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Introduction 

In 2000, a large scale program of marker-assisted selection (MAS) was implemented in 

French dairy cattle (Boichard et al, 2002, 2006). It was carried out in the main three French 

dairy breeds (Holstein, Normande, and Montbéliarde) by a consortium of three partners, 

INRA (Research), LABOGENA (genotyping lab) and UNCEIA, on behalf of eight breeding 

companies. Fourteen chromosome regions were chosen from an initial QTL detection 

experiment (Boichard et al, 2003) and additional subsequent information. Each region was 5-

30 cM long and was traced by 3-4 microsatellite markers, and animals were genotyped for 45 

markers. No population wide linkage disequilibrium was assumed and only within family 

information was used. Many relatives (50% of all animals genotyped) with phenotypes had 

to be genotyped in order to accurately evaluate young candidates to selection. After 7 years 

of activity and more than 70,000 animals genotyped, the efficiency of this program was 

shown to be close to its expectation (Guillaume et al, 2008a,b), i.e. rather limited but large 

enough to reduce the number of bulls entering progeny test by 15% through a better choice 

of the young candidates and, therefore, to generate a positive return.  

 

However, since 2005, it had been anticipated that high-throughput SNP would be rapidly 

available, and would open the way to MAS based on linkage disequilibrium or to Genomic 

Selection. At that time, probably because of our previous experience in MAS, we trusted 

MAS more than Genomic Selection. In 2008, the first generation MAS program was 

replaced by a new version based on high-throughput SNP with a much larger expected 

efficiency, with the same partners and management. In this paper, we present the ideas, the 

philosophy and the evolution of this new program. 

Fine mapping with a large reference population 

A fine-mapping project called “CartoFine” was launched in 2005, funded by the French 

National Research Agency (ANR) and the industry (ApisGene). The initial idea was to 

develop a set of SNP, to produce a dedicated chip and to genotype a reference population of 

3,200 bulls. A virtual chip was developed from an in silico analysis of all sequences present 

in the public data bases. At the beginning of the study, the bovine sequence was not yet 
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Figure 2: Detection of a second QTL (PRLR ?) affecting protein content on 

chromosome 20 in Holstein breed (bi-QTL analysis including GHR). 
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- Fine-mapped QTL could be traced by a haplotype of flanking markers with very 

limited risk of loss over time. Consequently, its use is easier over several 

generations without updating the reference population. When a QTL is confirmed 

across breeds, its use is easier without large reference population in the other 

breeds. 

- Although this property is still debated, we believe that haplotypes are more efficient 

than single SNP to catch QTL information. There is an optimal number of SNP to 

consider. On the one hand, the number of different haplotypes should be large 

enough to likely generate a complete LD with the QTL ; on the other hand, it should 

be small enough to limit the number of effects to estimate. In practice, 15 to 25 

haplotypes are usually found as the best solution. This usually corresponds to 4-6 

markers per haplotype, depending on the informativity of each SNP and the 

population size. 

 

Of course, MAS is limited in efficiency by the proportion of genetic variance explained by 

the individual QTL. Good results of MAS could be expected only if the major part of the 

genetic variance is explained by QTLs. With 50 to 100% of genetic variance explained and 

around 60% on average, MAS efficiency is expected to be good but still incomplete. From 

the beginning, it appeared very clear that MAS should be improved by accounting for the 

remaining part of genetic variance. 

 

The first genetic evaluation based on these QTL was rather simple. It included all genotyped 

animals and three generations of ungenotyped ancestors. As for the previous MAS program, 

the phenotypes were derived from the national evaluation, as well as corresponding weights. 

They were daughter yield deviations (restricted to non genotyped daughters) for bulls and 

yield deviations for females. It should be emphasized that MAS relies on a good and 

unbiased classical evaluation (at both the national and international levels). The MAS 

evaluation model included the QTL effects and the residual polygenic breeding value, all 

effects being random and uncorrelated to each other. The variance of the QTL effect was that 

estimated in LDLA analysis and the variance of polygenic effect was the difference between 

the total genetic variance and the sum of the QTL variances. For some traits and breeds, it 

was arbitrarily set to 40%. The original model included 20 to 40 QTL per trait, according to 

the trait and breed. Each QTL was traced by haplotypes of 5 successive markers. For each 

QTL, one effect was estimated for each of the marker haplotypes present in the population.  

 

Such an approach required to infer the missing genotypes and the different marker 

haplotypes at each QTL for each evaluated animal. In practice, all the phases were computed 

for the entire genome of each animal and this step represented the time-consuming part of the 

computations. The total breeding value of each animal was computed as the sum of all QTL 

effects and the residual breeding value. Reliabilities were computed by direct inversion of 

the Mixed Model Equations. 

 

The results from this evaluation have been made available to the breeding companies since 

October 2008 for internal purpose. More than 20,000 young candidates were genotyped in 

the first year, 40% being females. To allow some young bulls to be marketed, some MAS 

breeding values were made official in June 2009. In practice, only the subset of those 



marketed bulls received official genomic breeding values. The genomic evaluation service is 

expected to be fully opened in late 2010 to all users, the transition period being used to 

improve and stabilize the model and to set up the management system.  

Comparison of MAS with Genomic Selection 

MAS uses information of a given number of QTL with locations and variances assumed to 

be known. Conversely, GS usually does not make any strong assumption on the number and 

the parameters of the QTL and lets the data find informative SNP and estimate their 

variance. GS is generally believed to be superior to MAS because it theoretically uses all the 

genetic variance and because the number of SNP is large enough to catch all the genetic 

variance.  

 

The ideal model could be defined as the model accounting for all (unknown) causal 

mutations. For a well characterized QTL, MAS uses marker haplotypes surrounding the 

causal mutation(s) and this haplotype is probably the best proxy of the QTL. But it is less 

efficient for small QTL (with poorly estimated location) and inefficient for polygenes. On 

the other hand, GS extracts more information from the whole genome (particularly with the 

G-Blup approach) but it does not take into account the knowledge about the individual QTL. 

Of course, one can argue that many SNP could be as efficient as the best haplotypes: because 

of their high number, there are always enough SNP to catch the QTL variance. But GS 

generally needs several linked SNP to catch all the information of a QTL, and the best SNP 

could be rather far from the QTL, provided that it is in strong LD with it. Such a model with 

individual SNP is likely to lack stability. It is particularly the case when several linked (not 

independent) SNP are needed to explain the same QTL and when the SNP in highest LD are 

not the closest to the QTL. In practice, GS is expected to be efficient to predict the breeding 

values of close relatives of animals with phenotypes and to gradually loose efficiency with 

genetic distance.  

   

One can imagine that MAS and GS would converge to the same ideal model when: (1) MAS 

uses many QTL and a large proportion of the genetic variance, (2) MAS is extended to 

properly account for the non detected QTL (possibly with a GS approach applied to the rest 

of the genome), (3) GS fully uses LD between markers and QTL and, ideally, uses marker 

haplotype information. The last point is rather critical.  

  

The true (additive) genetic model includes all the QTL, each of them being characterized by 

its variance. A model with all these QTL is equivalent to a genomic model where each 

chromosome region is weighted by its variance in the relationship matrix. A genomic BLUP 

is a good approximation of this true model when there are many QTL all with small 

variances. BayesB and derived approaches properly account for large QTL but are less 

efficient for small QTL th at are difficult to detect and regressed to zero. 

 

Improvement of MAS 

In this framework, MAS could firstly be improved by increasing the number of QTL 

accounted for. In the first version, only highly significant QTL were used. In a second 



approach, many more QTL could be considered. With a less stringent threshold (LRT equal 

to 5), several hundreds of QTL (from 200 to 300 according to traits) were selected, of course 

with a larger proportion of false positive but with a much higher proportion of genetic 

variance explained. The location of each QTL was assumed to be the local LRT peak and 

each 4-Mb window was assumed to contain at most one QTL. The efficiency of MAS was 

strongly improved and is equivalent to all alternative approaches tested up to now. An 

optimum in the prediction ability in the validation sets was found with about 200 QTL, and 

no additional gain was observed with 250 or 300 QTL. However, assuming that these small 

QTL are true and fully characterized is excessive and one can imagine that a more proper 

treatment would be more appropriate. 

 

A second and parallel improvement was achieved by increasing the size of the reference 

population by the genotyping of 3000 additional bulls (2000 Holstein, 500 Normande and 

Montbéliarde) with the Illumina BovineSNP50
TM

 beadchip.  

 

But another way to increase the reference population is to exchange data with other partners. 

In a first step, exchanges have been organized with three other European organizations 

(Viking from Denmark, CRV from the Netherlands, and German AI industry). Each member 

of the EuroGenomics consortium exchanged data from 4000 bulls, leading to a large 

common Holstein reference population of 16,000 AI bulls (Lund et al, this meeting). One can 

assume that this consortium will grow in the near future and be opened to additional 

interested breeders and/or countries. Along the same idea, the French Brown joined the 

Brown Swiss consortium to benefit from a larger reference population in this breed.  

 

For France, the two concurrent increases in the Holstein reference population led to an even 

finer mapping of the QTL and to the discovery of new QTL due to the increased power of 

the design. This first exchange of data with new partners also gave us an experience in 

genomic data standardization and on genotype imputation. Indeed, shared genotypes in 

Eurogenomics were obtained from two different chips and it was necessary for each bull to 

infer all missing genotypes of the other chip. Imputation is a very important tool for the 

future as it will enable to mix data obtained from different densities. 

 

MAS  improves its efficiency with more QTL included, even with a non-zero proportion of 

false positive. Although results are still preliminary, the optimum seemed to be found  

around 200 QTL per trait. These additional QTL were selected on the basis of their LRT 

value which exceeded 5, a very low threshold for such a high number of tests. Considering 

that they are true and accurately mapped is a strong assumption. Instead of including them 

directly in the MAS evaluation, alternative approaches were also used. The markers of these 

regions were preselected as input data in an Elastic Net selection procedure. This pre-

selection of markers appeared to be successful in helping the procedure to select the most 

informative one. Croiseau et al (this meeting) present this study. 

 

Another approach has been proposed by Legarra et al. (this meeting). The idea is to build a 

genomic BLUP with the appropriate variance. The most informative markers are selected by 

a LASSO procedure and their estimated variance is used to weigh them in the relationship 

matrix, whereas the other markers are given the same low variance. This method is very 



appealing as it tries to reflect the biology, with some large individual QTL (spanning up to 

20% of the genome) and the rest of the genome with a polygenic effect and a relationship 

matrix estimated from the markers. 

Multi-breed evaluation 

The current Illumina BovineSNP50
TM

 beadchip includes one marker every 45kb on average, 

i.e. one informative marker every 70 kb. Compared to the length of the conserved segments 

within breed (several hundreds of kb for many breeds with a limited effective size), this 

density is theoretically large enough to catch all the genetic variability. It is however too 

small for an analysis across breeds. Indeed, because of their ancient divergence and an 

overall larger effective size, the segments conserved across breeds are much shorter, likely 

around 10 to 20 kb. Therefore, the density of the conventional chip is not suited to this 

genetic structure. A much larger chip (~800k) has been recently designed by Illumina in the 

framework of an international collaboration, from a large sample of breeds. With one marker 

every 4kb, this chip should be dense enough to detect the conserved segments across breeds. 

 

Because of its higher cost, a systematic use of this chip is not realistic. But it is not 

necessary. A multi-breed genomic selection could be implemented by considering three 

populations: a reference population and a population of candidates, as for within breed 

genomic selection, and an additional population for efficient imputation. The reference 

population is usually genotyped with the 50k chip, candidates could be genotyped with the 

same chip or a low-cost chip of lower density. The imputation population is a mixture of 

animals of all breeds considered and is genotyped with the high-density chip. In practice, the 

imputation population should include several hundreds of animals per breed, it could be all 

or part of the reference populations and could also by composed of key ancestors and 

representative animals. Within each breed, this population makes it possible to impute all 

missing genotypes in the reference population and in the candidates. Consequently, all 

animals could be virtually genotyped with the high density chip. Across breeds, a probability 

of identity could be estimated between haplotypes, based on the shared information on 

conserved segments. 

 

This approach, particularly appealing in beef cattle, is presently used to connect the three 

main French breeds but also to extend genomic selection to breeds of more limited size such 

as the Abondance, Tarentaise, Simmental, Brown, or Vosgienne breeds. This project will 

complement the international Brown Swiss initiative to build a large reference population for 

this breed. A main advantage of the multi-breed approach is that all breeds could share their 

reference populations, as long as traits have a similar definition. Within breed, the genomic 

evaluation relies on the reference population of the given breed, but also on those of the other 

breeds provided that QTL are still segregating in the different breeds. 

  

Combining all these approaches, a realistic scenario could be a multi-breed evaluation with 

an imputation population genotyped with a very-high density chip (and, in the near future, by 

sequencing, providing several million polymorphisms), breed specific reference populations 

with accurate phenotypes and a high density genotyping, and candidates genotyped at high or 

low density, depending on the cost and the imputation quality. 



 

Management of Genomic Selection in France 
Most French results have been obtained in the framework of a consortium gathering public 

research, a genotyping lab and the French AI industry. This consortium decided to open the 

GS service to any user while paying back the investment. After the present transition period, 

the genomic evaluation computed by INRA will become fully official at the end of 2010. 

The extension to all French dairy breeds is a goal for late 2011. A company, Valogene, has 

been created to offer the service, to contract with genotyping laboratories, and to transfer 

genotype data to INRA. With a high GBV accuracy for both males and females, a large 

development is expected in the French population. 

 

Characterization of QTL 
Large reference populations provide a unique resource for QTL fine mapping and, therefore, 

QTL characterization. Use of linkage and linkage disequilibrium, applied to several 

thousands of animals, provides QTL location estimates with an accuracy never reached in the 

past. Merging reference populations from different breeding schemes of the same breed 

increases this accuracy. Assuming a common origin of the QTL alleles (which is a strong 

assumption), the merging of reference populations from different breeds could provide a very 

small location interval (smaller than a gene) and an excellent opportunity to find the 

underlying causal mutation. Associated with new generation sequencing, one can imagine 

large projects to characterize many QTL simultaneously. Although practical genomic 

selection does not require identifying the causal mutations, this exceptional information 

would clearly help selection and transposition of results to other populations. It will allow 

understanding the phenotypes determinism and to study the interactions between genes, one 

of the great challenges of the next years in genetics. 
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