+1.
�The mass at the �jth grid point, p

�j
t , is allocated to the two grid points that

enclose the choice k0(��j)� i.e., the jth and the (j + 1)
th grid point� using

the distance of k0(��j) to the two grid points to determine the fractions.
Thus,

pjt+1 = p
j
t+1 +

�j+1 � k0(��j)
�j+1 � �j

p
�j
t

11Alternatively, one can start the procedure with NM moments. The density f1(k) can then be
determined using the procedure of Section 2.
12It is easy to modify the procedure to include a constraint. ft(k) would in that case be the

density of the strictly positive capital holdings and one would in addition keep track of the mass
of agents at the constraint.
13To deal with the lower bound on capital, AAD explicitly calculate the fraction of agents at

the constraint and then calculate the NM moments for those agents with strictly positive capital
holdings.
14If there is are no constraints on the range of k, then one has choose a lower and an upperbound

for k that are outside the ergodic set or at least such that the mass below and above these two
values is very small.
15Proposed inYoung (2008).
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and

pj+1t+1 = p
j+1
t+1 +

k0(��j)� �j
�j+1 � �j

p
�j
t

� The sum of all the pjt+1s is by construction equal to 1.

If the agent�s employment status changes stochastically then one would have to
change the end-of-period distribution calculated here into next period�s beginning-
of-period distribution taking into account the transition laws of the idiosyncratic
shock. But this is straightforward given that these laws of motion are exogenous.
In the model without aggregate uncertainty this procedure can be expressed

as a linear linear system that can be used to solve for the stationary distribution
(and thus the equilibrium aggregate capital stock) by solving for the eigen factor
corresponding to the unit eigen value.

3.1.3 Grid-based procedure of Rios-Rull16

Again construct a grid of capital holdings, �j, j = 0; � � � ; N . Let �p0t be the mass of
agents at �0 and let �p

j
t be equal to the mass of agents with a capital stock bigger

than �j�1 and less than or equal to �j, for j > 0.17 This mass is assumed to be
distributed uniformly between grid points. We have

NX
j=0

�pjt = 1:

Let xj be equal to the capital level at which an agent chooses �j.18 Thus,

k0(xj) = �j: (6)

Now compute the distribution function of next period�s capital at the grid points as

�P jt+1 =

Z xj

0

d �Pt+1(k) =

jX
j=0

�pjt +
xj � �j
�j+1 � �j

�pj+1t ; (7)

16This procedure is used in Rios-Rull (1997), Heathcote (2005), Reiter (2006), and Den Haan
(2008).
17Note that pjt 6= �pj except for j = 0. p

j
t is the mass at a grid point and �p

j is the mass in between
grid poitns.
18Note that if the capital choice would depend on aggregate state variables then x would be time

varying.
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where j = j(xj) is the largest value of j such that �j � xj. The second equal-
ity follows from the assumption that mass is distributed uniformly between grid
points. Note that �p0t+1 = �P 0t+1 and �p

j
t+1 = �P jt+1 � �P j�1t+1 for j > 0. Modifying the

distribution to take into account unemployment risk is� as for the procedure of
Young� straightforward.

3.2 Comparison and discussion

3.2.1 Experiment #1

In this experiment, we use our numerical solution for the individual policy functions
of the model outlined above to simulate the cross-sectional distribution across time
with the three simulation procedures.
The initial distribution is identical to the one used in Den Haan (2008). Figures

1 through 3 display the mean capital stock, the 1st percentile, and the 10th percentile
for both the employed and the unemployed agents. The �gures document that the
di¤erence between the generated series are small at least relative to the observed
�uctuations. The largest percentage di¤erences are observed for the 1st percentile.
For the employed (unemployed) we �nd that the di¤erences are 1.35% (2.48%),
1.60% (1.78%), and 0.76% (1.60%) for AAD versus Rios-Rull, AAD versus Young,
and Young versus Rios-Rull, respectively.19 The di¤erences are, thus, somewhat
smaller when the Rios-Rull procedure is compared with the Young procedure, a
�nding that is also true for the mean and the 10th percentile.

3.2.2 Experiment #2

Generating an accurate simulated panel for the model of the computational suite is
relatively easy, because there are very few constrained agents, which means that any
subsequent jumps in the CDF for higher levels of capital are very small. Moreover,
the marginal propensity to save is almost constant and only varies with capital at
low levels of capital.
Therefore, we also consider an example in which the marginal propensity to save

varies strongly with capital and jumps in the CDF are important. Both features
may give di¢ culties for the procedure of AAD. The continuous approximating den-
sity used in the AAD procedure, of course, misses the jumps of the CDF. Missing
these jumps is not important as long as the marginal propensity to save is (locally)
constant, but may matter if the savings function is nonlinear.

19We ignore the �rst one hundred observations. A careful look at the graph makes clear that
the initial distribution is somewhat odd and there is some transition dynamics at the beginning of
the sample.
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In the second experiment, the individual policy function of an unemployed agent
is assumed to be equal to

ku+1 = max f0; k � 25g
and the policy function of an employed agent is equal to

ke+1 = �0 + k + exp(�0 + �1k + �2k2):

For the chosen parameter values,20 the marginal propensity to save of an employed
agent varies from 0.00 when k = 0 to almost 1 when k = 99. The laws of motion of
the exogenous random variables are as in experiment #1.
Although these policy functions do not depend on the aggregate state, the choices

still do because the employment status depends on the aggregate state. The cho-
sen policy function may look strange, but is motivated by its ability to generate
large jumps in the cross-sectional distribution. When the aggregate state randomly
changes, then the distributions generated with di¤erent procedures look similar be-
cause of these random aggregate shocks. The di¤erences between the solution pro-
cedures become more clear if we keep the economy in the same aggregate state (that
is, the economy remains in either the good or the bad state) and those results are
reported here. The fraction of agents at the constraint is now substantially higher
than in the problem discussed above. This higher fraction of constrained agents
leads to several substantial jumps in the CDF as is clear in Figure 4 that plots the
CDF obtained with the AAD and Young procedure when the economy has been in
the bad state for a long time period.
Figure 4 documents that the CDFs obtained with the di¤erent procedures display

substantial di¤erences. The time series of standard characteristics of the cross-
sectional distribution, however, are much more similar. This is documented in �gures
5 and 6, which plot the simulated mean capital stocks and the fraction of agents
at the constraint when the economy is (and remains) in the bad aggregate state.
Figures 7 and 8 report the results when the economy is (and remains) in the good
aggregate state.

3.2.3 Discussion

Although the procedures are quite di¤erent, they generate very similar results in
both experiments. Of course, our results may not carry over to all problems and
one always should check whether the simulated data are accurate. But the results

20�0 = 2:70805; �1 = �0:06667; �2 = 0:000326, and 0 = �0:6:
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presented here indicate that convenience may be an important element in the choice
made as well.
In terms of programming, the easiest procedure is the one proposed by Young

(2008). In contrast to the grid-based procedure of Rios-Rull (1997), it does not
require calculating the inverse, which can be a costly operation.21 Both grid proce-
dures allow quite naturally for discontinuities in the CDF. But the second example
showed that the procedure of AAD also can lead to an accurate characterization of
the movements across time of key characteristics of the cross-sectional distribution,
even in the presence of substantial discontinuities. The main advantage of the pro-
cedure of AAD is that it characterizes the cross-sectional distribution with a much
smaller number of parameters. For the procedures discussed here the simulation
procedure of AAD uses ten parameters whereas the grid-based method uses one
thousand. For some applications it may be extremely helpful to limit the number
of parameters.

A Appendix

The state variables used are

s =
h
a�1; a;

��!
mu;c
�1;
 ��
me;1;

 ��
mu;1

i
;

where
��!
mu;c
�1 stands for the fraction of constrained unemployed agents at the end of

the last period, and
 ��
m!;1 stands for the beginning-of-period mean capital holdings

of agents with employment status ! and strictly positive capital holdings. Note that
this set of state variables has enough information to determine

 ��
mu;c and

 ��
me;c.22 In

addition to these moments we use �ve higher-order moments (for both the employed
and the unemployed) to determine the density of the cross-sectional distribution. In
the simulation we use a total of 10 moments.
Parameter settings of the numerical procedure, such as the order of the polyno-

mial and the number of grid points, are given in Table 1. For the exogenous random
variables we use two grid points related to the two possible realizations.

21Reiter (2006) proposes several approximating steps to speed up the procedure.
22Alternatively, we could have used s = [a;

 ��
mu;c;

 ��
me;c;

 ��
me;1;

 ��
mu;1]. The advantage of our choice

is that a�1 can take on only two values and is, therefore, "cheaper" as a state variable than an
additional fraction of constrained agents.

19



Table 1: Construction of the grid

State variables k; "; a�1; a;
��!
mu;c
�1; m

e;1; mu;1

range of values and
number of grid points

k [0; 99] 50 grid points
��!
mu;c
�1 [0; 0:002] 5 grid points
 ��
me;1 [35; 42:4] 5 grid points
 ��
mu;1 [33:5; 41:5] 5 grid points

location of points Chebyshev nodes
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