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Origin : epidemiological problem I

Study the propagation of a disease (BVD : Bovine Viral Diarrhoea) in a dairy herd
3 types of individual transitions :
— Branching transitions (births, deaths)

— Group changes according to physiological status and age :
4 groups : calves, heifers before breeding, heifers after breeding, dairy cows

— Health status changes which depend on the population infection

— individual-based stochastic model : the individual transitions are population-dependent and
semi-Markovian

— propagation of a random process (disease) on a random graph (vertices : individuals)



Individual-based models I

— used in population dynamics when individuals are marked by personal characteristics or when
the next state-change is driven by complex rule decisions which depend on the current state of
the population

— calculate empirical distributions at the scale of the population from simulated individual trajec-
tories (“bottom-up approach™)

— litterature on individual-based models has considerably increased thanks to the increase of the
computers capacity and the popularization of informatics

— no mathematical formalism : validation of this approach ? how is the process at the level of the
population ?



Build a rigorous mathematical formalism of these models at the population level (top-down)

— good readability of the different model components independently of the programming lan-

guage
— validate and supplement the empirical distributions by analytical results



Homogeneous Semi-Markov Process (SMP) for
one individual w

Feller W. (1964), Cinlar (1975), Kulkarni, V. (1995), Becker G. et al. (1999), losifescu M. (1999)
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Countable state space, jumps at random times
{X:}er+ IS @an homogeneous semi-Markov process if

Xy = Xolp—swpint,<tty, Lo nthjump time, X, . state at 7, {X,,7,} MRP



INDIVIDUAL TRAJECTORIES
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Law of {X,}; < law of {X,,, T}, },, <= transition laws of {X,,, T}, },,

Assumption : {X,,T,} isa MRP
P(Xn+1 = j, ATn+1 S T‘Xn, .. ,X(), Tn, .. ,T()) = P(Xn+1 = j, ATrH—l S 7'|Xn)

homog.

= P(Xl = j, ATl S T’Xo)

AT,., “L" 7. —T, (waiting time between 2 jumps)

Kernels (transition laws)

defin. . .
Qi,j<7_> é P(ATl S T, X1 = ]’Xo = ’L)

= P(ATlST’Xl:j,oni)P(Xlzj’X0:i>
F; ;(7) : cdf of the sojourn time in ¢ before jumping in j; P(i, ) : transition probability of { X, }



Kernels <= Transition rates
def. . P(ATn—i-l S (7_7 T + AT)) Xn—i—l - ]‘Xn — 7:7 ATn+1 > 7_)
Aij (1) = Ahmo AT

A7) = 1_%jgj’j = Qulr) = 0/ M (u)eap(— O/ ;Ai,j@)ds)du

Particular case : Markov process :

)\i,j(T) = )\m' = )\ZP<’L,]), for any r, EJ(T) =1- exp(—)\i 7')
.. def. . .

P(t) = exp(At), Pli, j](t) < P(X(t) = j|X(0) = i)



INDIVIDUAL TRAJECTORIES
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»  Event-driven simulation algorithm based on P(i,5)F, (1)
Current jump time and jump state : (¢,,7) = determine the next jump time and jump state (¢,,.1, j)

Simulate j according to {P(i, ')}

j/

Simulate 7 "2 tn+1 — t, according to F; ;(.)



Probability law of the process (renewal equations)

P(X; = j|Xo = i) "= Py 1—2% L= z}+2/szk )Phj(t = s)

Matrix process : Pli, j|(t) ol P, ;(t)

t
P - (I-Q%)+Q+P—P - ZQ”* 1-Q%, Q /Qm $)Py(t — 3)
0

Approximate solutions

Empirical distribution (simulations)

P QM (1 - Q>)

Recursive solution of P by discretization of time

Upper and lower bounds of Li and Luo (2005)

Stationary law (all the states are recurrent) or quasi-stationary law (conditioned on staying in the
nonabsorbing state)
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Homogeneous Semi-Semi-Markov Processes for
a closed population Q = {w; };<n

.....

Goal : determine the distribution of the population process &; = {Xt(l), - Xt(N)}

INDIVIDUAL TRAJECTORIES
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Particular case : the MRP are i.i.d.
communication networks, asymptotic distributions in the heavy-tailed case 1 — F(t) = t “L(t)
(Mikosh and Resnick, 2005, Mitov and Yanev, 2006)



Steps
— define {X,(Q)},cr+ from {(X,(Q), 7.(2))}n € N, defined itself from the MRP {{(X\(w)), T ()}

— deduce the kernel (transition law) of the population process from the individual kernels

— deduce transition rates, probability law, simulation algorithm,. . .

=
=
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Definition of {X;(Q2)} from {(X,(Q2),7,(?))}, defined itself from the individual MRP

INDIVIDUAL TRAJECTORIES
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Law of {X,(2)}; <= law of { X}, 7, },, <= {P(Xs1 = J, AT < 7| F, (1)) }n1.s (Kernels)

8

INDIVIDUAL TRAJECTORIES
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fn([) = {Xn = [, X, 1= [n—17 e Xy = [0,7;1 = tn;%—l =1lp_1, ,76 = to} . past until (tn, [)
Kernel

P(Xn—i-l - Ja AZL—H < T’fn([)) - P(AZH-l < T’Xn—l—l - Ja Fn([))P<Xn+1 - J‘Fn<[>)
" Py (T)P(FAD), )

notation
= Qr,n.J(T)

—> calculate F'z, ) 5(.), P(F,(I),J) from the individual transitions defined from (¢, I)
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Assumptions given the past until (¢, 1)

1. Al : the {(remaining waiting time Rq(f), next jump state xW ; are mutually independent
mp+1

2. A2 : for each I, the law of R\ (remaining time in ¢; before jumping in 5;) depends only on I and
on s (time already spent in i;) and on [

3. A3 : the probability for I to jump from 4, to j; depends only on i;, 5;, and I : PY (3|1, 5)
4. A4 : the next population jump is defined by the individual jump which occurs the first
Qrun(7) = Plmin{ Ry} = RV, Ry < 7. X)) = il Fu(D)
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Proposition. Let I — J; : i; — j;. Then

r GIER D]st)
def de:n I) JZ(T) fo Hl’%l(l - Zjl,e.?(l/([) Qiz/u?jl/ (T))dele (T)

dFz,1),,(T) ; (cdf of A7,,,1)
e ,J 00 U 57(11) [ s,@
P, ) Jo Wra(X =325 e le,f},jl, (T)dQY ) (7)
def. Sn Sn)
PEMD, T DL [ Qe ar) = [ Toai= 3 QU a7,
Ly 111,31
0 0 hléﬁ%

U0 ) (0
0) Foo(sn +7) = Fo . (sn)) . :
QU () = i1l )~ Fuir PY(|1,4,) - individual prior kernel
il 1. 1 — F(?j ’(Sg))
AR/

Consequence : Qz, 1. (.) depends only on the current state I, the next state J; and {sn H
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Time-driven simulation algorithm <= Az, ) s(.)
Event-driven simulation algorithm <= Qz,1).;(.) = Fr, .7 ) P(F.(1), J)

Determine the next jump (¢,.1, J) from (¢,, I) and {sﬁf)}, I = (i1, ..., 1, ...,7x) - for each individual [,
1. choose j; according to { PV (3|1, 5))},

2. simulate a remaining waiting time n(f) in 4; before jumping into 7

Then ) = mml,{rfﬁ} defines the next jump time and the next state J; = (i1, ..., j;, -+, iN)



LT

Transition rates <= kernels

P(AT, 1 € (1, 7+ A7), X1 = J|Fu(1), ATy > 7)

Af”(D’J(T) - Alirilo AT
Proposition
an I ,J<T>
)\fn(]),J<T> = ) T & R

1=>2,Qrm).(T)
Qr, (1) = /)\fn(f),J(U)exp(—/Z)\Fn(f),J(S)dS)du

0 0o 7
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Corollary. Assume (Exp) : Fl(ll& jl(T) =1 —exp(—=A;,17)

Then the SSMP is a MP, and for all 7 not absorbing
dFy (1) = dFy(7) = () Ay exp(= > Ay 7)dr
I I

A1
Zl’ )\il,‘]
AI,JZ(T) = )\¢Z|IP(Z)<il‘[ajl> — Aiz\f,jz

A7) = Y A=Y A
J l

P(t) = exp(At)

P(I1,J) = PYG|L, )

Consequence. Under (Exp), if I is not an absorbing state, then

mp = [Z%U]_l (mean time in 1)
l/
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Marginal probability law of  {&;}; : renewal equations

P(X, = J|Ip, {sV}, ) = P(AT >t — tol o, {s{ V) 1spy +
S dP(X) = I, ATy = t, — to| 1o, {s" VP&, = J|1, {sVY, 4)

LA oy e(t,1)
= P(ATy > t —tolTo, {5 D1s—0) +

52 [P0 = (D AT = 1=l (5 DP = I s
Il?é]otlE(to,t)

= I-Q)+Q"*P; Y=(X,9)

= > QM(1-QY)

n>0

—> Approximate solution : P(¢) = [>_1L, Q" x (I— Q>))(¢)

T T
il
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Approximate solution : discretization of time

si) = [si) )+t — ] = (s} " Ay s sy A

e m0,)

PAO(t — to) =1 Qio(t — to) + / dQAO(tl — tO)PAtl—tO(t — tl).
tle(t()?t)

The discretization of the system using ¢ — ¢ty = nh, t; — ty € {ih};<,, leads to the solution

( Pa,(nh) \ ( | \

BAon
Ra,(0) Ray(h)...Ray((n—1h)\
Py, ((n —1)h) o ; Rih(o), . Rih((n —2)h) B, n
0 0. R, 0
\ PA(n_l)h(h) ) \ BA(n—l)h’” )

Ra(ih) =16y, — aiQo,A(ih)(l — d0.i), 00; = 1 when i =0 (and is O otherwise), i =0,...,n — 1
BAjh,n =1- Qijh«n _]>h>7 ] =0,...,n—1
{a;}; depends on the numerical integration scheme,
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Semi-semi-Markovian branching process for
iIndividuals with a pregnancy period

X (§2) takes values in X = {{(P)) }icr}z, Where P, € P = {pregnant, not pregnant, R}
[ € L, [ : (date of birth, number « of the individual among the individuals born at this date)

x(Q) <A, (1)
() 2N my, (2)
1€L,1(%)
Mt s sup{m : TPD <t} 1 € L,,_1(Q) (3)
X, (@) L XN ) (4)
XS0 X # RAXEY # Ry, ) (5)
Tpt) T 1 €Y, 1€ Lo 1(Q) (6)
T, 2 s {10} ()
1€L,1(%)

ﬁnt(Q) = {lv{label‘s{?ﬂt,l}}}leﬁnt_l(Q) (8)
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Example : if i — j7 : pregnant — not pregnant, then
P l l

B ()= FBd (.) (cdf of the pregnancy period),

if|]7le pregnant,not pregnant

PBO(F|T, jP) is the probability for I to give birth to Y,; newborns at his next “jump” among the
states {alive with Y newborns}sy, R}



Spread of a disease in a branching population
structured in groups

(4), (5), (6) replaced by

N
w

def. B\l h,l 1
Xnt (Q) — {(X7(np,l,)t7 XT(TLh,Z,t’ XT(qug,l),t)l{X(g’l) #R}}ZELHt—IGD

Tng7l7t
def. 1) (bl v
X (B ) {(Xép >,X(() >,X(gg ))1{Xég’l/)7éR}}l’€37nt,l}}’ L€ Ln—1(Q)

Mp 1t Mpit’?

7\l ) ey e £a,1(9), ¢ € {p, b, g}

Mpit?
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Conclusion |

—Individual based models : empirical distributions based on individual simulated trajectories

—Population process : kernel, simulation algorithm, probabilty law, approximated probability law,
asymptotic behavior ?

THANK YOU FOR YOUR ATTENTION!!



