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Abstract
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1 Introduction

How much is the timber from public forests worth@wcan the Public Forest Service define
a fair market price for standing timber lots? Anewg these questions is challenging. First, it
is difficult to refer to production costs. Indeedl forest takes time to grow and expand.
Timber supply is more a harvesting decision basedilwicultural motives and related to the
management of a renewable natural resource, thstngjuguestion of wood production.
Secondly, the seller (the Public Forest Service)tavéo maximize sales receipts, but also has
other objectives, such as securing the timber suppihe wood local industry at a price that
allows them to remain competitive on internatiomadrkets and/or against other industries
(steel, aluminum, etc.) Thus, the objectives ofgker might be multiple and contradictory.
Third, standing timber is different from perishalgjeods. The optimal time for harvesting
might have passed if the lot remains unsold for yngars, but the trees continue to grow
and the forest still offers other values (recraaticarbon sequestration, biodiversity, water
filtration, ...) that are difficult to take into acant when defining the value of a timber lot. To
sum up, it is difficult for the seller to evaludier own reservation value for a lot in standing

timber sales.

Yet, even if the Public Forest Service uses ani@uaystem to fix the selling price, the
marketing director needs to set a relevant respnee for each timber lot that he wants to
sell. Given that assessing the value of a stantihmiger lot is challenging, the seller needs to
refer to demand factors such as: lot quality, ssecdomposition, lot location, harvesting
conditions, etc. In this article, we use the sdecaltransaction evidence appraisal’ (TEA)
reduced form method.,e. we estimate timber value from market prices ola@iduring past

timber auctions in France.

Most French timber sales are sequential first-psealed-bid auctions of heterogeneous lots.
Heterogeneity in the product is probably the mogtartant feature of standing timber sales.
Lots differ from each other with respect to volunemposition, location, harvesting

conditions, etc. (inter lots heterogeneity). Bulotaiis also composed of trees of different

species and qualities (intra lot heterogeneitylesehinter- and intra-lot heterogeneities raise
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various questions about the valuation of the Ib& aire put on sale and about their optimal
composition. Heterogeneity of timber lots makesHhbdonic price function approach useful
in order to infer appraisal value since many charatics may influence the stumpage price.
The hedonic price method is based on the implrottepof each characteristic and determines

how the market values a lot as a set of charatitis

There are two problems that arise when we analg#get auction data sets. Both arise from
the endogenous participation of the bidders inabetions. First, there are many lots for
which there is no bid and there are good reasornbkim& that this outcome is not random:
bidders may not bid on timber lots that are of lpality or have difficult harvesting
conditions, etc. It is important to note that irefkch timber auctions, the seller does not
announce any reserve price. The seller might watlvdhe lot if she thinks the highest bid is
too low, but the reserve price is kept secret lgetbe auction. Thus, the lack of bids can not
be explained by a reserve price that is set tob,smce no minimum amount is required to
bid for a lot. Of course, lots with no submissi@main unsold. However, we have to take
lots without bids into account in the estimatiorogagdure in order to prevent a possible
sample selection bias. Secondly, when there are &utbmitted for the lot, the degree of
competition varies from one auction to another.@dmng to the independent private values
auction model, the number of bidders has a posithgEact on the bidding strategies in first-
price auctions. Indeed, bidders bid more aggrelyswbken the number of bidders increases.
Moreover, there are many auctions with only onedéid This special case needs to be
analyzed with caution. Remember that the numbdaidd cannot be explained by the value
of the reserve price here, so it is sensible toktithat the number of bidders is driven by the
characteristics of the lot. In other words, the bemof bidders has to be included in the

hedonic price equation as an endogenous explanzaaple.

From an econometric point of view, the main probliemelated to the correlation between
unobservable variables that determine the participgrocess and the auction result. We
solve this challenge by specifying a 3-equation ekodquation (1) defines the probability
that there is no bid, equation (2) determines ansutgmitted lots the degree of competition,
and equation (3) is the hedonic price equation éxalains the auction result. We estimate
parameters of this system of simultaneous equatisitg) a Bayesian Monte Carlo Markov



Chain (MCMC) simulation algorithm, which simplifiésferences in latent discrete variables

modelst

Our empirical work contributes to the literature bmber value appraisal by explicitly
modeling the fact that the seller’s reserve pricaat announced. This is the main difference
with the existing stumpage appraisal literaturesddssed in the next section) that uses the
Tobit two-stage procedure. Indeed, we can not exflalders' participation by the level of
the reserve price. In this article, bidder parttipn directly depends on the characteristics of
the timber lot. Secondly, we contribute to the ampl auction literature since we propose a
methodology to assess the value of heterogeneamgsdmm sequential auctions with secret

reserve price and endogenous participation.

In the next section, we specify our objective amd empirical approach; in particular, we

explain why the structural econometrics of an auncthodel does not fit our purpose. Section
3 describes the institutional framework of Frenabl timber auctions and the data set. The
methodology is detailed in section 4 and sectigrésents the results. Section 6 concludes

our research.

2 Timber appraisal

Our methodology uses a reduced form proceduredthes not rely on the structural approach
to the econometrics of auctions. First, we expleity we do not estimate a theoretical model
of auction. Then we present previous works on timtensaction evidence appraisal and we

clarify the relationship between seller's valueseme price, bidder’s value and highest bid.

! See Poirier and Tobias (2007) for instance foremegal introduction on this topic. The idea is éplace
methods based on maximum likelihood that oftenatoconverge in complicated settings.



2.1 Structural econometrics of auction

There is a recent but important and growing litemton structural econometrics of auctions.
See for example Laffont and Vuong (1996), Perrigné Vuong Q. (1999), Athey and Haile
(2002), Paarsch and Hong (2006) for surveys. The af this highly technical and
sophisticated literature is to estimate the stmatctparameters of a well defined theoretical
auction model. In an auction model, the structyratameters are the parameters of the
distribution functionF(.) of the random bidders’ values. In a privateueal auction modgl
the bidder’'s valuey is the private valuation each potential bidfieeceives for the object.
Using theoretical equilibrium bidding strategielse tobjective of the econometrician is to
infer unobserved bidders’ private valugdrom their observed bids, so as to estimate the

parameters of the bidders’ private values distrdouE(.).

The main drawback of this approach is that a tkdetéheoretical model needs first to be
solved at least partially. Auction theory has depeld a great deal during the last three
decades, nevertheless our understanding of redélbausales is far from complete. Many
strong and restrictive assumptions need to be nmadeder to have tractable theoretical
auction models. Our objective here is not to lisbthem, but to point out some particularly
awkward assumptions for timber auctions. The sepleand dynamic aspect is not taken
into account in the auction model of structuralremuetric studies. The different auctions,
indexed byi, i = 1, ...,I, are treated as independent from each other antidterogeneity
between auctions is mostly considered as noise. t¥et important components vary from
one auction to another: the number of bids anchtiaacteristics of the auctioned good. The
number of bidder$\; in an auction is usually assumed to be known and exogenous 8t mo
structural econometrics studies of auctions. Secasidve discussed before, lot heterogeneity
is one of the most important features in timbertians. Our timber appraisal approach
focuses on this lot heterogeneity and does not oelythe estimation of the distribution
function of the random components of the biddeadigs. To better understand this point, we
decompose the value of timber i@s:

2 Most timber auction studies rely on this paradigmt some uses a common value auction model, ssich a
Chatterjee and Harrison (1988) and Athey and L€2d01). Of course, real timber auctions containhbot
private and common value component. Neverthelessiwood timber sales (we use in this study) fitgheate
value better since it is a less standard prodet Hoftwood and may have much diverse uses.



Vi=XB+g i=1, ...l
wheref3 is a vector of unknown parameters which are th@ion prices of the characteristics

of loti collected in the vector,xand& is an unobservable variable.

In structural econometric papers, bidders’ priveatkeies are thus defined as:

Vij =X B+ &, i=1,...,1 and j=1,...,N.

The main objective in structural econometrics ofteuns is to infer the parameters of the
distribution function of the random bidders’ valueBhus the object characteristics x
essentially represent nuisance parameters and uch adtention is dedicated o But the
heterogeneity in auctions (number of actual bidd¢rend observed characteristicg s
central to our study. It is the heterogeneity & #uctioned object that makes it difficult for
the seller to determine her own private valuatggof the timber loti she wants to sell.
Actually, it is our main objective to better estimshe weightp, of each characteristic in the
timber lot valuationy. In other words, we are more interested in theisiigrice of each lot
characteristic so as to infer a better price funmctor timber lot, than in the parameters of the

distribution function from which all potential buge valuations are drawn.

In auction theory, the shape of the distributiorthaf bidders’ valuations is important in order
to determine the optimal selling mechanism. Howgewasr we said previously, the private
value of the sellewy is also crucial to determine the optimal reserkieep(even when the
reserve price is not announced before the auctitie) already argued that the seller’s value
Vo, i.e. her reservation value, is not well defined andgeast, is not precisely known at the
time of the auction. We present empirical evidewdethis claim in the data section.
Consequently, without any clear information abaytit is not surprising that the seller has
difficulties in setting the optimal secret resepreee under which a lot should not be sold.

Moreover, most structural econometric studies amrssymmetric biddersi.€. bidders’
valuations are drawn from the same distributioncfiom) or at most only two groups of
bidders. But we believe that the valuation of eabhracteristic differs from one potential
buyer to another. Indeed, in timber auctions theran important heterogeneity among the
lots, but there is also an important heterogen@symmetry) among the buyers. Some of
them are interested in high quality timber, somdy an given species, or have strict
constraints on timber diameters, etc. Thus, thezenaany different types of bidders (small



saw mills, big paper companies, merchants, etd)each potential buyer might valuate each
characteristic differently. As a result, a morebelated model could be:

Vij =X Bj + & i=1, ...l and j=1,...N.

Naturally this more complex model raises importahentification problems within a
structural econometric approach. Nevertheless, wherers have different valuations for
each characteristic, lot heterogeneity might explany there is a varying number of bidders
across auctions even when the reserve price isanobunced. This contrasts with the
literature on structural econometrics of auctionkerg lot heterogeneity is generally
considered as noise and does not have any impatteomumber of bidders. Yet, it is more
likely that more valuable lots attract more bidd#ran less valuable sales, or that certain
types of lots fit the demand of particular buyeettér than other lots, or that certain lot
characteristics are unacceptable for some buydradiuor others... Hence, participation in
timber auctions and lots characteristics are styoredpted®

Although timber auctions have many special featutest distinguish them from most

theoretical auction models — those special feataresdescribed in section 3 for French
timber sales — many articles in the structural eocwogtrics of auctions literature rely on

timber auction data: Mead (1967), Hansen (19856)9aarsch (1991, 1997), Elyakime et
al. (1994, 1997), Baldwin, Marshall and Richard Q1P Athey and Levin (2001), Haile

(2001), Li and Perrigne (2003), Athey, Levin andr&i(2004), and Campo, Guerre, Perrigne
and Vuong (2006), among others. In most structtinalber auction studies, as in our data,
there is a variable called the seller's estimateher appraisal value. Usually that value is
found to be a summary of all the other variablasclisas quality, species composition,
harvesting condition, etc). To avoid any correlatiproblem, most papers use only that
variable to take into account the object heterofetetween auctions. In contrast, we want
to improve on the appraisal value of the selleer&fore, we will focus on all other variables

that might influence her reservation value.

% Buyers’ characteristics could be included in teeldnic price function to take into account the bisyenpact,
unfortunately, in our data set, bidders are anomgno



To sum up, a structural econometric model of anctiata does not fit our objective to
improve timber appraisal from the seller's point wew. We believe that a more

straightforward use of the data could be more kélopfbuild a price indicator for the seller.

2.2 The transaction evidence appraisal approach (T&)

The TEA method relies on the results of past tingmes, usually auctions, for predicting
stumpage pricesUnsold timber lots were not considered in earlyr@gsion-based models
(e.g. Jackson and McQuillan, 1979, McQuillan andndon-True, 1988). Prescott and
Puttock (1990) and Puttock, Prescott and MeilkeQ(}Qropose a standard hedonic price
function to forecast stumpage prices in Southertafdmtimber sales; there was no unsold
lots in their data. Buongiorno and Young (1984) eled winning bids using OLS
conditional on timber auctions that received atsieavo bids. However, as Huang and
Buongiorno (1986) argued, the fact that some timb&s remained unsold is important
market information. Thus, the following transactievidence appraisal models include this
market information to prevent biased predictionsnairket values. Since the reserve price is
known and announced before the auctions in U.Sdrmsales, it is assumed that the reserve
price explains why some lots are not sold. Thesgfdo take into account unsold lots,
censored regressions (Tobit model) have been ctediéluang and Buongiorno, 1986).
Niquidet and van Kooten (2004) do not have suffitimformation on no-bid auctions (or
non-submitted lots), so they seek to predict arfearket value of standing timber in British

Columbia using a two-stage truncated regressiooggiare.

Beyond the treatment of unsold lots, the numbebidtiers also appears as an important
variable in the estimation of the winning bid irursipage appraisal literature. Indeed, the
degree of competition in auctions has an impadherbidding strategies. Participants do not
necessarily know the actual number of bidders,thay bid according to the expected or
potential competition (Brannman 1996). Many studiestimber auctions such as Johnson
(1979), Hansen (1986), and Sendack (1991) emgyisapport the auction theory prediction

* Before the TEA method was introduced in the 198fhe residual value approach was used. The rdsidua
value mainly represents the price of all the praslligely to result from a particular timber loykdracting all
the processing costs. (Nautiyal, 1980)



that there is a positive relationship between thenler of bidders and the value of the
highest bid. Sendack (1991) explicitly examinesithpact of the number of bidders on the
winning bid by including a transformation of thennioer of bids submitted as an explanatory
variable. Assigning a dummy variable to each nundfdsidders (= 1,n=2, ...,n = 11),
Brannman, Klein and Weiss (1987) obtained estimateefficients that support first-price
auction theory: bid shading is decreasing withribember of bidders. None of these studies
endogenize participation. However, to use stumpggeaisal models as predictive tools it is
necessary to endogenize the actual number of Eddexamining the impact of the
(announced) reserve prices in sealed-bid Fedenaleti auctions, Carter and Newman (1998)
endogenize the number of bidders in a simultanéeasequations Tobit framework, but the
expected number of bidders is determined strictlyhie reserve priceOf course, this model

does not fit French timber auctions since the xesprice is secret.

2.3 Seller’'s value, reserve price, bidders’ valueend highest bid

It is not straightforward for the seller to knowldng which price she should not sell a timber
lot, even when she sees the highest bid. The 'sefteservation) valug, corresponds to the
price under which the seller would get no profanfr the transaction. The reserve price is
chosen by the seller, contrary g which is exogenous. The seller commits not to
good below the reserve price. Of course, if théesdlas perfect information on her private
valuevy, the reserve price can not be lower thgrActually, the seller’s value might be seen
as a “pseudo common value” imperfectly known butrelated with the bidders’ private
values. We can see it as the best expected prcsetler could obtain in a future sale. That
value depends on many features. For example, grdipnot only on future global market
conditions and macro variables, but also on howntheket is valuing each characteristic of
the lot. It is with respect to the latter featunattwe want to improve timber appraisal. Our

objective is to use the results of past timberianstto build a hedonic price equation.

From a buyer's point of view, the estimated valtia tot is different than from the seller’s
point of view. Buyers have information on harvegtoosts, on what they will produce with

® They treat the number of bidders as a continuatsble.



the wood and at what price they will be able td #&dir products. It is therefore easier for
them than for sellers to estimate their reservat@ne. Therefore, as in auction models, we
believe that each bidder knows his private resgmatalue for a particular lot. That value

depends on the characteristics of the lot, but al&y depend on his inventonye( on which

lots the buyer already bought, and on whetherikeseds wood).

We propose to estimate a hedonic price functioedas the highest bids. The highest bid of
an auction is not necessary a winning bid (and #husarket price) since the seller might
withdraw the lot if she believes that the highest is too low. However, we choose to
estimate the highest bid and not the sale pricausscthe sale price is not independent from
the seller's decision (because of the secretewegmice) and thus is less informative about
market demanél.

3 Data on French timber auctions

Competitive bidding is widely used in timber salesFrance. In particular, the French
National Public Forest Service (ONRises first-price sealed-bid auctions to sell #mfoom
public forest. Timber auctions of ONF, which remmets40% of the timber sold each year in
France, generally concern standing timber. Thel@uechechanism seems to be the best way
to determine an "objective" or a "fair" market valior such a heterogeneous product. Before
presenting the data set on fall timber auctiontarraine conducted by ONF in 2003, we

describe the institutional framework of French tenhuctions.

® There is a difference between the highest bidthadprivate value of the highest bidder. Accordimguction
theory, buyers in first-price sealed-bid auctionsndt bid their valuation. However, we do not afpeno infer
the bidders’ private value here. Our aim is moréudd a price equation for a fair market price dh®n lots
characteristics.

" ONF stands for Office National des Foréts.
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3.1 Institutional framework

Timber auctions are sequential auctions of hetereges goods since many different lots
(usually more than one hundred) are put on saleaftee the other; the result of the auction
of a lot is given before the next lot is put oresdlhe first lot is usually randomly drawn, next
the auctioneer follows the catalogue order. The satalogue details all the lots. During a
sale, bidders are not interested in every lot. Hadter has a specific demand about species,
volume, and quality. Thus, the number of biddersafgarticular lot is fairly small and it is
quite usual that there is only one bid or even woah all. Besides, bidders are asymmetric;
they have different goals (sawyer, merchant, ettifjerent business sizes, different needs

and different locations.

At harvesting time, ONF does not choose the charatits of the products. It has to sell
what came out of the forest, which is heterogendyusature. Thus, lots are heterogeneous
(different from one another), but they are also enad of heterogeneous wood. In particular
in standing timber sales, a lot may contain mamcsgs of different diameter and of different
guality. Auctioning such a product raises the peablof the optimal lot composition. The
successive auctions correspond to different lats|dis might be interrelated. Some lots may
be close substitutes while others may present gigwer For example, it may be only

profitable for some buyers to harvest two or mots that are close to each other.

Taking into account the heterogeneity of the laisas practical issues. Potential buyers visit
the lots that they intend to buy, although thera atalogue that details the characteristics of
the lots. Moreover, bidders have to prospect 50tdirhes as many lots as they intend to buy
since they are not guaranteed to obtain the lady thant. This leads to non-negligible
prospecting costs for the bidders. These seardl,cskich are linked to the heterogeneity of
the product, are wasteful from a social perspectReducing the cost of preparing a bid in

timber auctions may increase the number of bidders.

Contrary to North American timber auctions, theergs price of the seller is not announced
in French public timber auctions. It is kept sechigtis singular practice has been studied in
the literature, but is difficult to justify theoreally. Elyakime, Laffont, Loisel and Vuong

(1994) show in an independent private value auctiodel that the seller is always better off

announcing her reserve price. Nevertheless, thaipesof a secret reserve price is sometimes
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justified either by the fact that announcing a reseorice reduces the participation of the
bidders or by a common value component (Vincen®5)9Risk aversion is also mentioned
to justify a secret reserve price (Li and Tan, 20@0lack of competition for some lots and
ONF’s willingness to maintain a reasonable timbaceg may also explain this practice.
Finally, a secret reserve price may be used togmtesollusion between bidders at the reserve
price. When the reserve price is not announcedypltienal secret reserve price is equal to the

seller’'s reservation valug.

As a matter of fact, we believe that the sellef@eenot to announce and commit to any
reserve price mainly because she does not knoweBervation value at the auction time as
claimed in the previous section. Indeed, a see®trve price is reported for each lot in the
database, but this price is not the seller’s regam value since many auctioned lots (about
40% in our data set) are sold under this resenee |fwhich should theoretically be equal to
the seller’s private valuatiowp). This means that the French public Forest Semngzdes to
sell or not a lot at the last moment and does oaotroit to any reserve price before the
auction. So, the seller uses the bids to adjuswalkerationy, of the lot. With this privilege,
the seller keeps a certain flexibility to manage shale, but that practice may be costly for the
seller from an auction theoretical point of viewitN@éut firm and credible commitment, ONF
may lose a part of the benefit of an auction. ¢ iidders anticipate that the seller can modify
the rules of the game, then they will modify theidding strategy, which may lower the
efficiency of the bidding mechanism. Nevertheldiss,fact that the seller updates her reserve
prices shows her difficulty to assess her valuef a lot. Hence, announcing a reserve price
might have negative consequences if the model tsea@t reserve prices is mis-specified.
Indeed, a reserve price set too high can resutioibids, while a reserve price set too low
may result in too much bid shading especially siteenumber of bidders is usually low in

timber auctions.

3.2 Data

The data set we use is part of the data collecge@dsta and Préget (2004). It relies on the
auction results of the ten fall 2003 timber salesmraine, a Region of the eastern part of
France. A total of 2262 lots were put on sale. Sitttere are many differences between

hardwood and softwood valuations, we select onlye prardwood lots, i.e. lots that are
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composed of more than 99% of hardwood. BetweeneSdmr 8' and October 282003,
1205 hardwood lots have been put on sale. Lotsleayery heterogeneous and made up of
many species. The Herfindahl index is used to nreamira lot heterogeneityOut of the
1205 hardwood lots put on sale, only 52% of the ke put on sale for the first time; thus

48% of the lots correspond to previously unsold.lot

At the end of the auctions, lots may be classifiedording to the auction results. A lot sold
during the auction is said to be “auctioned”, wlsréhe others are called “unsold lots”. The
percentage of unsold lots is 42% and shows avelgtdifficult wood market environment in
the Lorraine area during that period. It is uséfubistinguish between lots that got one or
more bids but have nevertheless been withdrawrmdseller and lots that got no bid at all,
referred to as the “no bid” category. Table 1 pnessale results.

Table 1. Timber auction results

Auctioned lots 695 (58%)
Withdrawn lots 318 (26%)
Unsold lots _
No bid 192 (16%)
Total 1205 (100%)

The database of Costa and Préget (2004) includes than one hundred variables that
represent a large part of the information availabléhe catalogues. It also includes private
information from ONF (harvesting conditions, qualdf the lot, secret reserve price), data
about the auction results (the number of bids,athetioned prices) and computed data such
as the Herfindahl index. This database is partigutich. Moreover, it is exhaustive since it

contains all the standing timber lots from publiceists put on sale in the region during the
fall of 2003. Nevertheless, the data set does antain any information about the bidders.

The following two tables give summary statisticyafiables used in our econometric study.

8 The Herfindahl index is the sum of the square n@lproportion of each species. Here the numbepediss
is limited to 7, then the Herfindahl index variesrh 0.14 to 1. The more homogeneous the lot, theeclis the
index to one.
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Table 2. Descriptive statistics for binary variable

Variable %
No restrictions 37.18
Cutting
arranged cutting 52.70
other cutting 4.40
selection cutting 1.08
accidental products 2.74
regeneration cutting 39.09
Previously unsold 48.22
Harvesting conditions
easy logging & extraction 27.22
normal logging 58.76
difficult logging 2.74
difficult logging & extraction 7.97
very difficult logging & extraction 3.15
Mitraille (scrap-iron, grape-shot from the first slebwar)
no mitraille 77.56
light mitraille 13.72
average mitraille 05.99
heavy mitraille 2.74
Stand, crop
high forest 29.71
conversion of a stand 62.41
coppice forest 0.58
coppice with standards 7.30
state-owned forest 25.89
community-owned forest 74.11
Landing area
unarranged 80.41
arranged 15.93
none 3.65
Quality
very good 4.07
good 34.85
normal 45.64
mediocre 12.61
bad 2.66
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Table 3. Descriptive statistics for continuous vadbles

Variable Mean Std. Dev. Min Max
Surface (in hectare) 12.41 10.38 0.20 104.04
Number of trees 238.27 205.63 21 2259
Number of poles 267.07 663.76 0 11366
Herfindahl index 0.6007 0.1949 0.3337 1.0000
Stem volume of the mean-tree 1.0623 0.7314 0.0596 .7190
Oak volume without crown 94,51 115.98 0 859.98
Beech volume without crown 136.83 164.09 0 1365.80
Other hardwood volume without crown 67.66 97.25 0 38.80
Crown hardwood volume 166.62 153.64 0 1196.47
Coppice volume 0.33 5.39 0 153.83
Relative order of the auction 0.50 0.29 0 1

All continuous variables are defined in logs exceptiables in percentage such as the
Herfindahl index and the variable used to givertiative order of the auction in the sale and
the stem volume of the mean-tree. Thirty six peiseii the auctioned lots are sold at a price
lower than the seller reserve price. These figgtesv that the seller does not commit to a
credible reserve price and takes her decision temcor not the highest bid at the last

moment. Thus, the “a priori” reserve price of oatadset has no clear significance.

Table 4 reports the number of lots according toniin@ber of bidders. In the data there are up

to 13 bids for a lot, but the most frequent casghen there is only one bid.

Table 4. Number of lots according to the number obidders

Number of bids 0 1 2 3 and more Total
192 227 183 603 1205
(16%) (19%) (15%) (50%) (100%)

Number of lots

In our empirical application, we propose to distirsdp timber lots which received no bid and
lots for which we observe at least one bid. Amohg submitted lots, we distinguish 3
categories depending on the level of competitian (he number of bidders):

i) there is no competition: 1 bid,

i) there is limited competition: 2 bids,

iii) there is strong competition for the lot: 3 bidr more.
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4 Methodology

Participation in timber auctions raises two econim@roblems. First, many lots receive no
bid and thus remain unsold at the end of the &deondly, the number of bidders in an
auction has an impact on the result of the auciitomakes a big difference if there is only
one bidder (no competition) or if there are twarmre bidders that compete for the samé lot.
Nevertheless, participation depends on the charsiits of the lots and thus is endogenous
from an econometric point of view. We propose auoed form econometric methodology
that simultaneously deals with non-submitted Idan{ple selection) and an endogenous
number of bidders in the hedonic price function. \@elicitly model participation by
constructingJ categories; but as announced before, we will c@msB categories in our
application: 1 bid, 2 bids, and 3 bids or more. &{plain the intensity of participation by the

characteristics of the lots in an ordinal prokanfrework.

We propose a Bayesian Monte Carlo Markov Chain (M} Mampling algorithm. We know
that classical maximum likelihood procedures mightunreliable, even when we analyze the
issues of sample selection and endogenous expignetoable separately. We are not aware
of any study that deals with both issues at theestame as it would require three correlation
coefficients to estimate. The existing maximum lilk@od estimation procedures (such as
simulated maximum likelihood) do not perform welithvmultiple correlation coefficients
and sample selection (see Waelbroeck, 2005). Tsigfies our Bayesian algorithm that is
more reliable to produce robust correlation cogdfits. The idea is to simulate the (latent)
variables that determine the participation outcqrmésch greatly simplifies the analysis of
the joint posterior distribution of the parametérgVe propose a slightly different MCMC
algorithm for the sample selection part of the nhddan Van Hasselt (2005). We write the
latent model as a SUR model with an unequal nurabebservations; and thus inference on

the coefficients of the observed equation onlyesebn observations that are not censored.

° Even when there is only one bidder, the submitiiedcan not be too low because it has to reactseieeet
reserve price of the seller in order to becomeraing bid.

1% |ndeed, latent variables can be simulated andditional on these variables, the model is a singg#emingly
Unrelated Regression (SUR) model that is easy &l déh. We use a Metropolis step to draw from the
conditional posterior distribution of the elemeotshe covariance matrix of the unobservable véemb
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Despite the importance of the issue of sample Sefewith endogenous variable, we are not
aware of a study that deals simultaneously withs¢hewvo issues. On the one hand, the
problem of sample selection has been widely andlyzéhe econometrics literature starting
with the seminal work of Nobel price winner Jamesckiman, who proposed a method
(Heckit) to correct sample selection bias. Van idig2005) has proposed a Bayesian Monte
Carlo Markov Chain (MCMC) algorithm to make infecenon the correlation coefficient of
the sample selection model. The author conductoatéCarlo study that shows that Gibbs
sampling algorithm performs well regardless of veethe parameters of the model are fully
identified or not! On the other hand, Chakravarty and Li (2003) psepa Bayesian
algorithm to test the effect of an endogenous pinariable on the profits of a trader (we are
not aware of another similar study). They proposenaple Gibbs sampling algorithm that
alternates between conditional posterior probgbdistribution of the parameters. They find

no evidence of significant correlation between ratprivate information and their profits.

We contribute to the econometric literature on tpoints. First, we deal with three
correlation coefficients because we have three sgrwhble variables in our model, while
Chakravarty and Li (2003) and Van Hasselt (2009y tvave to deal with one correlation
coefficient. Secondly, both articles reparametetimeelements of the covariance matrix that
simplify the sampling procedure and speed up the oh convergence of the simulated
Markov chain. Their algorithms might not be optimath likelihood functions of irregular
shapes. We have included a Metropolis step frontomelitional posterior distribution of the

covariance matrix that sometimes accepts drawsitiaease the likelihood functiéh.

We analyze endogenous participation in French puioinber auctions using a system of
three equations. Equation (1) determines the setegirocess. In other words, it is the
probability that there is at least one bid. In cdsebidders do not participate in the auction
(no bid), the expected payoff of participatimg,, is zero or negative. Thus, we defjne=1
if at least one bidder participates in the auctiody;; = 0 otherwise whereindexes the"

lot.

' The Gibbs algorithm is an MCMC algorithm that éteévely draws from the conditional posterior distriions
of the parameters and always accepts such draws.
125ee Cheret al. (2000).
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[ 1 if wy; >0

yii= 3 1)
L 0 if wy; <0

wherew; ; = x1;' B1 + &, B1 is of dimensiork; and X ; is a set of control variables.
Equation (2) determines the outcome of the endagerdinal variable in the selected

sample’? We definey,; as an ordinal variable that can takeJoralues (in the applicatioh=
3).

( 1 ifwyi <
|

Y2i = %| ] if a1 <Wspj < a if Vi = 1 (2)
L J if W > a1

wherew,i = X' B2 + &, B2 is of dimensiork, and x%; is a set of control variables. We define

a=(m, ...,a3-1)" as the vector of cutoff parameters to be estimated

Finally, equation (3) is the hedonic price equattbat explains the highest bigs; as a
function of lot characteristics and the endogenanalsnal participation variablg,; included
as a set o§-1 binary variable$: Equation (3) is only observed for lots that haeeeived at
least one bidyg; = 1).

Wsi = Z3j' Ya+ 22’ Op + & = X3j' B3+ &; observed foyy; =1 (3)

where z; = (2.2j, ... ,229,;) With 5, = 1 if y»; =] (andz;; = O otherwisej = 2, ...,J), &, is a

vector of parameters of dimensidfl, x3j = (z3)', 22;')’ andBsz = (v, &)’

13 Generally, we only observe the endogenous ordiagable (2) in the selected sample. For instaicéhe
application, the ordinal variable is the extentanfction participation, which is only observed fotsl that
received at least one bid. The observed equatipexdains the highest bid.

* We decompose the ordinal variable in a set ofrginariables so that our results do not depenchenaay
we have coded the ordinal variable. This is noisane in equation (2) since the methodology autimaiit
determine the cut-off points regardless of the emlof the ordinal variable.
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We assume thati = (&', &', &;')' is normally distributed with mean (0, 0," Gnd

covariance fori=1, ...,n:

[ 1 P2 1303 |
> = | p2 1 L2305 |
D130 P03 0%

Parameterso,, o13 and o3 represent the correlations between the unobservabiables.
Hence,p13 is the correlation coefficient of the Heckman stmgelection procedure, while
P23 is related to the lack of competition for the iotthe hedonic price equation. Parameter
o+’ is the variance ofs;. Since probit equations (1) and ordinal probitamn (2) are not
identified, we had to impose two restrictions. Wese to normalize the variances of the
selection equation and of the endogenous binarghlarto 1. These are standard restrictions
in probit models?

We always observe {x y1;), but we only observg,; andws; wheny,; = 1.*° Moreover, the
variablesw;; andw,; are latent. The vector of explanatory variablas loa stacked in order
to write the (partially) latent model as a Seemyrighrelated Regressions (SUR) model with
an unequal number of observations. bebe the number of observations for whigh = 0
and n, the number of observations such thgt= 1, withn = n;+n,. We now assume for
notational convenience that the data have beerdsarcording to the values wf We also
note the vector of binary dependent variables as(y', y»')'. Let = (B4, B2, B3)', w1 =
(Wi, woy Wap)'s Wo = (Wo gy .ony Vo), W3 = (Wayg, ..., Wap,)' and define w = (W, wy', wa')'".

We defineg;, €5, €53 ande in a similar fashion.

For notational convenience, we decompose the \@dbunobservable variables according
to the selection process= (£11', €17, €2/, €3')', where the second index equals ¥ if= 0 and

equals 2 ify;; = 1. Thus the covariance of the unobservable vasais| simply

15 See Wooldridge (2002) or any other textbook orettenometrics of qualitative dependant variable.
! Depending on the data set, we always obsegyeand x;, or we might only observe them whgp = 1.
However, in the former case we do not use cengiaaito make inference in equations (2) and (3).
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J—

[ iy 0
Q=Ee= | 0 50l i

where | denotes the identity matrix of dimensipf). ThusQ™ is readily obtained. We also
decompose and stack the vector of the partialgntaiependent variables as w = {ywi7',

w2, ws')" and define similarly

X11 0 0
X12 0 0
0 Xo 0
0 0 X

(N1+3n2) % (K +katka)

= —1
N |

The (partially) latent model can be written in matormat:

w=XpB+e¢ (4)
Hence conditional on w ard, the estimates ¢ are simply obtained by a Generalized Least
Squares (GLS) regression @f).{’ Moreover, the matrices’'®™*X and XQ *w required for

the GLS estimates of the parameters of the modetasily computed.

The 4 steps of the Metropolis-Gibbs algorithm aesadibed in appendix 1, and the
computation of the partial effects can be foundppendix 2.

5 Results

We first estimate the probit equation (1) and théiral probit equation (2) separately and

run a Heckit procedure using sample selection emu#l) and hedonic bid equation (3) as

" Since each stage contains different number of reaiens and generally different sets of explanator
variables, we can not estimate the SUR model withnary least squares regression applied to edeintla
equation separately.

20



benchmarks. Secondly, we compare these estimatguits with the Bayesian estimation of
parameters of equations (1), (2) and (3) using M@MC algorithm. All the variables

available have been used to build the following eldalut only significant variables have
been kept in each equation. The signs of the esdnaoefficients are coherent and intuitive,
except for the variable ‘no restriction’ for whithe coefficient is surprisingly negative in

equation (3).

Table 5 gives the probability a lot will receivel@dst one bid.

Table 5 - Equation (1) Probit regression results of;

Y1 Coef. Std. Dev.
selection cutting & other cutting ** -0.4673 0.2169
accidental products **x.1.2117  0.2925
previously unsold *x 2. 7786 0.4056
difficult & very difficult logging & extraction * -0.2852 0.1509
Herfindahl index ** 0.6278 0.3172
mitraille ** -0.3110 0.1388
number of trees *** 0.3481 0.0769
arranged landing area ***(0.5224 0.1639
normal quality ** .0.4989 0.1428
mediocre & bad quality **_0.5153 0.1837
beech volume without crown * 0.0731 0.0375
first sale ** .1.3975 0.1854
_cons ¥ 15638 0.6218

Log-lik = -307.44
Table 6 gives the intensity of competitiare the number of bidders) for a lot) probability

that there is no competition, i.e. only 1 bid) fprobability that there are 2 bids, anl)(

probability that there are 3 or more bids.

Table 6 - Equation (2) ordinal Probit regression reults ofy,

Yo Coef. Std. Dev.
selection cutting & other cutting ** -0.4892 0.1956
previously unsold *** .0.7330 0.0823
normal logging *** .0.3639 0.1037
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difficult & very difficult logging & extraction *** -0.5633 0.1375
Herfindahl index ** 1.9817 0.3301
light mitraille ¥x o .0.4393 0.1237
average mitraille *** .0.4522 0.1745
heavy mitraille ** .0.7958 0.2415
relative order of the auction ** (0.4558 0.1428
conversion of a stand ** 0.2068 0.0990
arranged landing area ***(0,4127 0.1140
normal quality *¥* .0,2909 0.0921
mediocre & bad quality *** _.0.6665 0.1336
surface ¥+ .0.2642 0.0818
other hardwood volume without crown **(0.1604 0.0367
oak volume without crown ** 0.2574 0.0364
beech volume without crown **0.2088 0.0328
first sale *** -0.5276 0.1785
lo ] **  1.4253 0.4089
as ¥ 2.0603 0.4108

Log-lik = -830.39

Table 7 gives the estimation results of the obskrequation obtained by the Heckman
methodology using the method of maximum likelihodthe hedonic equation is the
estimated value of the log of the highest bid (éigua(3)). The selection equation, which
gives the factors that influence whether a lot vatieive at least one bid or not, and estimated
coefficients were already reported in Table 5. Wée aan an OLS regression of equation (3)
but results were similar and are not reported. hexpected since the coefficient associated
with the inverse Mills ratio is not significantlyfierent from zero in Table 7. However, this
result is not robust and depends on the varialded to build the model. Actually, if we use
only variables that are available in the sale ogia¢, we may observe a selection bias. Such
a model is presented in Appendix 3 where we only weiables from the sale catalogue.
However, we found that estimations of the correlatcoefficientsp; using the Heckit
procedure can lead to misleading inference. In rngplecification of Appendix 3, the Heckit
procedure leads to significant sample selectiors p8), while the Bayesian procedure does
not detect any problem of sample selection bias ¢trrelation coefficient is .30 but is not

significantly different from 0), which confirms nél¢s from this section.
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Table 7 - Equation (3) Heckman regression resultsf av;

ws = log highest bid Coef. Std. Dev.
no restrictions ** .0.0882 0.0303
accidental products ***.0.4529 0.1100
regeneration cutting ** (0,1264 0.0307
previously unsold ** .0,1098 0.0322
Density ** (0.,0053 0.0011
difficult & very difficult logging & extraction *** -0.0929 0.0368
Herfindahl index **0.9389 0.1263
Mitraille *»* -.0.0786 0.0324
number of trees *¥* 0.3735 0.0369
relative order of the auction ¥*0.1662 0.0431
conversion of a stand *** 0.1425 0.0339
coppice forest & coppice with standards **(,1980 0.0533
no landing area *»* .0.1570 0.0674
normal quality ** .0.1182 0.0277
mediocre & bad quality *** .0.2308 0.0424
surface ¥+ 0.2336 0.0426
other hardwood volume without crown **(0.0593 0.0149
oak volume without crown ** 0.1899 0.0151
crown hardwood volume ** 0.0643 0.0097
beech volume without crown *** 0.0977 0.0129
stem volume of the mean-tree ***0.4505 0.0265
first sale * 0.1102 0.0567
last sale *¥* 0.1608 0.0347
Y, one bid ¥*.0.2143 0.0382
Y, three or more bids ** 0.3595 0.0335
_cons ¥ 34724 0.1426
P13 -0.0467 0.1366
o3 ¥ 0.3758 0.0084
A -0.0176 0.0514

Table 8 gives the Bayesian estimation of the 3-egnanodel. For each equation, we used
exactly the same variables as before.

Convergence of the MCMC algorithm was reach quickie removed the first 100000
iterations and kept the next 1000000 iterationsiriégrence. In Appendix 4, Figures 1 to 3

23



display the marginal posterior distribution of tberrelation coefficients. They all have a

single mode.

Controlling for endogenous participation and foe tharacteristics of the lots, we find that,
compared to the highest bid for lots with two bids, average:i) lots with only one bid

receive a highest bid that is 22.31% below andI¢ts with three or more bids receive a
highest bid that is 37.09% higher. Compared toghesults, the heckit procedure slightly
underestimates the effect of the endogenous varialdvertheless coefficients are quite

similar in both methodology.

Table 8 - Bayesian estimation of the 3-equation medl

Variable Coef. Std. Dev.

Equation (1)

selection cutting & other cutting ** -0.4762 0.2188
accidental products ***.1.2381 0.2957
previously unsold ** 2.9745 0.4589
difficult & very difficult logging & extraction * -0.2824  0.1513
Herfindahl index ** 0.6432 0.3182
mitraille ** -0.3139 0.1393
number of trees *** 0.3526 0.0773
arranged landing area ***(),5380 0.1654
normal quality ** .0.5020 0.1429
mediocre & bad quality ¥ _0.5174 0.1842
beech volume without crown * 0.0726 0.0375
first sale ¥r .1.4172  0.1860
_cons *¥x o 1,7395  0.6587
Equation (2)

selection cutting & other cutting ***.0,4899 0.1959
previously unsold ** .0.7265 0.0881
normal logging ** _0.3643 0.1033
difficult & very difficult logging & extraction *** -0.5620 0.1375
Herfindahl index Bk 1.9769 0.3322
light mitraille **.0.4324 0.1263
average mitraille *** .0.4563 0.1753
heavy mitraille ** .0.7949 0.2410
relative order of the auction *** (0.4587 0.1430
conversion of a stand ** 0.2062 0.0989
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arranged landing area ***(,4106 0.1148
normal quality % .0.2891 0.0924
mediocre & bad quality **_0.6658 0.1340
surface ¥ -0.2640 0.0818
other hardwood volume without crown **0.1603 0.0367
oak volume without crown *¥* 0.2575 0.0363
beech volume without crown ** 0.2094 0.0330
first sale ¥* -0.5220 0.1811
lo ] *x 11,4265 0.4095
as ¥k 2.0618 0.0437
Equation (3)

no restrictions *** .0.0884 0.0308
accidental products ***.0.4538 0.1116
regeneration cutting ** (0,1258 0.0311
previously unsold *** .0.1049 0.0366
density ¥+ (0.0053 0.0011
difficult & very difficult logging & extraction ** -0.0910 0.0384
Herfindahl index ¥ 0.9270 0.1412
mitraille ** -0.0763 0.0348
number of trees *** 0.3735 0.0374
relative order of the auction ***(0,1635 0.0461
conversion of a stand ** 0.1413 0.0350
coppice forest & coppice with standards **0.1978 0.0541
no landing area ** -0.1563 0.0682
normal quality ¥+ .0.1159 0.0298
mediocre & bad quality **_0.2261 0.0485
surface ** 0.2348 0.0438
other hardwood volume without crown ***(0.0581 0.0162
oak volume without crown ** 0.1885 0.0171
crown hardwood volume ** 0.0646 0.0099
beech volume without crown **0.0964 0.0145
stem volume of the mean-tree **0.4507 0.0269
first sale * 0.1139 0.0589
last sale ¥+ 0.1617 0.0355
y» one bid **% .0.2231 0.0581
y» three or more bids *** (0.3709 0.0657
_cons *¥x 34837 0.1526
Pro -0.0147 0.0581
P13 -0.0482 0.1296
03 -0.0254 0.1242
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O3 *** 0.3837 0.0093

Two results deserve special mention. First, thereegf intra-lot heterogeneity is a
significant variable in all 3 equations: the Hedihl index has a significant positive effect.
Thus, during an auction with at least one biddempetition increases for lots that are more
homogenous in speciese. with an Herfindahl index closer to one. In additia higher
Herfindahl index increases the highest bid. Thesicentrated lots with a Herfindahl index
close to 1 (in other words lots that are not hegfen@ous) have a sale premium. Boltz, Carter
and Jacobson (2002) highlight the importance ohidt heterogeneity on auction prices of
mixed species lots from timber auctions in Northidliaa. Their Tobit estimation results (the
reserve price being announced) show that increhstmtogeneity leads to lower sale prices.
In some way, they interpret such decrease in thentee as an opportunity cost for ecosystem
management where biodiversity is a desired comsirdtere, the opportunity cost of
maintaining mixed forest can be estimated frompiial effect associated to the Herfindahl
index: increasing the index by 1% increases theebgal highest bid by 0.9164%. This figure
can be found in Table 9 below which gives the phsifect for every variable used in this

model.

Second, the coefficient associated with the ‘reéatposition of a lot’ in the sale is
significantly positive in equation (2) and (3). $hindicates that lots put on the market at the
end of a sale have a higher probability to recemnge bids and to obtain a better highest bid
than lots auctioned in the beginning of the sdierave control for quality differences. This
last result implies that the decline in prices wft@served in sequential auctions is not
present in our sample of timber auctions. On thetraoy, prices tend to increase for
hardwood lots during a sale. This could be dueaatious behavior of the bidders in the
beginning of the auctions and more aggressive hidshe end of the auctions. This
interpretation is confirmed by two additional rdasulirst, the probability that a lot receives
bids is significantly lower in the first sale ofettcampaign: the variable ‘first sale’ has a
significant negative impact in equation (1) and @igders wait and see at the beginning of
the timber sale campaign. Second, the variablé dale’ has a significant positive impact in
the hedonic bid equation (3). This result reinfertige ‘relative position of a lot’ variable on
a larger scale. Indeed, the highest bid increasesgla sale (which is composed of many
timber lots put on sale the same day), moreovehitfigest bids tend to be higher in the tenth
sale (the one that took place the last day ofithbdr sale campaign).
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Table 9 — Partial effects

Partial effectsStd. Dev.

no restrictions ik -0.0887 0.0313
selection cutting & other cutting -0.0011 0.0230
accidental products rxx -0.4139 0.1163
regeneration cutting bl 0.1253 0.0312
previously unsold *x -0.1725 0.0745
density rxx 0.0053 0.0011
normal logging * -0.0102 0.0059
difficult & very difficult logging & extraction — *** -0.1156 0.0411
Herfindahl index ik 0.9164 0.1580
mitraille * -0.0708 0.0384
light mitraille * -0.0115 0.0068
average mitraille -0.0121 0.0080
heavy mitraille * -0.0174 0.0103
number of trees ok 0.3352 0.0469
relative order of the auction ok 0.1791 0.0459
conversion of a stand ok 0.1472 0.0342
coppice forest & coppice with standards kx 0.1989 0.0553
arranged landing area 0.01400.0249
no landing area *x -0.1565 0.0667
normal quality kx -0.1125 0.0368
mediocre & bad quality kx -0.2595 0.0531
surface ik 0.2265 0.0448
other hardwood volume without crown ik 0.0631 0.0159
oak volume without crown ik 0.1963 0.0166
crown hardwood volume ik 0.0648 0.0100
beech volume without crown ik 0.0949 0.0171
stem volume of the mean-tree ik 0.4516 0.0276
first sale 0.1168 0.0787
last sale ik 0.1618 0.0348
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6 Conclusion

Using detailed data set on timber auctions in Lineiawe have highlighted the importance of
endogenous participation on auction results, fausn lots that do not receive any bids and
on the degree of competition when lots receiveeaistt one bid. We have proposed a
methodology to deal with both issues at the same.tirhe econometric method can easily be
extended to deal with truncated or censored demendariables in the hedonic price
eqguation, when the reserve price is announced.

Our results can help public forest services tordatee a relevant reserve price for each lot
according to its characteristics. In order to aendtions with 1 bid or less, the methodology
could also be used to propose more attractivedntsto better understand demand factors.
Our hedonic price function for stumpage value giweteresting information about the
implicit price of each lot characteristic for thptional lot composition. We have discussed
the impact of the relative order of the lot in teale and the impact of the intra lot
heterogeneity, but our results show that many bl have a significant impact on the
participation process and on the auctioned prictuding the type of cutting, the type of
stand, the harvesting conditions, the volume aedctimposition of the lot. These results can
help the forest public services to manage foreserefficiently so as to offer more attractive
lots.

This methodology can also be useful for biddersd&ine a bid that increases their
probability of winning at a lower cost. Models dam elaborated according to which variables

are available to the agent just before the auction.
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Appendix 1: The Metropolis-Gibbs sampling algorithm

The Metropolis-Gibbs sampling algorithm proceedglisteps. The first step is a standard
data augmentation step. We use a uniform prioffar, o1, 013, 023 and a non-informative
prior for az: p(B, a, P12, P13 P23, 03) O 1oz To simplify notations we have dropped the
dependence of2 on Z and the dependence B&fon (o2, o13, 023, 0z)' when there is no

ambiguity.

Stepl.w, w, |a, B, Z, ws, ¥, X

In the first step, we only need to draw and v since w is observed. Whew,; = 0, we
know thatw, ; < 0, hence for those observations (L, ...,n;), we draww;; from the standard
truncated normal distribution with mean;"81 and variance 1 truncated omo(-0). We use
the optimal algorithm of Robert (1995) to draw frdine truncated normal distributiéhFor
the other observations £ m;+1, ..., n), we know that conditionally oa, B, Z, y, X, Wy,
Waj, Wz;)" has a joint normal distribution with mean {81, X2;'B2, X3;'B3s)’ and covarianc&.
Thus,

Wi |Waj, O, B, Z, Y, Wa, X OTN(ta)23 21123 Ba)

where TN(a, b; ¢) denotes the normal distribution with meanvarianceb truncated in
subspace andB; = {z 0 R: z > 0}. The conditional momentg, 3 and 2y p3 are given by
the standard formulas of the conditional distribntfrom a multivariate normal distribution.

Similarly,

Wo, |Wij, O, B, Z, Y, Wa, X OTN(£b)13 22113 Bo)

'8 The choice of the prior distribution does not mathuch when there is a large number of obsentiohich
is usually the case for auction data. Moreovemgaishe uniform prior distribution provides a direnean of
comparison with the maximum likelihood procedures.

19 Using the inverse c.d.f. method yielded unreliabkults.
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whereBy = {z0 R: g1 <z< a} if y»; =] (by conventiongg = —c anda; = +).

Step2.a|pB 2 y,w, X
It is easy to see that the conditional posteristrdiution ofg; is (forj =1, ...,J-1):
a |B, Z,y, w, XOU(Max{wo;: yo; = j}, Min{ Wy;: yo;j =]+1})
As discussed in the presentation of the (partidditggnt model, the conditional distribution of
[ is readily seen to be:
Bla, Z,y, w, XON(X'QX) ™ X'Qw, (X'QX)™).
Step4.x|apB,y, w,X
The conditional posterior distribution &fis not standard,

Sla, By, w, XO [E["? expg-€'Q%/2) | o5,

but can be simulated using Metropolis step. Defire (012, 013, 023, 03)'. We use a normal

jumping distribution N@, 6" l4x4).?°

2 We set the elements 6fin the Metropolis-Hastings algorithm to obtain @arceptance rate between 0.2 and
0.25. In general a large step size decreases e gf convergence of the algorithm but enablegetoout of
problematic areas of the likelihood function mongicgly, while a small value would make the algomith
converge faster at the cost of getting stuck inesirdble areas. The range of values that we haed iss
standard for the number of parameters used inghkcation and was found to be a good compromisedsn
the two effects mentioned above. Note that thigeaof acceptance rates has been shown to be ogftimal
MCMC algorithms that use a normal jumping distribot For other sampling schemes, the optimal aeregt
rate has to be computed and could be different filoenabove values. Draws that resulted in valuethef
correlation coefficients below -1 or above 1, adl we draws not resulting in a positive covarianarix were
rejected. Note also that we used a log transfoomatif the various probabilities in order to avoigherical
underflows.
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Appendix 2: Computation of the partial effects

Let X denotes the matrix of explanatory variableéireed in the text. The observed highest
bid equation is

W3 = On Zoo + Opp Zozt Z3'Y3 + &3 (A1)

The expected bid conditional on participation is
EWs | X,y1=1) =1 E@2 | X,y1=1) + 02 E(223 | X, y1=1) + z3'ys + p A(X1'B1)  (A2)

Where isA(Dlis the inverse mill ratio ang = o139/ 03. The patrtial effects of the last two terms
of (A2) are given from standard computations in leckman model. It remains to find the
partial effect with respect to the first two terwisthe right-hand side of (A2). We can write
(dropping the conditioning on X to simplify notat):
EZ2 |y1=1) =p(y2 = 2 |[y1=1) =p(1X2Bo < &< do~X2P2 | &> ~X1'B1) =P1 (AI)
E(zs |y1=1) =p(y2 = 3 |[y1=1) =p(& > a2=X2'B2 | & > =X1'B1) = P>
We decompose the conditional probability as follows

P1 =5 p(a1—X2'B2 < & < ar—%2'B2 | &) p(&r | & > —x1'B1) dey,

whereD = [-x1'B1; +o0] is the domain of integration with respectgo Using the fact that;

is normally distributed, we can write wher@lié the standard normal density.

P, = /D p(a’l—Xz'Bz <& < 0’2—X2'[32 | 51) (481) /(1— (p(—X]_'B]_)) d€1 (A4)

Using a property of the conditional distribution afnormally distributed random variable,
P(a1%2B2 < & < x2P2 | &) = £ plez | &) d& = £ fl-pro&r; 1-p17°) dep, whereE =
[n—Xx2'B2; ao—X%2'B2] and ¢a; b) denotes the density of a normally distributedalze with

meana and variancé. We use properties of the normal distribution tdev
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p(a1—x2B2 < & < X2z | &) = £ ¢&) d&

= A(ax2' B2 — (1-pr2&y)) N(1-p12)) = A(a1—%2 B2 = (1-pro&))N(1-p1)),  (A5)
whereE' = [(a—Xx2'B2 = (1-pr261) N(1-p127); (12 B2 = (1-pr2&)) NV (1-p12)].

Substituting (A5) in (A4), we have

P1 = /b [&((a2%2' B2 = (1-pro2)) N(1-p12)) = P(a1=X2 B2 = (1-pr2&n)) N (1-p12))]
#ér) [(1-P(—x1'Br)) d&

Similarly,
Po =/ [1 - &(a2%2' B2 — (1-pro&))N(1-p12))] ¢her) (1~ H(—x1'B)) dér

We now compute the partial effect & with respect toxc (the implicit price of the

characteristic) that belongs to the set of varmgeand x:

OPY/OX = [1~D(~x1'Bo)] ™ { e—x1'B) (-Bud/(1~ H(~x1'B1)) *
5 [ M2z Bz (1-progr))V(1-p12)) = H(a1~X2' Br—(1-pro&r))V(1-p12))] &) dey
+ [H(a2x2' Bz=(1-p12 X1 BO)V(1-p12")) = D(a1=%2 Ba~(1~n2 Xa'B1))V(1-p12))] *
#—x1'B1) L
= /o [f(ox2 B~ (1-pr28))V (1-p12)) =~ (0nX2' Bo=(1-pro&0))V(1-p12))] *
BadV(1-p12")) ) der}

Integrals in the previous formula can be computgdimulation using the GHK algorithm
for instance. Similarly,

OP2/0X = [1~&(—x1'B1)] ™ { ¢h=X1'B1) (-Bud/(1- D(~X1'By))

5 [1 = A(arx2 B~ (1-pre&) )N (1-p12))] f&1) des

+[1 = (X2 B2~ (1-p12 X1/ B))V(1-12))] =X4'B1) B

+ b [f(ax2' B2~ (1-pr28) YV (1-p12"))] (BadV(1-p12")) ehn) der}
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Appendix 3: Model 2

The following model is built only with variables @ilable to any buyers since it includes only
information that is given in the sale catalogueother words, we did not use any private
information from the seller to built this alternsgimodel. Thus, this second model is not as
good as the first one, nevertheless we presemré to show we observe a selection bias in

this model €f. coefficientp;3 or A in the Heckit procedure Table A3).

Table Al - Equation (1) Probit regression results oy;

Vi Coef. Std. Dev.
selection cutting & other cutting ***.0.5215 0.1795
accidental products ***.1.3852 0.2353
Herfindahl index ¥+ 1.3517 0.2971
number of trees ** 0.2260 0.0827
arranged landing area ** 0.3540 0.1476
State owned-forest *** (0.3220 0.1284
oak volume without crown *** (0.1786 0.0433
crown hardwood volume ** .0.0782 0.0389
beech volume without crown ¥* 0.1147 0.0347
first sale ¥+ .1.0857 0.1408
_cons ¥ .1.5618 0.4190

Log-lik =-431.48

Table A2 - Equation (2) ordinal Probit regression esults ofy,

Yo Coef. Std. Dev.
selection cutting & other cutting ***.0.5641 0.1907
accidental products ** -0.7304 0.3237
Herfindahl index ¥* 1.7760 0.3089
relative order of the auction ¥+ (0.3819 0.1381
no landing area ¥+ _0.5971 0.2038
State-owned forest ¥+ 0.2578 0.0935
surface ¥x -0.2576 0.0815
other hardwood volume without crown ***(0,1532 0.0338
oak volume without crown *** 0.2644 0.0341
beech volume without crown ** (0.1797 0.0303
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first sale *  -0.3145 0.1657
m ¥»x 2.0375 0.3675
a % 2.6035 0.3699

Log-lik = -904.78

Table A3 - Equation (3) Heckman regression resultsf ws

ws = log highest bid Coef. Std. Dev.
no restrictions ** .0.0888 0.0309
accidental products ***.0.3878 0.1154
regeneration cutting ** (0.1321 0.0318
density ¥+ 0.0050 0.0012
Herfindahl index ** 0.8754 0.1323
number of trees ** 0.3483 0.0389
relative order of the auction ***0.1391 0.0440
conversion of a stand *** 0.0939 0.0343
coppice forest & coppice with standards ** 0.13560.0544
no landing area ***.0.1912 0.0687
surface (in hectare) ** (0.2175 0.0442
other hardwood volume without crown **(0.0556 0.0154
oak volume without crown ** 0.1874 0.0160
crown hardwood volume *¥* 0.0691 0.0105
beech volume without crown *** 0.0901 0.0136
stem volume of the mean-tree ***0.4486 0.0277
first sale ¥ 0.2778 0.0632
last sale ¥* 0.2102 0.0344
Y, one bid ¥ .0.2294 0.0391
Y, three or more bids ** 0.4120 0.0336
_cons ¥ 36267 0.1626
P13 *** .0.6833 0.1264
o3 ¥ 0.4188 0.0161
A *+ o .0.2862  0.0622

Table A4 - Bayesian estimation of the 3-equation nael

Variable Coef. Std. Dev.
Equation (1)

selection cutting & other cutting ** -0.4717 0.1896
accidental products *¥*x.1.3771 0.2379
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Herfindahl index

number of trees

arranged landing area

State owned-forest

oak volume without crown
crown hardwood volume
beech volume without crown
first sale

_cons

#* 1.3253 0.3004
*¥* 0.2494 0.0868
*» 0.3551 0.1457
¥+ 0.3473 0.1294
¥»* 0.1636 0.0477
*» -0.0785 0.0377
**(0.1012 0.0400
¥ -1.0864 0.1424
¥* -1.5622 0.4191

Equation (2)

selection cutting & other cutting
accidental products

Herfindahl index

relative order of the auction

no landing area

State owned-forest

surface

other hardwood volume without crown
oak volume without crown
beech volume without crown
first sale

(24}

a

**-0.5490 0.1933
** -0.6837 0.3355
¥k 1.7487 0.3127
¥»*0.3901 0.1394
*¥*.0.5990 0.2038
¥+ 0.2516 0.0941
¥* -0.2595 0.0816
*¥*0.1525 0.0338
** 0.2602 0.0347
**0.1782 0.0312
-0.2825 0.1767

¥ 1.9793 0.3880
¥ 25520 0.0389

Equation (3)

no restrictions

accidental products

regeneration cutting

density

Herfindahl index

number of trees

relative order of the auction
conversion of a stand

coppice forest & coppice with standards
no landing area

surface (in hectare)

other hardwood volume without crown
oak volume without crown

crown hardwood volume

beech volume without crown

stem volume of the mean-tree

¥+ -0.0870 0.0314
¥»*.0.4794 0.1283
¥+ 0.1367 0.0323
¥»*0.0051 0.0012
** 0.8953 0.1527
¥* 0.3619 0.0399
***0.1308 0.0483
** 0.0898 0.0350
** 0.13710.0553

** -0.1811 0.0764
% 0.2289 0.0474
**0.0524 0.0175
** 0.1895 0.0193
*** 0.0660 0.0106
**0.0911 0.0155
*»*0.4518 0.0279
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first sale
last sale
y» one bid

Y, three or more bids

¥ 0.2127 0.0743
¥* 0.2113 0.0348
¥»*-0.2549 0.0769
¥* 0.4422 0.0934

_cons wr 3.4828 0.1897
Pro -0.0514 0.1024
P13 -0.3038 0.2922
3 -0.0423 0.1865
O3 ¥ 0.4098 0.0182

Table A5 — Partial effects

Partial effectsStd. Dev.

no restrictions

other cutting

accidental products

regeneration cutting

density

Herfindahl index

number of trees

relative order of the auction
conversion of a stand

coppice forest & coppice with standards
arranged landing area

no landing area

State owned-forest

surface (in hectare)

other hardwood volume without crown
oak volume without crown

crown hardwood volume

beech volume without crown

stem volume of the mean-tree

first sale

last sale

ok -0.0871 0.0314

-0.0497 0.0443
ok -0.6731 0.1164
ok 0.1372 0.0322

i 0.0051 0.0012
ok 1.1294 0.1917
ok 0.3740 0.0428

ok 0.1708 0.0480
ok 0.0903 0.0356
* 0.1369.0552
0.01390.0308

ok -0.2287 0.0770
0.0508 0.0319

bl 0.2038 0.0492
bl 0.0677 0.0170
bl 0.2221 0.0242
el 0.0623 0.0112
el 0.1129 0.0175
e 0.4503 0.0278
* 0.1395 0.0836
i 0.2125 0.0337
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Appendix 4

Figure 1 - Marginal posterior distribution of o,

0
x58

Figure 2 - Marginal posterior distribution of o3

x59

Figure 3 - Marginal posterior distribution of 0,3
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