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Origin : epidemiological problem

Study the propagation of a disease (BVD : Bovine Viral Diarrhoea) in a dairy herd

3 types of individual transitions :

– Branching transitions (births, deaths)

– Group changes according to physiological status and age :
4 groups : calves, heifers before breeding, heifers after breeding, dairy cows

– Health status changes which depend on the population infection

=⇒ individual-based stochastic model : the individual transitions are population-dependent and
semi-Markovian

=⇒ propagation of a random process (disease) on a random graph (vertices : individuals)
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Individual-based models

– used in population dynamics when individuals are marked by personal characteristics or when
the next state-change is driven by complex rule decisions which depend on the current state of
the population

– calculate empirical distributions at the scale of the population from simulated individual trajec-
tories (“bottom-up approach”)

– litterature on individual-based models has considerably increased thanks to the increase of the
computers capacity and the popularization of informatics

– no mathematical formalism : validation of this approach ? how is the process at the level of the
population ?
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Goal

Build a rigorous mathematical formalism of these models at the population level (top-down)

=⇒ good readability of the different model components independently of the programming lan-
guage
=⇒ validate and supplement the empirical distributions by analytical results
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Homogeneous Semi-Markov Process (SMP) for
one individual ω

Feller W. (1964), Çinlar (1975), Kulkarni, V. (1995), Becker G. et al. (1999), Iosifescu M. (1999)
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Countable state space, jumps at random times
{Xt}t∈R+ is an homogeneous semi-Markov process if

Xt = Xnt
1{nt=sup{n:Tn≤t}}, Tn : nth jump time, Xn : state at Tn, {Xn, Tn} MRP
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Law of {Xt}t ⇐⇒ law of {Xn, Tn}n ⇐⇒ transition laws of {Xn, Tn}n

Assumption : {Xn, Tn} is a MRP

P (Xn+1 = j, ∆Tn+1 ≤ τ |Xn, . . . , X0, Tn, . . . , T0) = P (Xn+1 = j, ∆Tn+1 ≤ τ |Xn)
homog.

= P (X1 = j, ∆T1 ≤ τ |X0)

∆Tn+1
defin.
= Tn+1 − Tn (waiting time between 2 jumps)

Kernels (transition laws)

Qi,j(τ )
defin.
= P (∆T1 ≤ τ, X1 = j|X0 = i)

= P (∆T1 ≤ τ |X1 = j, X0 = i)P (X1 = j|X0 = i)

= Fi,j(τ )P (i, j)

Fi,j(τ ) : cdf of the sojourn time in i before jumping in j ; P (i, j) : transition probability of {Xn}
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Kernels ⇐⇒ Transition rates

λi,j(τ )
def.
= lim

∆τ→0

P (∆Tn+1 ∈ (τ, τ + ∆τ ), Xn+1 = j|Xn = i, ∆Tn+1 > τ )

∆τ

λi,j(τ ) =
Q̇i,j(τ )

1 −
∑

j Qi,j(τ )
⇐⇒ Qi,j(τ ) =

τ∫

0

λi,j(u)exp(−

u∫

0

∑

j

λi,j(s)ds)du

Particular case : Markov process :
λi,j(τ ) = λi,j = λiP (i, j), for any τ , Fi,j(τ ) = 1 − exp(−λi τ )

P(t) = exp(Λt), P[i, j](t)
def.
= P (X(t) = j|X(0) = i)
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Event-driven simulation algorithm based on P (i, j)Fi,j(τ )

Current jump time and jump state : (tn, i) =⇒ determine the next jump time and jump state (tn+1, j)

Simulate j according to {P (i, j′)}j′

Simulate τ
def.
= tn+1 − tn according to Fi,j(.)
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Probability law of the process (renewal equations)

P (Xt = j|X0 = i)
notat.
= Pi,j(t) = [1 −

∑

j′

Qi,j′(t)]1{j=i} +
∑

k

t∫

0

dQi,k(s)Pk,j(t − s)

Matrix process : P[i, j](t)
def.
= Pi,j(t)

P = (I− QΣ) + Q ∗P =⇒ P =
∞∑

n=0

Qn∗ ∗ (I − QΣ), Q ∗ P(t) =
∑

k

t∫

0

Qi,k(s)Pk,j(t − s)

Approximate solutions
Empirical distribution (simulations)
P ≃

∑nt
n=0 Q∗n ∗ (I − QΣ)

Recursive solution of P by discretization of time
Upper and lower bounds of Li and Luo (2005)
Stationary law (all the states are recurrent) or quasi-stationary law (conditioned on staying in the
nonabsorbing state)
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Homogeneous Semi-Semi-Markov Processes for
a closed population Ω = {ωl}l≤N

Set of MRP : {{(X
(l)
m (ωl), T

(l)
m (ωl))}m}l=1,...,N , not synchronized and population-dependent

Goal : determine the distribution of the population process Xt = {X
(1)
t , ..., X

(N)
t }
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Particular case : the MRP are i.i.d.
communication networks, asymptotic distributions in the heavy-tailed case 1 − F (t) = t−αL(t)

(Mikosh and Resnick, 2005, Mitov and Yanev, 2006)
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Steps
– define {Xt(Ω)}t∈R+ from {(Xn(Ω), Tn(Ω))}n ∈ N, defined itself from the MRP {{(X

(l)
m (ωl), T

(l)
m (ωl))}m

– deduce the kernel (transition law) of the population process from the individual kernels

– deduce transition rates, probability law, simulation algorithm,. . .
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Definition of {Xt(Ω)} from {(Xn(Ω), Tn(Ω))}, defined itself from the individual MRP
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Xt(Ω)
def.
= Xnt

(Ω)
def.
= {X(l)

ml,t
(ωl)}l

ml,t(ωl)
def.
= sup{m : T (l)

m (ωl) ≤ t}

nt(Ω)
def.
=

∑

l

ml,t(ωl)

Tnt

def.
= sup

l
sup
m
{T (l)

m (ωl) ≤ t}
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Law of {Xt(Ω)}t ⇐⇒ law of {Xn, Tn}n ⇐⇒ {P (Xn+1 = J, ∆Tn+1 ≤ τ |Fn(I))}n,I,J (kernels)
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Fn(I) = {Xn = I,Xn−1 = In−1, ...,X0 = I0, Tn = tn, Tn−1 = tn−1, ..., T0 = t0} : past until (tn, I)

Kernel

P (Xn+1 = J, ∆Tn+1 ≤ τ |Fn(I)) = P (∆Tn+1 ≤ τ |Xn+1 = J,Fn(I))P (Xn+1 = J |Fn(I))
notation

= FFn(I),J(τ )P (Fn(I), J)
notation

= QFn(I),J(τ )

=⇒ calculate FFn(I),J(.), P (Fn(I), J) from the individual transitions defined from (tn, I)
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Assumptions given the past until (tn, I)

1. A1 : the {(remaining waiting time R
(l)
n , next jump state X

(l)
mn+1)}l are mutually independent

2. A2 : for each l, the law of R
(l)
n (remaining time in il before jumping in jl) depends only on I and

on s
(l)
n (time already spent in il) and on I

3. A3 : the probability for l to jump from il to jl depends only on il, jl, and I : P (l)(il|I, jl)

4. A4 : the next population jump is defined by the individual jump which occurs the first

QFn(I),Jl
(τ ) = P (minl{R

(l′)
n } = R

(l)
n , R

(l)
n ≤ τ, X

(l)
mn+1 = jl|Fn(I))
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Proposition. Let I → Jl : il → jl. Then

dFFn(I),Jl
(τ )

def.
=

dQFn(I),Jl
(τ )

P (Fn(I), Jl)
=

∫ τ

0 Πl′ 6=l(1 −
∑

jl′∈Xl′(I) Q
(l′)|s

(l′)
n

il′|I,jl′
(τ ))dQ

(l)|s
(l)
n

il|I,jl
(τ )

∫ ∞

0 Πl′ 6=l(1 −
∑

jl′∈Xl′(I) Q
(l′)|s

(l′)
n

il′ |I,jl′
(τ ))dQ

(l)|s
(l)
n

il|I,jl
(τ )

(cdf of ∆Tn+1)

P (Fn(I), Jl)
def.
=

∞∫

0

dQFn(I),Jl
(τ ) =

∞∫

0

Πl′ 6=l(1 −
∑

jl′∈Xl′(I)

Q
(l′)|s

(l′)
n

il′|I,jl′
(τ ))dQ

(l)|s
(l)
n

il|I,jl
(τ ),

Q
(l)|s

(l)
n

il|I,jl
(τ ) =

F
(l)
il|I,jl

(s
(l)
n + τ ) − F

(l)
il|I,jl

(s
(l)
n )

1 − F
(l)
il|I,jl

(s
(l)
n )

P (l)(il|I, jl) : individual prior kernel

Consequence : QFn(I),Jl
(.) depends only on the current state I, the next state Jl and {s

(l)
n }l
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Time-driven simulation algorithm ⇐⇒ λFn(I),J(.)

Event-driven simulation algorithm ⇐⇒ QFn(I),J(.) = FFn(I),J(.)P (Fn(I), J)

Determine the next jump (tn+1, J) from (tn, I) and {s
(l)
n }, I = (i1, ..., il, ..., iN) : for each individual l,

1. choose jl according to {P (l)(il|I, jl)}jl

2. simulate a remaining waiting time r
(l)
n in il before jumping into jl

Then r
(l)
n = minl′{r

(l′)
n } defines the next jump time and the next state Jl = (i1, ..., jl, ..., iN)
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Transition rates ⇐⇒ kernels

λFn(I),J(τ )
def.
= lim

∆τ→0

P (∆Tn+1 ∈ (τ, τ + ∆τ ),Xn+1 = J |Fn(I), ∆Tn+1 > τ )

∆τ

Proposition

λFn(I),J(τ ) =
Q̇Fn(I),J(τ )

1 −
∑

J QFn(I),J(τ )
, τ ∈ R

+

QFn(I),J(τ ) =

τ∫

0

λFn(I),J(u)exp(−

u∫

0

∑

J

λFn(I),J(s)ds)du
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Corollary. Assume (Exp) : F
(l)
il|I,jl

(τ ) = 1 − exp(−λil|I τ )

Then the SSMP is a MP, and for all I not absorbing

dFI,Jl
(τ ) = dFI(τ ) = (

∑

l′

λil′|I
) exp(−

∑

l′

λil′|I
τ )dτ

P (I, Jl) = P (l)(il|I, jl)
λil|I∑
l′ λil′|I

.

λI,Jl
(τ ) = λil|IP

(l)(il|I, jl) = λil|I,jl

λI(τ ) =
∑

J

λI,J(τ ) =
∑

l

λil|I

P(t) = exp(Λt)

Consequence. Under (Exp), if I is not an absorbing state, then

mI =
[ ∑

l′

λil′|I

]−1
(mean time in I)
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Marginal probability law of {Xt}t : renewal equations

P (Xt = J |I0, {s
(l)
0 }, t0) = P (∆T1 > t − t0|I0, {s

(l)
0 })1{J=I0} +

∑

I1 6=I0

∫

t1∈(t0,t)

dP (X1 = I1, ∆T1 = t1 − t0|I0, {s
(l)
0 })P (Xt = J |I1, {s

(l)
1 }, t1)

= P (∆T1 > t − t0|I0, {s
(l)
0 })1{J=I0} +

∑

I1 6=I0

∫

t1∈(t0,t)

dP ((X1, S1) = (I1, {s
(l)
1 }), ∆T1 = t1 − t0|I0, {s

(l)
0 })P (Xt = J |I1, {s

P = (I − QΣ) + QY ∗ P; Y = (X , S)

P =
∑

n≥0

QY∗n ∗ (I − QΣ)

=⇒ Approximate solution : P(t) = [
∑nt

n≥0 QY∗n ∗ (I − QΣ))(t)
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Approximate solution : discretization of time
s

(l)
h = [s

(l)
h−1 + th − th−1]1{th /∈{T

(l)
m }m}

=⇒ {s
(l)
h }l

not.
= ∆th−th−1

; {s(l)
0 }l

not.
= ∆0

P∆0(t − t0) = I − QΣ
∆0

(t − t0) +

∫

t1∈(t0,t)

dQ∆0(t1 − t0)P∆t1−t0
(t − t1).

The discretization of the system using t − t0 = nh, t1 − t0 ∈ {ih}i≤n, leads to the solution




P∆0(nh)

P∆h
((n − 1)h)

...

P∆(n−1)h
(h)




=




R∆0(0) R∆0(h). . .R∆0((n − 1)h)

0 R∆h
(0). . .R∆h

((n − 2)h)

. . . . . . . . . .

0 0 . . . . . . . . .R∆(n−1)h
(0)




−1




B∆0,n

B∆h,n

...

B∆(n−1)h,n




R∆(ih) = Iδ0,i − aiQ̇0,∆(ih)(1 − δ0,i), δ0,i = 1 when i = 0 (and is 0 otherwise), i = 0, . . . , n − 1

B∆jh,n = I − QΣ
∆jh

((n − j)h), j = 0, . . . , n − 1

{ai}i depends on the numerical integration scheme,
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Semi-semi-Markovian branching process for
individuals with a pregnancy period

Xt(Ω) takes values in X = {{(Pl)}l∈L}L, where Pl ∈ P = {pregnant, not pregnant, R}

l ∈ L, l : (date of birth, number u of the individual among the individuals born at this date)

Xt(Ω)
def.
= Xnt

(Ω) (1)

nt(Ω)
def.
=

∑

l∈Lnt−1(Ω)

mp,l,t (2)

mp,l,t
def.
= sup{m : T (p,l)

m ≤ t}, l ∈ Lnt−1(Ω) (3)

Xnt
(Ω)

def.
= {X(B,l)

mp,l,t
}l∈Lnt−1(Ω) (4)

X(B,l)
mp,l,t

def.
= {X(p,l)

mp,l,t
6= R, {X

(p,l′)
0 6= R}l′∈Ỹnt,l

} (5)

T
(p,l′)
0

def.
= T (p,l)

mp,l,t
, l′ ∈ Ỹnt,l, l ∈ Lnt−1(Ω) (6)

Tnt
(Ω)

def.
= sup

l∈Lnt−1(Ω)

{T (p,l)
mp,l,t

}. (7)

Lnt
(Ω)

def.
= {l, {labels{Ỹnt,l}}}l∈Lnt−1(Ω) (8)
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Example : if ipl → jB
l : pregnant → not pregnant, then

F
(B,l)

i
p
l
|I,jB

l

(.) = F
(B,l)
pregnant,not pregnant(.) (cdf of the pregnancy period),

P (B,l)(ipl |I, jB
l ) is the probability for l to give birth to Ỹn,l newborns at his next “jump” among the

states {alive with Ỹ newborns}Ỹ , R}
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Spread of a disease in a branching population
structured in groups

(4), (5), (6) replaced by

Xnt
(Ω)

def.
= {(X(B,l)

mp,l,t
, X(h,l)

mh,l,t
, X(g,l)

mg,l,t
)1

{X
(g,l)
mg,l,t

6=R}
}l∈Lnt−1(Ω)

X(B,l)
mp,l,t

def.
= {X(p,l)

mp,l,t
, {(X

(p,l′)
0 , X

(h,l′)
0 , X

(g,l′)
0 )1

{X
(g,l′)
0 6=R}

}l′∈Ỹnt,l
}}, l ∈ Lnt−1(Ω)

T
(c,l′)
0

def.
= T (p,l)

mp,l,t
, l′ ∈ Ỹnt,l, l ∈ Lnt−1(Ω), c ∈ {p, h, g}
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Conclusion

–Individual based models : empirical distributions based on individual simulated trajectories

–Population process : kernel, simulation algorithm, probabilty law, approximated probability law,
asymptotic behavior ?

THANK YOU FOR YOUR ATTENTION !
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