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Abstract 

How much is the timber from public forests worth? How can the Public Forest Service define a fair market price 

for standing timber lots? To estimate the value of a timber lot we adopt the transaction-evidence appraisal 

approach using data from timber auctions in Lorraine (Eastern France) accounting for the facts that: (i) the 

seller’s reserve prices are secret, (ii ) there remain many unsold lots, and (iii ) the number of bidders varies from 

one auction to another. We estimate parameters of a sample selection model in which the hedonic equation 

includes an endogenous ordinal explanatory variable (the intensity of participation). 
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1 Introduction 

How much is the timber from public forests worth? How can the Public Forest Service define 

a fair market price for standing timber lots? Answering these questions is challenging. First, it 

is difficult to refer to production costs. Indeed, a forest takes time to grow and expand. 

Timber supply is more a harvesting decision based on silvicultural motives and related to the 

management of a renewable natural resource, than just a question of wood production. 

Secondly, the seller (the Public Forest Service) wants to maximize sales receipts, but also has 

other objectives, such as securing the timber supply to the wood local industry at a price that 

allows them to remain competitive on international markets and/or against other industries 

(steel, aluminum, etc.) Thus, the objectives of the seller might be multiple and contradictory. 

Third, standing timber is different from perishable goods. The optimal time for harvesting 

might have passed if the lot remains unsold for many years, but the trees continue to grow 

and the forest still offers other values (recreation, carbon sequestration, biodiversity, water 

filtration, …) that are difficult to take into account when defining the value of a timber lot. To 

sum up, it is difficult for the seller to evaluate her own reservation value for a lot in standing 

timber sales. 

 

Yet, even if the Public Forest Service uses an auction system to fix the selling price, the 

marketing director needs to set a relevant reserve price for each timber lot that he wants to 

sell. Given that assessing the value of a standing timber lot is challenging, the seller needs to 

refer to demand factors such as: lot quality, species composition, lot location, harvesting 

conditions, etc. In this article, we use the so called “transaction evidence appraisal” (TEA) 

reduced form method, i.e. we estimate timber value from market prices obtained during past 

timber auctions in France. 

 

Most French timber sales are sequential first-price sealed-bid auctions of heterogeneous lots. 

Heterogeneity in the product is probably the most important feature of standing timber sales. 

Lots differ from each other with respect to volume, composition, location, harvesting 

conditions, etc. (inter lots heterogeneity). But a lot is also composed of trees of different 

species and qualities (intra lot heterogeneity). These inter- and intra-lot heterogeneities raise 
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various questions about the valuation of the lots that are put on sale and about their optimal 

composition. Heterogeneity of timber lots makes the hedonic price function approach useful 

in order to infer appraisal value since many characteristics may influence the stumpage price. 

The hedonic price method is based on the implicit price of each characteristic and determines 

how the market values a lot as a set of characteristics.  

 

There are two problems that arise when we analyze timber auction data sets. Both arise from 

the endogenous participation of the bidders in the auctions. First, there are many lots for 

which there is no bid and there are good reasons to think that this outcome is not random: 

bidders may not bid on timber lots that are of bad quality or have difficult harvesting 

conditions, etc. It is important to note that in French timber auctions, the seller does not 

announce any reserve price. The seller might withdraw the lot if she thinks the highest bid is 

too low, but the reserve price is kept secret before the auction. Thus, the lack of bids can not 

be explained by a reserve price that is set too high, since no minimum amount is required to 

bid for a lot. Of course, lots with no submission remain unsold. However, we have to take 

lots without bids into account in the estimation procedure in order to prevent a possible 

sample selection bias. Secondly, when there are bids submitted for the lot, the degree of 

competition varies from one auction to another. According to the independent private values 

auction model, the number of bidders has a positive impact on the bidding strategies in first-

price auctions. Indeed, bidders bid more aggressively when the number of bidders increases. 

Moreover, there are many auctions with only one bidder. This special case needs to be 

analyzed with caution. Remember that the number of bids cannot be explained by the value 

of the reserve price here, so it is sensible to think that the number of bidders is driven by the 

characteristics of the lot. In other words, the number of bidders has to be included in the 

hedonic price equation as an endogenous explanatory variable. 

 

From an econometric point of view, the main problem is related to the correlation between 

unobservable variables that determine the participation process and the auction result. We 

solve this challenge by specifying a 3-equation model: equation (1) defines the probability 

that there is no bid, equation (2) determines among submitted lots the degree of competition, 

and equation (3) is the hedonic price equation that explains the auction result. We estimate 

parameters of this system of simultaneous equations using a Bayesian Monte Carlo Markov 
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Chain (MCMC) simulation algorithm, which simplifies inferences in latent discrete variables 

models.1 

 

Our empirical work contributes to the literature on timber value appraisal by explicitly 

modeling the fact that the seller’s reserve price is not announced. This is the main difference 

with the existing stumpage appraisal literature (discussed in the next section) that uses the 

Tobit two-stage procedure. Indeed, we can not explain bidders' participation by the level of 

the reserve price. In this article, bidder participation directly depends on the characteristics of 

the timber lot. Secondly, we contribute to the empirical auction literature since we propose a 

methodology to assess the value of heterogeneous goods from sequential auctions with secret 

reserve price and endogenous participation. 

 

In the next section, we specify our objective and our empirical approach; in particular, we 

explain why the structural econometrics of an auction model does not fit our purpose. Section 

3 describes the institutional framework of French public timber auctions and the data set. The 

methodology is detailed in section 4 and section 5 presents the results. Section 6 concludes 

our research. 

2 Timber appraisal 

Our methodology uses a reduced form procedure that does not rely on the structural approach 

to the econometrics of auctions. First, we explain why we do not estimate a theoretical model 

of auction. Then we present previous works on timber transaction evidence appraisal and we 

clarify the relationship between seller’s value, reserve price, bidder’s value and highest bid. 

                                                 
1 See Poirier and Tobias (2007) for instance for a general introduction on this topic. The idea is to replace 
methods based on maximum likelihood that often do not converge in complicated settings. 



 5

2.1 Structural econometrics of auction 

There is a recent but important and growing literature on structural econometrics of auctions. 

See for example Laffont and Vuong (1996), Perrigne and Vuong Q. (1999), Athey and Haile 

(2002), Paarsch and Hong (2006) for surveys. The aim of this highly technical and 

sophisticated literature is to estimate the structural parameters of a well defined theoretical 

auction model. In an auction model, the structural parameters are the parameters of the 

distribution function F(.) of the random bidders’ values. In a private values auction model2, 

the bidder’s value vj is the private valuation each potential bidder j receives for the object. 

Using theoretical equilibrium bidding strategies, the objective of the econometrician is to 

infer unobserved bidders’ private values vj from their observed bids bj so as to estimate the 

parameters of the bidders’ private values distribution F(.). 

 

The main drawback of this approach is that a tractable theoretical model needs first to be 

solved at least partially. Auction theory has developed a great deal during the last three 

decades, nevertheless our understanding of real auction sales is far from complete. Many 

strong and restrictive assumptions need to be made in order to have tractable theoretical 

auction models. Our objective here is not to list all of them, but to point out some particularly 

awkward assumptions for timber auctions. The sequential and dynamic aspect is not taken 

into account in the auction model of structural econometric studies. The different auctions, 

indexed by i, i = 1, …, I, are treated as independent from each other and the heterogeneity 

between auctions is mostly considered as noise. Yet, two important components vary from 

one auction to another: the number of bids and the characteristics of the auctioned good. The 

number of bidders Ni in an auction i is usually assumed to be known and exogenous in most 

structural econometrics studies of auctions. Second, as we discussed before, lot heterogeneity 

is one of the most important features in timber auctions. Our timber appraisal approach 

focuses on this lot heterogeneity and does not rely on the estimation of the distribution 

function of the random components of the bidders’ values. To better understand this point, we 

decompose the value of timber lot i as: 

                                                 
2 Most timber auction studies rely on this paradigm, but some uses a common value auction model, such as 
Chatterjee and Harrison (1988) and Athey and Levin (2001). Of course, real timber auctions contain both 
private and common value component. Nevertheless, hardwood timber sales (we use in this study) fit the private 
value better since it is a less standard product than softwood and may have much diverse uses. 
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vi = xi β + εi            i = 1, …, I 

where β is a vector of unknown parameters which are the implicit prices of the characteristics 

of lot i collected in the vector xi; and εi is an unobservable variable. 

 

In structural econometric papers, bidders’ private values are thus defined as: 

vi,j = xi β + εi,j            i = 1, …, I        and       j = 1, …, Ni. 

The main objective in structural econometrics of auctions is to infer the parameters of the 

distribution function of the random bidders’ values. Thus the object characteristics xi 

essentially represent nuisance parameters and not much attention is dedicated to β. But the 

heterogeneity in auctions (number of actual bidders Ni and observed characteristics xi) is 

central to our study. It is the heterogeneity of the auctioned object that makes it difficult for 

the seller to determine her own private valuation vi,0 of the timber lot i she wants to sell. 

Actually, it is our main objective to better estimate the weight, β, of each characteristic in the 

timber lot valuation vi. In other words, we are more interested in the implicit price of each lot 

characteristic so as to infer a better price function for timber lot, than in the parameters of the 

distribution function from which all potential buyers’ valuations are drawn. 

 

In auction theory, the shape of the distribution of the bidders’ valuations is important in order 

to determine the optimal selling mechanism. However, as we said previously, the private 

value of the seller v0 is also crucial to determine the optimal reserve price (even when the 

reserve price is not announced before the auction). We already argued that the seller’s value 

v0, i.e. her reservation value, is not well defined and, at least, is not precisely known at the 

time of the auction. We present empirical evidence of this claim in the data section. 

Consequently, without any clear information about v0, it is not surprising that the seller has 

difficulties in setting the optimal secret reserve price under which a lot should not be sold. 

 

Moreover, most structural econometric studies consider symmetric bidders (i.e. bidders’ 

valuations are drawn from the same distribution function) or at most only two groups of 

bidders. But we believe that the valuation of each characteristic differs from one potential 

buyer to another. Indeed, in timber auctions there is an important heterogeneity among the 

lots, but there is also an important heterogeneity (asymmetry) among the buyers. Some of 

them are interested in high quality timber, some only in given species, or have strict 

constraints on timber diameters, etc. Thus, there are many different types of bidders (small 
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saw mills, big paper companies, merchants, etc.) and each potential buyer might valuate each 

characteristic differently. As a result, a more elaborated model could be: 

vi,j = xi βj + εi,j            i = 1, …, I       and       j = 1, …, Ni. 

Naturally this more complex model raises important identification problems within a 

structural econometric approach. Nevertheless, when buyers have different valuations for 

each characteristic, lot heterogeneity might explain why there is a varying number of bidders 

across auctions even when the reserve price is not announced. This contrasts with the 

literature on structural econometrics of auctions where lot heterogeneity is generally 

considered as noise and does not have any impact on the number of bidders. Yet, it is more 

likely that more valuable lots attract more bidders than less valuable sales, or that certain 

types of lots fit the demand of particular buyers better than other lots, or that certain lot 

characteristics are unacceptable for some buyers but not for others… Hence, participation in 

timber auctions and lots characteristics are strongly related.3 

 

Although timber auctions have many special features that distinguish them from most 

theoretical auction models – those special features are described in section 3 for French 

timber sales – many articles in the structural econometrics of auctions literature rely on 

timber auction data: Mead (1967), Hansen (1985, 1986), Paarsch (1991, 1997), Elyakime et 

al. (1994, 1997), Baldwin, Marshall and Richard (1997), Athey and Levin (2001), Haile 

(2001), Li and Perrigne (2003), Athey, Levin and Siera (2004), and Campo, Guerre, Perrigne 

and Vuong (2006), among others. In most structural timber auction studies, as in our data, 

there is a variable called the seller’s estimate or the appraisal value. Usually that value is 

found to be a summary of all the other variables (such as quality, species composition, 

harvesting condition, etc). To avoid any correlation problem, most papers use only that 

variable to take into account the object heterogeneity between auctions. In contrast, we want 

to improve on the appraisal value of the seller. Therefore, we will focus on all other variables 

that might influence her reservation value. 

 

                                                 
3 Buyers’ characteristics could be included in the hedonic price function to take into account the buyer’s impact, 
unfortunately, in our data set, bidders are anonymous. 
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To sum up, a structural econometric model of auction data does not fit our objective to 

improve timber appraisal from the seller’s point of view. We believe that a more 

straightforward use of the data could be more helpful to build a price indicator for the seller. 

2.2 The transaction evidence appraisal approach (TEA) 

The TEA method relies on the results of past timber sales, usually auctions, for predicting 

stumpage prices.4 Unsold timber lots were not considered in early regression-based models 

(e.g. Jackson and McQuillan, 1979, McQuillan and Johnson-True, 1988). Prescott and 

Puttock (1990) and Puttock, Prescott and Meilke (1990) propose a standard hedonic price 

function to forecast stumpage prices in Southern Ontario timber sales; there was no unsold 

lots in their data. Buongiorno and Young (1984) modeled winning bids using OLS 

conditional on timber auctions that received at least two bids. However, as Huang and 

Buongiorno (1986) argued, the fact that some timber lots remained unsold is important 

market information. Thus, the following transaction evidence appraisal models include this 

market information to prevent biased predictions of market values. Since the reserve price is 

known and announced before the auctions in U.S. timber sales, it is assumed that the reserve 

price explains why some lots are not sold. Therefore, to take into account unsold lots, 

censored regressions (Tobit model) have been conducted (Huang and Buongiorno, 1986). 

Niquidet and van Kooten (2004) do not have sufficient information on no-bid auctions (or 

non-submitted lots), so they seek to predict a fair market value of standing timber in British 

Columbia using a two-stage truncated regression procedure. 

 

Beyond the treatment of unsold lots, the number of bidders also appears as an important 

variable in the estimation of the winning bid in stumpage appraisal literature. Indeed, the 

degree of competition in auctions has an impact on the bidding strategies. Participants do not 

necessarily know the actual number of bidders, but they bid according to the expected or 

potential competition (Brannman 1996). Many studies on timber auctions such as Johnson 

(1979), Hansen (1986), and Sendack (1991) empirically support the auction theory prediction 

                                                 
4 Before the TEA method was introduced in the 1980’s, the residual value approach was used. The residual 
value mainly represents the price of all the products likely to result from a particular timber lot, subtracting all 
the processing costs. (Nautiyal, 1980) 
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that there is a positive relationship between the number of bidders and the value of the 

highest bid. Sendack (1991) explicitly examines the impact of the number of bidders on the 

winning bid by including a transformation of the number of bids submitted as an explanatory 

variable. Assigning a dummy variable to each number of bidders (n = 1, n = 2, …, n = 11), 

Brannman, Klein and Weiss (1987) obtained estimated coefficients that support first-price 

auction theory: bid shading is decreasing with the number of bidders. None of these studies 

endogenize participation. However, to use stumpage appraisal models as predictive tools it is 

necessary to endogenize the actual number of bidders. Examining the impact of the 

(announced) reserve prices in sealed-bid Federal timber auctions, Carter and Newman (1998) 

endogenize the number of bidders in a simultaneous-two-equations Tobit framework, but the 

expected number of bidders is determined strictly by the reserve price.5 Of course, this model 

does not fit French timber auctions since the reserve price is secret. 

2.3 Seller’s value, reserve price, bidders’ values and highest bid 

It is not straightforward for the seller to know below which price she should not sell a timber 

lot, even when she sees the highest bid. The seller’s (reservation) value v0 corresponds to the 

price under which the seller would get no profit from the transaction. The reserve price is 

chosen by the seller, contrary to v0 which is exogenous. The seller commits not to sell the 

good below the reserve price. Of course, if the seller has perfect information on her private 

value v0, the reserve price can not be lower than v0. Actually, the seller’s value might be seen 

as a “pseudo common value” imperfectly known but correlated with the bidders’ private 

values. We can see it as the best expected price the seller could obtain in a future sale. That 

value depends on many features. For example, it depends not only on future global market 

conditions and macro variables, but also on how the market is valuing each characteristic of 

the lot. It is with respect to the latter feature that we want to improve timber appraisal. Our 

objective is to use the results of past timber auctions to build a hedonic price equation. 

 

From a buyer's point of view, the estimated value of a lot is different than from the seller’s 

point of view. Buyers have information on harvesting costs, on what they will produce with 

                                                 
5 They treat the number of bidders as a continuous variable. 
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the wood and at what price they will be able to sell their products. It is therefore easier for 

them than for sellers to estimate their reservation value. Therefore, as in auction models, we 

believe that each bidder knows his private reservation value for a particular lot. That value 

depends on the characteristics of the lot, but may also depend on his inventory (i.e. on which 

lots the buyer already bought, and on whether he still needs wood). 

 

We propose to estimate a hedonic price function based on the highest bids. The highest bid of 

an auction is not necessary a winning bid (and thus a market price) since the seller might 

withdraw the lot if she believes that the highest bid is too low. However, we choose to 

estimate the highest bid and not the sale price because the sale price is not independent from 

the seller’s decision (because of the secrete reserve price) and thus is less informative about 

market demand.6 

3 Data on French timber auctions 

Competitive bidding is widely used in timber sales in France. In particular, the French 

National Public Forest Service (ONF7) uses first-price sealed-bid auctions to sell timber from 

public forest. Timber auctions of ONF, which represent 40% of the timber sold each year in 

France, generally concern standing timber. The auction mechanism seems to be the best way 

to determine an "objective" or a "fair" market value for such a heterogeneous product. Before 

presenting the data set on fall timber auctions in Lorraine conducted by ONF in 2003, we 

describe the institutional framework of French timber auctions. 

                                                 
6 There is a difference between the highest bid and the private value of the highest bidder. According to auction 
theory, buyers in first-price sealed-bid auctions do not bid their valuation. However, we do not attempt to infer 
the bidders’ private value here. Our aim is more to build a price equation for a fair market price based on lots 
characteristics. 
7 ONF stands for Office National des Forêts. 
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3.1 Institutional framework 

Timber auctions are sequential auctions of heterogeneous goods since many different lots 

(usually more than one hundred) are put on sale one after the other; the result of the auction 

of a lot is given before the next lot is put on sale. The first lot is usually randomly drawn, next 

the auctioneer follows the catalogue order. The sale catalogue details all the lots. During a 

sale, bidders are not interested in every lot. Each bidder has a specific demand about species, 

volume, and quality. Thus, the number of bidders for a particular lot is fairly small and it is 

quite usual that there is only one bid or even no bid at all. Besides, bidders are asymmetric; 

they have different goals (sawyer, merchant, etc.), different business sizes, different needs 

and different locations. 

 

At harvesting time, ONF does not choose the characteristics of the products. It has to sell 

what came out of the forest, which is heterogeneous by nature. Thus, lots are heterogeneous 

(different from one another), but they are also made up of heterogeneous wood. In particular 

in standing timber sales, a lot may contain many species of different diameter and of different 

quality. Auctioning such a product raises the problem of the optimal lot composition. The 

successive auctions correspond to different lots, but lots might be interrelated. Some lots may 

be close substitutes while others may present synergies. For example, it may be only 

profitable for some buyers to harvest two or more lots that are close to each other. 

 

Taking into account the heterogeneity of the lots raises practical issues. Potential buyers visit 

the lots that they intend to buy, although there is a catalogue that details the characteristics of 

the lots. Moreover, bidders have to prospect 5 to 10 times as many lots as they intend to buy 

since they are not guaranteed to obtain the lots they want. This leads to non-negligible 

prospecting costs for the bidders. These search costs, which are linked to the heterogeneity of 

the product, are wasteful from a social perspective. Reducing the cost of preparing a bid in 

timber auctions may increase the number of bidders. 

 

Contrary to North American timber auctions, the reserve price of the seller is not announced 

in French public timber auctions. It is kept secret. This singular practice has been studied in 

the literature, but is difficult to justify theoretically. Elyakime, Laffont, Loisel and Vuong 

(1994) show in an independent private value auction model that the seller is always better off 

announcing her reserve price. Nevertheless, the practice of a secret reserve price is sometimes 
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justified either by the fact that announcing a reserve price reduces the participation of the 

bidders or by a common value component (Vincent, 1995). Risk aversion is also mentioned 

to justify a secret reserve price (Li and Tan, 2000). A lack of competition for some lots and 

ONF’s willingness to maintain a reasonable timber price may also explain this practice. 

Finally, a secret reserve price may be used to prevent collusion between bidders at the reserve 

price. When the reserve price is not announced, the optimal secret reserve price is equal to the 

seller’s reservation value v0. 

 

As a matter of fact, we believe that the seller prefers not to announce and commit to any 

reserve price mainly because she does not know her reservation value at the auction time as 

claimed in the previous section. Indeed, a secret reserve price is reported for each lot in the 

database, but this price is not the seller’s reservation value since many auctioned lots (about 

40% in our data set) are sold under this reserve price (which should theoretically be equal to 

the seller’s private valuation v0). This means that the French public Forest Service decides to 

sell or not a lot at the last moment and does not commit to any reserve price before the 

auction. So, the seller uses the bids to adjust her valuation v0 of the lot. With this privilege, 

the seller keeps a certain flexibility to manage the sale, but that practice may be costly for the 

seller from an auction theoretical point of view. Without firm and credible commitment, ONF 

may lose a part of the benefit of an auction. If the bidders anticipate that the seller can modify 

the rules of the game, then they will modify their bidding strategy, which may lower the 

efficiency of the bidding mechanism. Nevertheless, the fact that the seller updates her reserve 

prices shows her difficulty to assess her value v0 of a lot. Hence, announcing a reserve price 

might have negative consequences if the model used to set reserve prices is mis-specified. 

Indeed, a reserve price set too high can result in no bids, while a reserve price set too low 

may result in too much bid shading especially since the number of bidders is usually low in 

timber auctions. 

3.2 Data 

The data set we use is part of the data collected by Costa and Préget (2004). It relies on the 

auction results of the ten fall 2003 timber sales of Lorraine, a Region of the eastern part of 

France. A total of 2262 lots were put on sale. Since there are many differences between 

hardwood and softwood valuations, we select only pure hardwood lots, i.e. lots that are 
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composed of more than 99% of hardwood. Between September 9th and October 28th 2003, 

1205 hardwood lots have been put on sale. Lots may be very heterogeneous and made up of 

many species. The Herfindahl index is used to measure intra lot heterogeneity.8 Out of the 

1205 hardwood lots put on sale, only 52% of the lots are put on sale for the first time; thus 

48% of the lots correspond to previously unsold lots. 

 

At the end of the auctions, lots may be classified according to the auction results. A lot sold 

during the auction is said to be “auctioned”, whereas the others are called “unsold lots”. The 

percentage of unsold lots is 42% and shows a relatively difficult wood market environment in 

the Lorraine area during that period. It is useful to distinguish between lots that got one or 

more bids but have nevertheless been withdrawn by the seller and lots that got no bid at all, 

referred to as the “no bid” category. Table 1 presents sale results. 

 

Table 1. Timber auction results 

Auctioned lots 695 (58%) 

Withdrawn lots 318 (26%) 
Unsold lots 

No bid 192 (16%) 

Total 1205 (100%) 

 

The database of Costa and Préget (2004) includes more than one hundred variables that 

represent a large part of the information available in the catalogues. It also includes private 

information from ONF (harvesting conditions, quality of the lot, secret reserve price), data 

about the auction results (the number of bids, the auctioned prices) and computed data such 

as the Herfindahl index. This database is particularly rich. Moreover, it is exhaustive since it 

contains all the standing timber lots from public forests put on sale in the region during the 

fall of 2003. Nevertheless, the data set does not contain any information about the bidders. 

The following two tables give summary statistics of variables used in our econometric study. 

 

                                                 
8 The Herfindahl index is the sum of the square volume proportion of each species. Here the number of species 
is limited to 7, then the Herfindahl index varies from 0.14 to 1. The more homogeneous the lot, the closer is the 
index to one. 
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Table 2. Descriptive statistics for binary variables 

Variable % 

No restrictions 37.18 

Cutting  

   arranged cutting 52.70 

   other cutting 4.40 

   selection cutting 1.08 

   accidental products 2.74 

   regeneration cutting 39.09 

Previously unsold 48.22 

Harvesting conditions  

   easy logging & extraction 27.22 

   normal logging 58.76 

   difficult logging 2.74 

   difficult logging & extraction 7.97 

   very difficult logging & extraction 3.15 

Mitraille (scrap-iron, grape-shot from the first world war)  

   no mitraille 77.56 

   light mitraille 13.72 

   average mitraille 05.99 

   heavy mitraille 2.74 

Stand, crop  

   high forest 29.71 

   conversion of a stand 62.41 

   coppice forest 0.58 

   coppice with standards 7.30 

   state-owned forest 25.89 

   community-owned forest 74.11 

Landing area  

   unarranged 80.41 

   arranged 15.93 

   none 3.65 

Quality  

   very good 4.07 

   good 34.85 

   normal 45.64 

   mediocre 12.61 

   bad 2.66 
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Table 3. Descriptive statistics for continuous variables 

Variable Mean Std. Dev. Min Max 

Surface (in hectare) 12.41 10.38 0.20 104.04 

Number of trees 238.27 205.63 21 2259 

Number of poles 267.07 663.76 0 11366 

Herfindahl index 0.6007 0.1949 0.3337 1.0000 

Stem volume of the mean-tree 1.0623 0.7314 0.0596 4.7190 

Oak volume without crown 94.51 115.98 0 859.98 

Beech volume without crown 136.83 164.09 0 1365.80 

Other hardwood volume without crown 67.66 97.25 0 838.60 

Crown hardwood volume  166.62 153.64 0 1196.47 

Coppice volume 0.33 5.39 0 153.83 

Relative order of the auction 0.50 0.29 0 1 

 

All continuous variables are defined in logs except variables in percentage such as the 

Herfindahl index and the variable used to give the relative order of the auction in the sale and 

the stem volume of the mean-tree. Thirty six percents of the auctioned lots are sold at a price 

lower than the seller reserve price. These figures show that the seller does not commit to a 

credible reserve price and takes her decision to accept or not the highest bid at the last 

moment. Thus, the “a priori” reserve price of our data set has no clear significance. 

 

Table 4 reports the number of lots according to the number of bidders. In the data there are up 

to 13 bids for a lot, but the most frequent case is when there is only one bid. 

 

Table 4. Number of lots according to the number of bidders 

Number of bids 0 1 2 3 and more Total 

Number of lots 
192 

(16%) 

227 

(19%) 

183 

(15%) 

603 

(50%) 

1205 

(100%) 

 

In our empirical application, we propose to distinguish timber lots which received no bid and 

lots for which we observe at least one bid. Among the submitted lots, we distinguish 3 

categories depending on the level of competition (i.e. the number of bidders): 

i) there is no competition: 1 bid, 

ii) there is limited competition: 2 bids, 

iii) there is strong competition for the lot: 3 bids or more. 
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4 Methodology 

Participation in timber auctions raises two econometric problems. First, many lots receive no 

bid and thus remain unsold at the end of the sale. Secondly, the number of bidders in an 

auction has an impact on the result of the auction: it makes a big difference if there is only 

one bidder (no competition) or if there are two or more bidders that compete for the same lot.9 

Nevertheless, participation depends on the characteristics of the lots and thus is endogenous 

from an econometric point of view. We propose a reduced form econometric methodology 

that simultaneously deals with non-submitted lots (sample selection) and an endogenous 

number of bidders in the hedonic price function. We explicitly model participation by 

constructing J categories; but as announced before, we will consider 3 categories in our 

application: 1 bid, 2 bids, and 3 bids or more. We explain the intensity of participation by the 

characteristics of the lots in an ordinal probit framework. 

 

We propose a Bayesian Monte Carlo Markov Chain (MCMC) sampling algorithm. We know 

that classical maximum likelihood procedures might be unreliable, even when we analyze the 

issues of sample selection and endogenous explanatory variable separately. We are not aware 

of any study that deals with both issues at the same time as it would require three correlation 

coefficients to estimate. The existing maximum likelihood estimation procedures (such as 

simulated maximum likelihood) do not perform well with multiple correlation coefficients 

and sample selection (see Waelbroeck, 2005). This justifies our Bayesian algorithm that is 

more reliable to produce robust correlation coefficients. The idea is to simulate the (latent) 

variables that determine the participation outcomes, which greatly simplifies the analysis of 

the joint posterior distribution of the parameters.10 We propose a slightly different MCMC 

algorithm for the sample selection part of the model than Van Hasselt (2005). We write the 

latent model as a SUR model with an unequal number of observations; and thus inference on 

the coefficients of the observed equation only relies on observations that are not censored. 

 

                                                 
9 Even when there is only one bidder, the submitted bid can not be too low because it has to reach the secret 
reserve price of the seller in order to become a winning bid. 
10 Indeed, latent variables can be simulated and, conditional on these variables, the model is a simple Seemingly 
Unrelated Regression (SUR) model that is easy to deal with. We use a Metropolis step to draw from the 
conditional posterior distribution of the elements of the covariance matrix of the unobservable variables. 
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Despite the importance of the issue of sample selection with endogenous variable, we are not 

aware of a study that deals simultaneously with these two issues. On the one hand, the 

problem of sample selection has been widely analyzed in the econometrics literature starting 

with the seminal work of Nobel price winner James Heckman, who proposed a method 

(Heckit) to correct sample selection bias. Van Hasselt (2005) has proposed a Bayesian Monte 

Carlo Markov Chain (MCMC) algorithm to make inference on the correlation coefficient of 

the sample selection model. The author conducts a Monte Carlo study that shows that Gibbs 

sampling algorithm performs well regardless of whether the parameters of the model are fully 

identified or not.11 On the other hand, Chakravarty and Li (2003) propose a Bayesian 

algorithm to test the effect of an endogenous binary variable on the profits of a trader (we are 

not aware of another similar study). They propose a simple Gibbs sampling algorithm that 

alternates between conditional posterior probability distribution of the parameters. They find 

no evidence of significant correlation between traders' private information and their profits. 

 

We contribute to the econometric literature on two points. First, we deal with three 

correlation coefficients because we have three unobservable variables in our model, while 

Chakravarty and Li (2003) and Van Hasselt (2005) only have to deal with one correlation 

coefficient. Secondly, both articles reparameterize the elements of the covariance matrix that 

simplify the sampling procedure and speed up the rate of convergence of the simulated 

Markov chain. Their algorithms might not be optimal with likelihood functions of irregular 

shapes. We have included a Metropolis step from the conditional posterior distribution of the 

covariance matrix that sometimes accepts draws that decrease the likelihood function.12 

 

We analyze endogenous participation in French public timber auctions using a system of 

three equations. Equation (1) determines the selection process. In other words, it is the 

probability that there is at least one bid. In case the bidders do not participate in the auction 

(no bid), the expected payoff of participating, w1,i, is zero or negative. Thus, we define y1,i = 1 

if at least one bidder participates in the auction and y1,i = 0 otherwise where i indexes the i th 

lot. 

                                                 
11 The Gibbs algorithm is an MCMC algorithm that iteratively draws from the conditional posterior distributions 
of the parameters and always accepts such draws. 
12 See Chen et al. (2000). 
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   1 if w1,i > 0 
 y1,i =            (1) 
   0 if w1,i ≤ 0 

 

where w1,i = x1,i′ β1 + ε1,i, β1 is of dimension k1 and x1,i is a set of control variables. 

 

Equation (2) determines the outcome of the endogenous ordinal variable in the selected 

sample.13 We define y2,i as an ordinal variable that can take on J values (in the application J = 

3). 

   1 if w2,i ≤ α1 
   ...     
 y2,i =   j if αj−1 < w2,i ≤ αj  if y1,i = 1   (2) 
   ... 
   J if w2,i > αJ−1 

where w2,i = x2,i′ β2 + ε2,i, β2 is of dimension k2 and x2,i is a set of control variables. We define 

α = (α1, ..., αJ−1)′ as the vector of cutoff parameters to be estimated. 

 

Finally, equation (3) is the hedonic price equation that explains the highest bid w3,i as a 

function of lot characteristics and the endogenous ordinal participation variable y2,i included 

as a set of J−1 binary variables.14 Equation (3) is only observed for lots that have received at 

least one bid (y1,i = 1). 

 

 w3,i = z3,i′ γ3 + z2,i′ δ2 + ε3,i = x3,i′ β3 + ε3,i   observed for y1,i = 1   (3) 

 

where z2,i = (z2,2,i, ... , z2,J,i)′ with z2,j,i = 1 if y2,i = j (and z2,j,i = 0 otherwise, j = 2, ..., J), δ2 is a 

vector of parameters of dimension J−1, x3,i = (z3,i′, z2,i′)′ and β3 = (γ3′, δ2)′. 

 

                                                 
13 Generally, we only observe the endogenous ordinal variable (2) in the selected sample. For instance, in the 
application, the ordinal variable is the extent of auction participation, which is only observed for lots that 
received at least one bid. The observed equation (3) explains the highest bid. 
14 We decompose the ordinal variable in a set of binary variables so that our results do not depend on the way 
we have coded the ordinal variable. This is not an issue in equation (2) since the methodology automatically 
determine the cut-off points regardless of the values of the ordinal variable. 
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We assume that εi = (ε1,i′, ε2,i′, ε3,i′)′ is normally distributed with mean (0, 0, 0)′ and 

covariance Σ for i = 1, …, n: 

 

   1 ρ12 ρ13σ3  
 Σ =   ρ12 1 ρ23σ3  
   ρ13σ3 ρ23σ3 σ3

2  

 

Parameters ρ12, ρ13 and ρ23 represent the correlations between the unobservable variables. 

Hence, ρ13 is the correlation coefficient of the Heckman sample selection procedure, while 

ρ23 is related to the lack of competition for the lot in the hedonic price equation. Parameter 

σ3
2 is the variance of ε3,i. Since probit equations (1) and ordinal probit equation (2) are not 

identified, we had to impose two restrictions. We chose to normalize the variances of the 

selection equation and of the endogenous binary variable to 1. These are standard restrictions 

in probit models.15 

 

We always observe (x1,i, y1,i), but we only observe y2,i and w3,i when y1,i = 1.16 Moreover, the 

variables w1,i and w2,i are latent. The vector of explanatory variables can be stacked in order 

to write the (partially) latent model as a Seemingly Unrelated Regressions (SUR) model with 

an unequal number of observations. Let n1 be the number of observations for which y1,i = 0 

and n2 the number of observations such that y1,i = 1, with n = n1+n2. We now assume for 

notational convenience that the data have been sorted according to the values of y1. We also 

note the vector of binary dependent variables as y = (y1′, y2′)′. Let β = (β1′, β2′, β3′)′, w1 = 

(w1,1, …, w1,n)′, w2 = (w2,1, …, w2,n2)′ , w3 = (w3,1, …, w3,n2)′ and define w = (w1′, w2′, w3′)′. 

We define ε1, ε2, ε3 and ε in a similar fashion.  

 

For notational convenience, we decompose the vectors of unobservable variables according 

to the selection process: ε = (ε11′, ε12′, ε2′, ε3′)′, where the second index equals 1 if y1,i = 0 and 

equals 2 if y1,i = 1. Thus the covariance of the unobservable variables is simply 

 

                                                 
15 See Wooldridge (2002) or any other textbook on the econometrics of qualitative dependant variable. 
16 Depending on the data set, we always observe x2,i and x3,i, or we might only observe them when y1,i = 1. 
However, in the former case we do not use censored data to make inference in equations (2) and (3). 
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    In1  0   

 Ω = Eεε′ =  0  Σ⊗In2   

 

where Ij denotes the identity matrix of dimension j×j. Thus Ω−1 is readily obtained. We also 

decompose and stack the vector of the partially latent dependent variables as w = (w11′, w12′, 

w2′, w3′)′ and define similarly 

 

   x11 0 0  
 X =   x12 0 0  (n1+3n2)×(k1+k2+k3) 
   0 x2 0  
   0 0 x3   

 

The (partially) latent model can be written in matrix format: 

 

 w = Xβ + ε          (4) 

 

Hence conditional on w and Ω, the estimates of β are simply obtained by a Generalized Least 

Squares (GLS) regression of (4).17 Moreover, the matrices X′Ω-1X and X′Ω−1w required for 

the GLS estimates of the parameters of the model are easily computed. 

 

The 4 steps of the Metropolis-Gibbs algorithm are described in appendix 1, and the 

computation of the partial effects can be found in appendix 2. 

5 Results 

 

We first estimate the probit equation (1) and the ordinal probit equation (2) separately and 

run a Heckit procedure using sample selection equation (1) and hedonic bid equation (3) as 

                                                 
17 Since each stage contains different number of observations and generally different sets of explanatory 
variables, we can not estimate the SUR model with ordinary least squares regression applied to each latent 
equation separately. 
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benchmarks. Secondly, we compare these estimation results with the Bayesian estimation of 

parameters of equations (1), (2) and (3) using the MCMC algorithm. All the variables 

available have been used to build the following model but only significant variables have 

been kept in each equation. The signs of the estimated coefficients are coherent and intuitive, 

except for the variable ‘no restriction’ for which the coefficient is surprisingly negative in 

equation (3). 

 

Table 5 gives the probability a lot will receive at least one bid. 

 

Table 5 - Equation (1) Probit regression results of y1 

y1  Coef. Std. Dev. 

selection cutting & other cutting ** -0.4673 0.2169 

accidental products *** -1.2117 0.2925 

previously unsold *** -2.7786 0.4056 

difficult & very difficult logging & extraction * -0.2852 0.1509 

Herfindahl index ** 0.6278 0.3172 

mitraille ** -0.3110 0.1388 

number of trees *** 0.3481 0.0769 

arranged landing area *** 0.5224 0.1639 

normal quality *** -0.4989 0.1428 

mediocre & bad quality *** -0.5153 0.1837 

beech volume without crown * 0.0731 0.0375 

first sale *** -1.3975 0.1854 

_cons ***  1.5638 0.6218 

Log-lik = -307.44 

 

Table 6 gives the intensity of competition (i.e the number of bidders) for a lot: (i) probability 

that there is no competition, i.e. only 1 bid, (ii ) probability that there are 2 bids, and (iii ) 

probability that there are 3 or more bids. 

 

Table 6 - Equation (2) ordinal Probit regression results of y2 

y2  Coef. Std. Dev. 

selection cutting & other cutting ** -0.4892 0.1956 

previously unsold *** -0.7330 0.0823 

normal logging *** -0.3639 0.1037 
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difficult & very difficult logging & extraction ***  -0.5633 0.1375 

Herfindahl index *** 1.9817 0.3301 

light mitraille ***  -0.4393 0.1237 

average mitraille *** -0.4522 0.1745 

heavy mitraille *** -0.7958 0.2415 

relative order of the auction *** 0.4558 0.1428 

conversion of a stand ** 0.2068 0.0990 

arranged landing area *** 0.4127 0.1140 

normal quality *** -0.2909 0.0921 

mediocre & bad quality *** -0.6665 0.1336 

surface *** -0.2642 0.0818 

other hardwood volume without crown *** 0.1604 0.0367 

oak volume without crown *** 0.2574 0.0364 

beech volume without crown *** 0.2088 0.0328 

first sale *** -0.5276 0.1785 

α1 ***  1.4253 0.4089 

α2 ***  2.0603 0.4108 

Log-lik = -830.39 

 

Table 7 gives the estimation results of the observed equation obtained by the Heckman 

methodology using the method of maximum likelihood. The hedonic equation is the 

estimated value of the log of the highest bid (equation (3)). The selection equation, which 

gives the factors that influence whether a lot will receive at least one bid or not, and estimated 

coefficients were already reported in Table 5. We also ran an OLS regression of equation (3) 

but results were similar and are not reported. This is expected since the coefficient associated 

with the inverse Mills ratio is not significantly different from zero in Table 7. However, this 

result is not robust and depends on the variables used to build the model. Actually, if we use 

only variables that are available in the sale catalogue, we may observe a selection bias. Such 

a model is presented in Appendix 3 where we only use variables from the sale catalogue. 

However, we found that estimations of the correlation coefficients ρ13 using the Heckit 

procedure can lead to misleading inference. In model specification of Appendix 3, the Heckit 

procedure leads to significant sample selection bias (.68), while the Bayesian procedure does 

not detect any problem of sample selection bias (the correlation coefficient is .30 but is not 

significantly different from 0), which confirms results from this section. 

 



 23

Table 7 - Equation (3) Heckman regression results of w3 

w3 = log highest bid  Coef. Std. Dev. 

no restrictions *** -0.0882 0.0303 

accidental products *** -0.4529 0.1100 

regeneration cutting *** 0.1264 0.0307 

previously unsold *** -0.1098 0.0322 

Density *** 0.0053 0.0011 

difficult & very difficult logging & extraction ***  -0.0929 0.0368 

Herfindahl index *** 0.9389 0.1263 

Mitraille ** -0.0786 0.0324 

number of trees *** 0.3735 0.0369 

relative order of the auction *** 0.1662 0.0431 

conversion of a stand *** 0.1425 0.0339 

coppice forest & coppice with standards *** 0.1980 0.0533 

no landing area ** -0.1570 0.0674 

normal quality *** -0.1182 0.0277 

mediocre & bad quality *** -0.2308 0.0424 

surface *** 0.2336 0.0426 

other hardwood volume without crown *** 0.0593 0.0149 

oak volume without crown *** 0.1899 0.0151 

crown hardwood volume *** 0.0643 0.0097 

beech volume without crown *** 0.0977 0.0129 

stem volume of the mean-tree *** 0.4505 0.0265 

first sale * 0.1102 0.0567 

last sale *** 0.1608 0.0347 

y2   one bid *** -0.2143 0.0382 

y2   three or more bids *** 0.3595 0.0335 

_cons ***  3.4724 0.1426 

ρ13  -0.0467 0.1366 

σ3 ***  0.3758 0.0084 

λ  -0.0176 0.0514 

 

Table 8 gives the Bayesian estimation of the 3-equation model. For each equation, we used 

exactly the same variables as before. 

 

Convergence of the MCMC algorithm was reach quickly. We removed the first 100000 

iterations and kept the next 1000000 iterations for inference. In Appendix 4, Figures 1 to 3 
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display the marginal posterior distribution of the correlation coefficients. They all have a 

single mode. 

 

Controlling for endogenous participation and for the characteristics of the lots, we find that, 

compared to the highest bid for lots with two bids, on average: (i) lots with only one bid 

receive a highest bid that is 22.31% below and (ii ) lots with three or more bids receive a 

highest bid that is 37.09% higher. Compared to these results, the heckit procedure slightly 

underestimates the effect of the endogenous variable, nevertheless coefficients are quite 

similar in both methodology. 

 

Table 8 - Bayesian estimation of the 3-equation model 

Variable  Coef. Std. Dev. 

Equation (1)    

selection cutting & other cutting ** -0.4762 0.2188 

accidental products *** -1.2381 0.2957 

previously unsold *** -2.9745 0.4589 

difficult & very difficult logging & extraction * -0.2824 0.1513 

Herfindahl index ** 0.6432 0.3182 

mitraille ** -0.3139 0.1393 

number of trees *** 0.3526 0.0773 

arranged landing area *** 0.5380 0.1654 

normal quality *** -0.5020 0.1429 

mediocre & bad quality *** -0.5174 0.1842 

beech volume without crown * 0.0726 0.0375 

first sale *** -1.4172 0.1860 

_cons ***  1.7395 0.6587 

Equation (2)    

selection cutting & other cutting *** -0.4899 0.1959 

previously unsold *** -0.7265 0.0881 

normal logging *** -0.3643 0.1033 

difficult & very difficult logging & extraction ***  -0.5620 0.1375 

Herfindahl index *** 1.9769 0.3322 

light mitraille ***  -0.4324 0.1263 

average mitraille *** -0.4563 0.1753 

heavy mitraille *** -0.7949 0.2410 

relative order of the auction *** 0.4587 0.1430 

conversion of a stand ** 0.2062 0.0989 
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arranged landing area *** 0.4106 0.1148 

normal quality *** -0.2891 0.0924 

mediocre & bad quality *** -0.6658 0.1340 

surface *** -0.2640 0.0818 

other hardwood volume without crown *** 0.1603 0.0367 

oak volume without crown *** 0.2575 0.0363 

beech volume without crown *** 0.2094 0.0330 

first sale *** -0.5220 0.1811 

α1 ***  1.4265 0.4095 

α2 ***  2.0618 0.0437 

Equation (3)    

no restrictions *** -0.0884 0.0308 

accidental products *** -0.4538 0.1116 

regeneration cutting *** 0.1258 0.0311 

previously unsold *** -0.1049 0.0366 

density *** 0.0053 0.0011 

difficult & very difficult logging & extraction ** -0.0910 0.0384 

Herfindahl index *** 0.9270 0.1412 

mitraille ** -0.0763 0.0348 

number of trees *** 0.3735 0.0374 

relative order of the auction *** 0.1635 0.0461 

conversion of a stand *** 0.1413 0.0350 

coppice forest & coppice with standards *** 0.1978 0.0541 

no landing area ** -0.1563 0.0682 

normal quality *** -0.1159 0.0298 

mediocre & bad quality *** -0.2261 0.0485 

surface *** 0.2348 0.0438 

other hardwood volume without crown *** 0.0581 0.0162 

oak volume without crown *** 0.1885 0.0171 

crown hardwood volume *** 0.0646 0.0099 

beech volume without crown *** 0.0964 0.0145 

stem volume of the mean-tree *** 0.4507 0.0269 

first sale * 0.1139 0.0589 

last sale *** 0.1617 0.0355 

y2   one bid *** -0.2231 0.0581 

y2   three or more bids *** 0.3709 0.0657 

_cons ***  3.4837 0.1526 

ρ12  -0.0147 0.0581 

ρ13  -0.0482 0.1296 

ρ23  -0.0254 0.1242 
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σ3 ***  0.3837 0.0093 

 

Two results deserve special mention. First, the degree of intra-lot heterogeneity is a 

significant variable in all 3 equations: the Herfindahl index has a significant positive effect. 

Thus, during an auction with at least one bidder, competition increases for lots that are more 

homogenous in species, i.e. with an Herfindahl index closer to one. In addition, a higher 

Herfindahl index increases the highest bid. Thus, concentrated lots with a Herfindahl index 

close to 1 (in other words lots that are not heterogeneous) have a sale premium. Boltz, Carter 

and Jacobson (2002) highlight the importance of intra-lot heterogeneity on auction prices of 

mixed species lots from timber auctions in North Carolina. Their Tobit estimation results (the 

reserve price being announced) show that increased heterogeneity leads to lower sale prices. 

In some way, they interpret such decrease in the revenue as an opportunity cost for ecosystem 

management where biodiversity is a desired constraint. Here, the opportunity cost of 

maintaining mixed forest can be estimated from the partial effect associated to the Herfindahl 

index: increasing the index by 1% increases the expected highest bid by 0.9164%. This figure 

can be found in Table 9 below which gives the partial effect for every variable used in this 

model. 

 

Second, the coefficient associated with the ‘relative position of a lot’ in the sale is 

significantly positive in equation (2) and (3). This indicates that lots put on the market at the 

end of a sale have a higher probability to receive more bids and to obtain a better highest bid 

than lots auctioned in the beginning of the sale, after we control for quality differences. This 

last result implies that the decline in prices often observed in sequential auctions is not 

present in our sample of timber auctions. On the contrary, prices tend to increase for 

hardwood lots during a sale. This could be due to cautious behavior of the bidders in the 

beginning of the auctions and more aggressive bids at the end of the auctions. This 

interpretation is confirmed by two additional results. First, the probability that a lot receives  

bids is significantly lower in the first sale of the campaign: the variable ‘first sale’ has a 

significant negative impact in equation (1) and (2). Bidders wait and see at the beginning of 

the timber sale campaign. Second, the variable ‘last sale’ has a significant positive impact in 

the hedonic bid equation (3). This result reinforces the ‘relative position of a lot’ variable on 

a larger scale. Indeed, the highest bid increases during a sale (which is composed of many 

timber lots put on sale the same day), moreover the highest bids tend to be higher in the tenth 

sale (the one that took place the last day of the timber sale campaign). 
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Table 9 – Partial effects 

  Partial effects Std. Dev. 

no restrictions *** -0.0887 0.0313 

selection cutting & other cutting  -0.0011 0.0230 

accidental products *** -0.4139 0.1163 

regeneration cutting *** 0.1253 0.0312 

previously unsold ** -0.1725 0.0745 

density *** 0.0053 0.0011 

normal logging * -0.0102 0.0059 

difficult & very difficult logging & extraction *** -0.1156 0.0411 

Herfindahl index *** 0.9164 0.1580 

mitraille * -0.0708 0.0384 

light mitraille * -0.0115 0.0068 

average mitraille  -0.0121 0.0080 

heavy mitraille * -0.0174 0.0103 

number of trees *** 0.3352 0.0469 

relative order of the auction *** 0.1791 0.0459 

conversion of a stand *** 0.1472 0.0342 

coppice forest & coppice with standards *** 0.1989 0.0553 

arranged landing area  0.0140 0.0249 

no landing area ** -0.1565 0.0667 

normal quality *** -0.1125 0.0368 

mediocre & bad quality *** -0.2595 0.0531 

surface *** 0.2265 0.0448 

other hardwood volume without crown *** 0.0631 0.0159 

oak volume without crown *** 0.1963 0.0166 

crown hardwood volume *** 0.0648 0.0100 

beech volume without crown *** 0.0949 0.0171 

stem volume of the mean-tree *** 0.4516 0.0276 

first sale  0.1168 0.0787 

last sale *** 0.1618 0.0348 
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6 Conclusion 

Using detailed data set on timber auctions in Lorraine, we have highlighted the importance of 

endogenous participation on auction results, focusing on lots that do not receive any bids and 

on the degree of competition when lots receive at least one bid. We have proposed a 

methodology to deal with both issues at the same time. The econometric method can easily be 

extended to deal with truncated or censored dependant variables in the hedonic price 

equation, when the reserve price is announced. 

Our results can help public forest services to determine a relevant reserve price for each lot 

according to its characteristics. In order to avoid auctions with 1 bid or less, the methodology 

could also be used to propose more attractive lots and to better understand demand factors. 

Our hedonic price function for stumpage value gives interesting information about the 

implicit price of each lot characteristic for the optimal lot composition. We have discussed 

the impact of the relative order of the lot in the sale and the impact of the intra lot 

heterogeneity, but our results show that many variables have a significant impact on the 

participation process and on the auctioned price including the type of cutting, the type of 

stand, the harvesting conditions, the volume and the composition of the lot. These results can 

help the forest public services to manage forest more efficiently so as to offer more attractive 

lots. 

This methodology can also be useful for bidders to define a bid that increases their 

probability of winning at a lower cost. Models can be elaborated according to which variables 

are available to the agent just before the auction. 
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Appendix 1: The Metropolis-Gibbs sampling algorithm 

The Metropolis-Gibbs sampling algorithm proceeds in 4 steps. The first step is a standard 

data augmentation step. We use a uniform prior for β, α, ρ12, ρ13, ρ23 and a non-informative 

prior for σ3: p(β, α, ρ12, ρ13, ρ23, σ3) ∝ 1/σ3.18 To simplify notations we have dropped the 

dependence of Ω on Σ and the dependence of Σ on (ρ12, ρ13, ρ23, σ3)′ when there is no 

ambiguity. 

Step 1. w1, w2 | αααα, ββββ, ΣΣΣΣ, w3, y, X 

In the first step, we only need to draw w1 and w2 since w3 is observed. When y1,i = 0, we 

know that w1,i < 0, hence for those observations (i = 1, …, n1), we draw w1,i from the standard 

truncated normal distribution with mean x1,i′β1 and variance 1 truncated on (-∞, 0). We use 

the optimal algorithm of Robert (1995) to draw from the truncated normal distribution.19 For 

the other observations (i = n1+1, …, n), we know that conditionally on α, β, Σ, y, X, (w1,i, 

w2,i, w3,i)′ has a joint normal distribution with mean (x1,i′β1, x2,i′β2, x3,i′β3)′ and covariance Σ. 

Thus, 

 

  w1,i | w2,i, α, β, Σ, y, w3, X ∼ TN(µ1|23, Σ1|23; B1)  

 

where TN(a, b; c) denotes the normal distribution with mean a, variance b truncated in 

subspace c and B1 = {z1 ∈ R: z1 > 0}. The conditional moments µ1|23 and Σ1|23 are given by 

the standard formulas of the conditional distribution from a multivariate normal distribution. 

Similarly,  

 

  w2,i | w1,i, α, β, Σ, y, w3, X ∼ TN(µ2|13, Σ2|13; B2)  

 

                                                 
18 The choice of the prior distribution does not matter much when there is a large number of observations, which 
is usually the case for auction data. Moreover, using the uniform prior distribution provides a direct mean of 
comparison with the maximum likelihood procedures. 
19 Using the inverse c.d.f. method yielded unreliable results. 
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where B2j = {z ∈ R: aj−1 < z ≤ aj} if y2,i = j (by convention, α0 = −∞ and αJ = +∞). 

Step 2. αααα | ββββ, ΣΣΣΣ, y, w, X 

It is easy to see that the conditional posterior distribution of αj is (for j = 1, ..., J−1): 

 αj | β, Σ, y, w, X ∼ U(Max{w2,i: y2,i = j}, Min{ w2,i: y2,i = j+1}) 

Step 3. ββββ | αααα, ΣΣΣΣ, y, w, X 

As discussed in the presentation of the (partially) latent model, the conditional distribution of 

β is readily seen to be: 

 β | α, Σ, y, w, X ∼ N((X′Ω-1X)−1 X′Ω−1w, (X′Ω-1X)−1). 

Step 4. ΣΣΣΣ | αααα, ββββ, y, w, X 

The conditional posterior distribution of Σ is not standard, 

 

 Σ | α, β, y, w, X ∝ |Σ|-n2/2 exp(−ε′Ω−1ε/2) / σ3, 

 

but can be simulated using Metropolis step. Define σ = (ρ12, ρ13, ρ23, σ3)′. We use a normal 

jumping distribution N(σ, θ′ I4×4).20 

 

                                                 
20 We set the elements of θ in the Metropolis-Hastings algorithm to obtain an acceptance rate between 0.2 and 
0.25. In general a large step size decreases the speed of convergence of the algorithm but enables to get out of 
problematic areas of the likelihood function more quickly, while a small value would make the algorithm 
converge faster at the cost of getting stuck in undesirable areas. The range of values that we have used is 
standard for the number of parameters used in the application and was found to be a good compromise between 
the two effects mentioned above. Note that this range of acceptance rates has been shown to be optimal for 
MCMC algorithms that use a normal jumping distribution. For other sampling schemes, the optimal acceptance 
rate has to be computed and could be different from the above values. Draws that resulted in values of the 
correlation coefficients below -1 or above 1, as well as draws not resulting in a positive covariance matrix were 
rejected. Note also that we used a log transformation of the various probabilities in order to avoid numerical 
underflows. 
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Appendix 2: Computation of the partial effects 

Let X denotes the matrix of explanatory variables defined in the text. The observed highest 

bid equation is 

 w3 = δ21 z22 + δ22 z23+ z3′γ3 + ε3       (A1) 

 

The expected bid conditional on participation is 

 E(w3 | X, y1=1) = δ21 E(z22 | X, y1=1) + δ22 E(z23 | X, y1=1) + z3′γ3 + γ1 λ(x1′β1) (A2) 

 

Where is λ(⋅) is the inverse mill ratio and γ1 = ρ13/σ3. The partial effects of the last two terms 

of (A2) are given from standard computations in the Heckman model. It remains to find the 

partial effect with respect to the first two terms of the right-hand side of (A2). We can write 

(dropping the conditioning on X to simplify notations): 

 

 E(z22 | y1=1) = p(y2 = 2 | y1=1) = p(α1−x2′β2 < ε2 < α2−x2′β2 | ε1 > −x1′β1) = P1 (A3) 

 

 E(z23 | y1=1) = p(y2 = 3 | y1=1) = p(ε2 > α2−x2′β2 | ε1 > −x1′β1) = P2 

  

We decompose the conditional probability as follows: 

 

 P1 = ∫D p(α1−x2′β2 < ε2 < α2−x2′β2 | ε1) p(ε1 | ε1 > −x1′β1) dε1,  

 

where D = [−x1′β1; +∞] is the domain of integration with respect to ε1. Using the fact that ε1 

is normally distributed, we can write where f(⋅) is the standard normal density. 

 

 P1 = ∫D p(α1−x2′β2 < ε2 < α2−x2′β2 | ε1) φ(ε1) /(1−Φ(−x1′β1)) dε1   (A4) 

 

Using a property of the conditional distribution of a normally distributed random variable, 

p(α1−x2′β2 < ε2 < α2−x2′β2 | ε1) = ∫E p(ε2 | ε1) dε2 = ∫E φ(1−ρ12ε1; 1−ρ12
2) dε2, where E = 

[α1−x2′β2; α2−x2′β2] and φ(a; b) denotes the density of a normally distributed variable with 

mean a and variance b. We use properties of the normal distribution to write 
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 p(α1−x2′β2 < ε2 < α2−x2′β2 | ε1) = ∫E′ φ(ε2) dε2  

 = Φ((α2−x2′β2 − (1−ρ12ε1)) /√(1−ρ12
2)) − Φ((α1−x2′β2 − (1−ρ12ε1))/√(1−ρ12

2)), (A5) 

 

where E′ = [(α2−x2′β2 − (1−ρ12ε1)) /√(1−ρ12
2); (α1−x2′β2 − (1−ρ12ε1))/√(1−ρ12

2)].  

 

Substituting (A5) in (A4), we have 

 

 P1 = ∫D [Φ((α2−x2′β2 − (1−ρ12ε1)) /√(1−ρ12
2)) − Φ((α1−x2′β2 − (1−ρ12ε1))/√(1−ρ12

2))] 

        φ(ε1) /(1−Φ(−x1′β1)) dε1 

 

Similarly,  

 P2 = ∫D [1 − Φ((α2−x2′β2 − (1−ρ12ε1))/√(1−ρ12
2))] φ(ε1) /(1−Φ(−x1′β1)) dε1 

 

We now compute the partial effect of P1 with respect to xk (the implicit price of the 

characteristic) that belongs to the set of variables x1 and x2: 

 

 ∂P1/∂xk = [1−Φ(−x1′β1)]
−1 {φ(−x1′β1) (-β1k)/(1−Φ(−x1′β1)) × 

  ∫D [Φ((α2−x2′β2−(1−ρ12ε1))/√(1−ρ12
2)) − Φ((α1−x2′β2−(1−ρ12ε1))/√(1−ρ12

2))] φ(ε1) dε1 

 + [Φ((α2−x2′β2−(1−ρ12 x1′β1))/√(1−ρ12
2)) − Φ((α1−x2′β2−(1−ρ12 x1′β1))/√(1−ρ12

2))] × 

           φ(−x1′β1) β1k 

 − ∫D [φ((α2−x2′β2−(1−ρ12ε1))/√(1−ρ12
2)) − φ((α1−x2′β2−(1−ρ12ε1))/√(1−ρ12

2))] × 

         (β2k/√(1−ρ12
2)) φ(ε1) dε1} 

 

Integrals in the previous formula can be computed by simulation using the GHK algorithm 

for instance. Similarly, 

 

 ∂P2/∂xk = [1−Φ(−x1′β1)]
−1 {φ(−x1′β1) (-β1k)/(1−Φ(−x1′β1)) × 

  ∫D [1 − Φ((α2−x2′β2−(1−ρ12ε1))/√(1−ρ12
2))] φ(ε1) dε1 

 + [1 − Φ((α2−x2′β2−(1−ρ12 x1′β1))/√(1−ρ12
2))] φ(−x1′β1) β1k 

 + ∫D [φ((α2−x2′β2−(1−ρ12ε1))/√(1−ρ12
2))] (β2k/√(1−ρ12

2)) φ(ε1) dε1} 
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Appendix 3: Model 2 

The following model is built only with variables available to any buyers since it includes only 

information that is given in the sale catalogue. In other words, we did not use any private 

information from the seller to built this alternative model. Thus, this second model is not as 

good as the first one, nevertheless we present it here to show we observe a selection bias in 

this model (cf. coefficient ρ13 or λ in the Heckit procedure Table A3). 

 

Table A1 - Equation (1) Probit regression results of y1 

y1  Coef. Std. Dev. 

selection cutting & other cutting *** -0.5215 0.1795 

accidental products *** -1.3852 0.2353 

Herfindahl index *** 1.3517 0.2971 

number of trees *** 0.2260 0.0827 

arranged landing area ** 0.3540 0.1476 

State owned-forest *** 0.3220 0.1284 

oak volume without crown *** 0.1786 0.0433 

crown hardwood volume  ** -0.0782 0.0389 

beech volume without crown *** 0.1147 0.0347 

first sale *** -1.0857 0.1408 

_cons ***  -1.5618 0.4190 

Log-lik = -431.48 

 

Table A2 - Equation (2) ordinal Probit regression results of y2 

y2  Coef. Std. Dev. 

selection cutting & other cutting *** -0.5641 0.1907 

accidental products ** -0.7304 0.3237 

Herfindahl index *** 1.7760 0.3089 

relative order of the auction *** 0.3819 0.1381 

no landing area *** -0.5971 0.2038 

State-owned forest *** 0.2578 0.0935 

surface *** -0.2576 0.0815 

other hardwood volume without crown *** 0.1532 0.0338 

oak volume without crown *** 0.2644 0.0341 

beech volume without crown *** 0.1797 0.0303 
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first sale * -0.3145 0.1657 

α1 ***  2.0375 0.3675 

α2 ***  2.6035 0.3699 

Log-lik = -904.78 

 

Table A3 - Equation (3) Heckman regression results of w3 

w3 = log highest bid  Coef. Std. Dev. 

no restrictions *** -0.0888 0.0309 

accidental products *** -0.3878 0.1154 

regeneration cutting *** 0.1321 0.0318 

density *** 0.0050 0.0012 

Herfindahl index *** 0.8754 0.1323 

number of trees *** 0.3483 0.0389 

relative order of the auction *** 0.1391 0.0440 

conversion of a stand *** 0.0939 0.0343 

coppice forest & coppice with standards ** 0.1356 0.0544 

no landing area *** -0.1912 0.0687 

surface (in hectare) *** 0.2175 0.0442 

other hardwood volume without crown *** 0.0556 0.0154 

oak volume without crown *** 0.1874 0.0160 

crown hardwood volume  *** 0.0691 0.0105 

beech volume without crown *** 0.0901 0.0136 

stem volume of the mean-tree *** 0.4486 0.0277 

first sale *** 0.2778 0.0632 

last sale *** 0.2102 0.0344 

y2   one bid *** -0.2294 0.0391 

y2   three or more bids *** 0.4120 0.0336 

_cons ***  3.6267 0.1626 

ρ13 ***  -0.6833 0.1264 

σ3 ***  0.4188 0.0161 

λ ***  -0.2862 0.0622 

 

Table A4 - Bayesian estimation of the 3-equation model 

Variable  Coef. Std. Dev. 

Equation (1)    

selection cutting & other cutting ** -0.4717 0.1896 

accidental products *** -1.3771 0.2379 
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Herfindahl index *** 1.3253 0.3004 

number of trees *** 0.2494 0.0868 

arranged landing area ** 0.3551 0.1457 

State owned-forest *** 0.3473 0.1294 

oak volume without crown *** 0.1636 0.0477 

crown hardwood volume  ** -0.0785 0.0377 

beech volume without crown *** 0.1012 0.0400 

first sale *** -1.0864 0.1424 

_cons *** -1.5622 0.4191 

Equation (2)    

selection cutting & other cutting *** -0.5490 0.1933 

accidental products ** -0.6837 0.3355 

Herfindahl index *** 1.7487 0.3127 

relative order of the auction *** 0.3901 0.1394 

no landing area *** -0.5990 0.2038 

State owned-forest *** 0.2516 0.0941 

surface *** -0.2595 0.0816 

other hardwood volume without crown *** 0.1525 0.0338 

oak volume without crown *** 0.2602 0.0347 

beech volume without crown *** 0.1782 0.0312 

first sale  -0.2825 0.1767 

α1 ***  1.9793 0.3880 

α2 ***  2.5520 0.0389 

Equation (3)    

no restrictions *** -0.0870 0.0314 

accidental products *** -0.4794 0.1283 

regeneration cutting *** 0.1367 0.0323 

density *** 0.0051 0.0012 

Herfindahl index *** 0.8953 0.1527 

number of trees *** 0.3619 0.0399 

relative order of the auction *** 0.1308 0.0483 

conversion of a stand *** 0.0898 0.0350 

coppice forest & coppice with standards ** 0.1371 0.0553 

no landing area ** -0.1811 0.0764 

surface (in hectare) *** 0.2289 0.0474 

other hardwood volume without crown *** 0.0524 0.0175 

oak volume without crown *** 0.1895 0.0193 

crown hardwood volume  *** 0.0660 0.0106 

beech volume without crown *** 0.0911 0.0155 

stem volume of the mean-tree *** 0.4518 0.0279 
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first sale *** 0.2127 0.0743 

last sale *** 0.2113 0.0348 

y2   one bid *** -0.2549 0.0769 

y2   three or more bids *** 0.4422 0.0934 

_cons *** 3.4828 0.1897 

ρ12  -0.0514 0.1024 

ρ13  -0.3038 0.2922 

ρ23  -0.0423 0.1865 

σ3 ***  0.4098 0.0182 

 

Table A5 – Partial effects 

  Partial effects Std. Dev. 

no restrictions *** -0.0871 0.0314 

other cutting  -0.0497 0.0443 

accidental products *** -0.6731 0.1164 

regeneration cutting *** 0.1372 0.0322 

density *** 0.0051 0.0012 

Herfindahl index *** 1.1294 0.1917 

number of trees *** 0.3740 0.0428 

relative order of the auction *** 0.1708 0.0480 

conversion of a stand *** 0.0903 0.0356 

coppice forest & coppice with standards ** 0.1369 0.0552 

arranged landing area  0.0139 0.0308 

no landing area *** -0.2287 0.0770 

State owned-forest  0.0508 0.0319 

surface (in hectare) *** 0.2038 0.0492 

other hardwood volume without crown *** 0.0677 0.0170 

oak volume without crown *** 0.2221 0.0242 

crown hardwood volume  *** 0.0623 0.0112 

beech volume without crown *** 0.1129 0.0175 

stem volume of the mean-tree *** 0.4503 0.0278 

first sale * 0.1395 0.0836 

last sale *** 0.2125 0.0337 
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Appendix 4 

Figure 1 - Marginal posterior distribution of ρρρρ12 

 

Figure 2 - Marginal posterior distribution of ρρρρ13 

 

Figure 3 - Marginal posterior distribution of ρρρρ23 
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