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Abstract.- We consider an OLG model with emissions arising from production and potential irre-
versible pollution. Pollution control goes through a system of permits and private agents can also maintain
the environment. In this setting, we prove that there exist multiple equilibria. Due to the possible ir-
reversibility, the economy can be dragged into both stationary and asymptotic poverty traps. First, we
show that choosing a global quota on emissions at the lowest level beyond a critical threshold is a mean
to avoid the two types of traps. Next, we analyze the impact of a political reform on the other equilibria.
When the agents do not engage in maintenance, a fall in the quota implies a reduction of pollution but is
detrimental to capital accumulation while, in the other case, it procures a double dividend.

Key words: overlapping generations, irreversible pollution, poverty trap, pollution permits
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1 Introduction

The signature of the Kyoto Protocol (1997) for the reduction of greenhouse gas emissions, is a
sign of the interest and the trust placed in the deployment of a pollution permits system. From
a theoretical point of view, the guidelines for guaranteeing the functioning of this instrument are
still a matter of debate. As far as the control of polluting emissions is concerned, the efficiency of
this regulation model is not disputable. Indeed, since the work of Montgomery [1972| or Baumol
and Oates [1988], we know that it is sufficient for the regulator, to choose a global emission
quota (in function of some predefined objective) and let the market act, in order to guarantee an
optimal allocation of permits between polluting firms. But among other discussion topics, the
question of the impact of a regulation via permits on the economic development process remains,
to a large extent, open.

We choose to approach this issue through an extension of the model of Prieur [2006]. In
that model, we have proposed an original analysis the relationship between growth and the
environment. More precisely, this model abandons the assumption of a constant-rate assimilation
of pollution by the environment, which is systematically used by related papers such as John and
Pecchenino[1994]. Instead, we assume a limited regeneration capacity, inspired in particular by
Foster [1975] or Tahvonen and Withagen [1996|, which translates the potential irreversibility of
environmental damage. We have then obtained the original result that a non-regulated growth
process may lead a polluting economy into an poverty trap, both economic and ecological, despite
an operating pollution abatement activity.

The existence of such a long-term state confirms the necessity for an intervention of the
Public Authority for the management of pollution problems, and leads us to study more deeply
the means and the consequences of such an intervention. For this purpose, we develop further the
model of Prieur [2006], assuming that the pollution proceeds from the production activity, and
that it is controlled thanks to a pollution permit market. In this context, the question is first to
know under which conditions this system of regulation allows to avoid the drift of an economy
towards a poverty trap. Next, we seek to assess the effects of a reform of the pollution permit
system on the growth perspectives of an economy.

There exists a large body of literature, dedicated to the analysis of the impact of a reform
of the environmental policy on economic growth, based on the assumption that agents have an
infinite lifespan. However, these papers concentrate exclusively on the tax instrument (see in
particular Bovenberg and Smulders [1995], [1996] or Bovenberg and de Mooij [1997]). A feature
common to all these papers is the introduction of an environmental externality in production,
which translates the idea that the quality of the environment should improve the productivity of
private inputs. Their essential conclusion is that a more ambitious policy (that is, a raise in the tax
on polluting emissions) may provide a double dividend: a simultaneous increase of environmental

quality and of the growth rate, provided that the environment has a strong positive impact on



the technology.

On the contrary, few studies consider this problem for a regulation through permits, with
the notable exceptions of Jouvet, Michel and Vidal [2002] and Ono [2002]. These papers also
differ from the preceding ones by the formalism adopted. Indeed, their objective is to measure
the macroeconomic consequences of a strengthening of the permit system (that is, a decrease in
the global emission quota) in the setting of an overlapping generations model, by considering the
pollution as a production factor. In Jouvet, Michel and Vidal [2002], the consequence of a more
severe policy depends essentially on technological parameters. A decrease in the quota penalises
(respectively, stimulates) the accumulation of capital when the inputs are complements (respec-
tively, strong substitutes). For moderate values of the elasticity of substitution, the direction of
the global impact remains undetermined. Ono [2002] shows that a decrease in the emission quota
allocated to polluters may even have, in the long run, an effect contrary to what is expected, by
provoking a decrease in the capital level and an increase in the pollution level. Our contribution
also prolongates this study to the situation where there is a risk of irreversible pollution.

We first show that there exist multiple equilibria, among which some have the characteristics
of a poverty trap. However, we show that, contrary to the conclusions of Prieur [2006], is is
possible to guarantee the absence of traps by a proper setting of permits. Actually, a means to
make the economy immune to a stabilization at such a state is to fix the global pollution quota
above a certain threshold. In other words, it is necessary to allow firms to pollute sufficiently.
Once in a situation where poverty traps are excluded, we evaluate the impact of a reform of
the environmental policy on the properties of the other equilibria of the model. It turns out
that the behavior depends on whether private agents engage into pollution abatement, or not.
For the constrained equilibrium solution (the one where agents do not depollute), there exists a
compromise between capital accumulation and pollution control. If lowering the pollution quota
indeed allows to reduce pollution, it also generates a negative effect on capital accumulation. For
the interior equilibrium solution (the one where agents do depollute), the key is the evolution of
the balance between financial and environmental constraints imposed to the agents. In fact, at
the locally stable equilibrium, we show that the economy enjoys a double dividend: lowering the
quota allows the economy to reach a long-term state which is both richer and less polluted. The
derivation of such a result does necessitate to resort to the controversial assumption of a positive
environmental externality on production, as opposed to the literature on pollution tax reforms.
Finally, we proceed with a dynamic analysis of the situation. We conclude from it that, to begin
with, imposing a restrictive pollution quota is a way to prevent the exclusion of constrained
equilibria. which are desired states. Moreover, and if one excludes the hopeless situation where
the environment is irreversibly degraded when the permit system is set up, this system allows the
economy to follow a growth path which respects the environment. In summary, aside from the
compromise associated with the constrained solution, the general recommendation that can be

deduced from our analysis is to set the global emission quota as small as possible above a certain



threshold, thereby excluding poverty traps.

The paper is organized as follows. Section 2 sets out the model. Section 3 derives the
equilibrium and analyzes the impact of a political reform on the equilibrium properties. Section
4 performs some numerical simulations so as to outline the implications of a change in policy on
the global dynamics and, notably, on the possibility to reach a safe and wealthy steady state.

Finally, Section 5 concludes.

2 The model

We develop an overlapping generations model a la Allais [1947], Samuelson [1958] and Diamond
[1965]. In a perfectly competitive world, the firms produce a single homogeneous good used both
for consumption and investment. The production process generates harmful polluting emissions.
Pollution control goes through the implementation of a policy consisting in both the definition of
a global emission quota at each period E; and the creation of an exchange market for pollution
permits. More precisely, we assume that the quota imposes upon the economy in an exogenous
manner. The level of emission to be respected, for instance, decided during international negoti-
ations (like the Kyoto protocol (1997)) where all participants promise to reduce their emissions.
The governement’s role is thus limited to sell a volume of pollution permits corresponding to FEj
to the polluting firms. It is also responsible for the distribution of the income obtained from the
sale of permits (the environmental allowance) to households. In addition, following Ono [2002],

we assume that the households can also engage in environmental maintenance.

2.1 Pollution dynamics

In the absence of human activity, pollution accumulation, for non negative levels of the stock P,

is described by the following equation:
P =h-T(R) (1)

where I'(P;) corresponds to the natural decay function that gives the amount of pollution assimi-
lated by nature each period. Nature’s ability to absorb pollution depends on the level of pollutant
concentration. More precisely, our aim is to express the idea that too high levels of pollution al-
ter the environment’s recovery process in an irreversible way. Therefore, following Forster [1975],
Cesar and de Zeeuw [1994] and Tahvonen and Withagen [1996], we assume an inverted U-shape
decay function (see fig.1) whose properties, summarized in the assumption below, give an account

of the potential irreversibility of environmental damages caused by pollution:

Assumption 1. The decay function T'(P) : Rt — RT is C? and concave (T (P) < 0) over
the interval [0, P]. It is first increasing from T(0) = 0 to a level P then, decreasing until the
pollution reaches the irreversibility threshold P (I'(P) > 0 VP € [0,P), I'(P) < 0 VP € (P, P)



P P
Figure 1: The assimilation function

with P < P). Beyond this value, assimilation is nil: T(P) = 0 VP > P. We also assume that
the amount of pollution assimilated at each period is lower than the stock i.e. I'(P) < P VP > 0.

For low pollution levels, the volume of pollution absorbed by nature is first growing with
the stock until reaching a maximal absorbtion rate I'y.x at some P = P. Then, beyond the
turning point P, the regeneration capacity starts to decline and assimilation decreases with the
pollutant concentration. Finally, as soon as pollution reaches the critical level P, the natural rate
of decay is nill and pollution accumulation becomes irreversible. In other words, once the stock
of pollution has achieved the critical threshold P, the recovery process of nature is completely

and permanently overwhelmed.

We now turn to the analysis of the private agents’ choices and trade-off.

2.2 Production

Under perfect competition, the firms produce the final good Y; with a constant returns to scale

technology using labor L; and capital K;:
Y; = Az KVLi ™" (2)

where z; € [0,1) is an index of the technology’s intensity of pollution, A > 0 corresponds to a
productivity scalar and v € (0, 1) is a constant parameter.
Production activity leads to polluting emissions. Following Stokey [1998], the flow of emissions

writes:
B, = 21 (3)

with ¢ > 0. Therefore, the emissions-output ratio is positively linked to the index z;.



Finally, a combination of equations (2) and (3) allows us to express the production function

as constant returns technology with respect to capital, labor and emissions:

= AKPLPE P (4)

_(1 v)
1+C'

. < c
with A = A< o= 1+¢,5

In Jouvet, Michel and Rotillon [2005], the authors highlight, in a wellfare maximization per-
spective, the superiority of a system of auctions over the principle of a free allocation of permits
to firms by showing that the latter is a source of economic distorsions. On the basis of their
results, we exclude grandfathering. We shall note that Ono [2002] assume, on the contrary, that
a part of the quota is allocated freely to firms that can next participate to the permits market
transactions. However his approach is in fine rigorously identical to ours since, in his model’s
equilibrium, remains an income ¢;E;, exactly equal to the revenue coming from the sale of the
whole quota, which is entirely taxed and paid back to the young households. Thus, firms are
obliged to purchase, at the market price ¢, the amount of pollution permits that corresponds

precisely to their own need E; in order to be able to produce.
We assume that capital fully depreciates in one period. Firms maximise profits, taking the
price of inputs as given:

= AK?LfEtl_a_ﬁ —wely — R Ky — i By (5)

where w; represents the wage rate, r; is the real rental rate of capital and ¢; is the price of permits.
The first order conditions for profit maximization, expressed in terms of per capita variables
with k; = K;/L; and e, = E}/Ly, write :

wy = ﬂAkf‘eifo{fﬁ (6)
Ry = aAky e, 7" (7)
@ =(1—0a—p)Akre, ", (8)

2.3 The households

We consider an infinite horizon economy composed of finite-lived agents. A new generation is
born at each period ¢t = 1,2,..., and lives for two periods: youth and old age. There is no
population growth and the size of a generation is normalized to one N = 1. The young agent
born at period ¢ is endowed with one unit of labor which he (she) supplies to firms ineslatically
for a real wage w;. His (her) first period income is also composed of the revenue from the sale
of a quantity F; of permits, at the price ¢;. This revenue corresponds to the environmental

allowance distributed by the government. He (she) allocates this total income to savings s; and



environmental maintenance m;.'?> When retired, the agent supplies his (her) savings to firms and
earns the return of savings Ry15; (with Ry1q = 1+ r411 the interest factor). His (her) income is
entirely devoted to consumption ¢;y1. The two budget constraints he (she) faces, in both periods
of life, write respectively:

wy + qrEy = s+ my (9)

Ct+1 = Rt+18t. (10)

Following Ono [2002], we assume that the pollution abatement activity, driven by households,
remains effective despite the permits system. Therefore, the economy has two distinct means for
fighting against pollution. If the environmental policy is above all intended to regulate emissions,
it also affects, through the distribution of the environmental allowance, the households’ depol-
lution effort. One may note that this additional income also stimulates productive investment,

through savings.

The preferences of the agent born at date ¢ are defined over old age consumption and envi-

ronmental quality. They are described by the following utility function U(ceq1, Pit1):

Assumption 2. The utility function U(c, P) : RT x RT — R is C?. It is increasing and
concave with respect to consumption but decreasing in pollution: Uy > 0, Uy < 0, Uiy, Uz < 0.
The cross derivative is negative Urs < 0.3 We further assume that lim._ Ui(c, P) = 0.

Emissions contribute to the accumulation of the pollutant stock. It is also possible to con-
trol the periodic flux of emissions and to improve environmental quality through the abatement
expenditures of the young m;. Real emissions are simply represented by the following linear
function: ©; = E; — ym; with 0 < < 1. In the presence of human activity, the law of evolution
of pollution then becomes:

Py =P —T(P) + Ey — ymy. (11)

In this framework, households typically face an intergenerational externality. When the young
chooses the amount of resources to devote to maintenance, he (she) only cares about the environ-
ment he (she) will enjoy in old age. But, the agent ignores future benefits of his (her) investment.

The representative agent born at date ¢ shares his (her) first period income among savings
(which determines the consumption of the final good) and abatement (which influences the "con-

sumption" of the environmental public good) in order to maximise his (her) lifetime utility.

'Tt is possible to reinterpret m; as a tax levied by a one period lived government in order to finance the

abatement activity, for the benefit of agents living during its period of office (John et al. [1995]).
We do not consider any first period consumption. This simplifying assumption allows us to focus on the

crucial trade-off between final good and environmental good consumptions (see next page the representative agent

problem). Anyway, adding a first period consumption would not change our qualitative results.
3Pollution exerts a "distaste" effect on consumption (Michel and Rotillon [1995]). The marginal utility of

consumption is decreasing in P which means that the higher the pollution, the lesser the consumption.



Taking as given prices and pollution at the beginning of period ¢, the representative agent’s
problem writes:

max U(Ct+1, Pt+1)
St,Mt,Ct+1

subject to,
wt + qe By = s¢ +my
ci+1 = Riy15¢
Py =P —T(R)+ B —ymy
my > 0.

The first order condition reads:

—RiaUi(ceyr, Pryr) — vUs(cs1, Bryr) + =0 (12)
with p > 0, the associated Lagrange multiplier that satisfies:

pmy = 0. (13)

Since there is a non negativity constraint on m;, we have to distinguish the case where abate-
ment is ineffective i.e, m; = 0, from the one where the agents choose to engage in maintenance
1.e, my > 0. Moreover, this study must also be divided in two sub-cases depending on whether
or not, environmental quality has crossed the irreversibility threshold P. Therefore, we have to
characterize the competitive equilibrium by analyzing separately the four possible cases for which

the model exhibits quite distinct economic and environmental dynamics.

In the following sections, our purpose is to evaluate the impact of environmental policy and
the effect of a policy reform (i.e. a change in the global quota E}) on equilibrium properties both

at steady state and on the transitional dynamics.

3 The competitive equilibrium

First, we focus on the properties (existence, unicity, stability) of each type of equilibrium. Next,
we make comparative statics so as to measure the sensitivity of equilibrium levels of capital and
pollution with respect to the quota. This analysis is successively conducted for the constraint

(m¢ = 0) and the interior (m; > 0) solutions.

3.1 Zero maintenance equilibrium

A solution where the constraint m; = 0 holds corresponds to the situation where the weight of
environmental and financial constraints are such that households have not enough incentives to

abate pollution. Thus, they devote the whole of their income €2; to savings:

Qt = S¢ (]_4:)



with,
Q= wy + q By

Now we define the intertemporal equilibrium with perfect foresight:

Definition 1 Given the environmental policy {E:}, a corner equilibrium is a sequence of per
capita variables {cy, st }, a sequence of aggregate variables { L, K¢, Fy, P} and a sequence of prices
{R¢,wi,q1} such that:

i/ households and firms are at their optimum: condition (14) and the two conditions (6)-(7),
for profit mazimization, are satisfied,

ii/ all markets clear: Ly = N = 1, Kyy1 = s¢(= kiy1) and Ey = Ei(= e;) on the permits
market,

iii/ budget constraints (9) and (10) are satisfied,

i/ the dynamics of pollution are given by (11).

From (6), (8) and the equilibrium condition for the permits market, we get the income as a
function of k; and E;:
Q= (1— a)ARYE P, (15)

Equilibrium dynamics directly follow from the combination of (11), (14), (15) and the market

clearing condition for capital:

(16)

ki = (1 — o) Akg Ef—0
P11 =P -T(P)+ E;

and we shall note that stock variables dynamics are independent from each other. In addition,

pollution accumulation is solely determined by the exogenous quota.

In this region of the kK — P space, a steady state solves:

! (17)

E=(1—-a)Ak*El—o—F
I'(P)=E

where E = lim;_,o, E; is assumed to exist.

The first equation admits a unique solution,* k(E) with,

~ ~ 1
R(E) = [(1 - a)AEl’a’ﬁ] e

and the existence conditions are summarized in the following proposition:

“The subscript "c¢" (resp. "i") stands for the corner (resp. interior) solution. The second index "r" (resp. "i")

will refer, in the remainder of the paper, to a reversible (resp. irreversible) level of pollution.



Proposition 1 There is no steady state that exhibits irreversible pollution. There exists a steady
state with a reversible level of pollution if and only if

max {T(P)} = Tmax > E. (18)
Pe€l0,P]

Furthermore, if T'max > E, then there exist two distinct solutions.

Proof. When pollution is irreversible, the second equation in (17) impose E = 0. But, under
our specifications of production and preferences (Assumption 2), we can exclude this limit case.
If pollution is reversible, then the stationary level of pollution must solve, for a given quota E:
['(P) = E. According to the inverted U shape of the function T'(P), it is clear that I'(P) = E
admits a solution P (E) iff [ pax > E where ['yyax is the maximal absorption level, reached for a
given P. Moreover if the inequality in (18) is strict, then we get two positive steady state values

for pollution. m

Condition (18) was already used in Tahvonen et Withagen [1996] or Prieur [2006] and conveys
the idea that the maximum potential of assimilation by nature is higher than the stationary
emissions level. The latter precisely corresponds, in the zero maintenance space, to the global
quota on emissions. It is worth noting that the necessary and sufficient condition (18) imposes

an upper bound to the domain of variation of E.

Once the existence condition is set, we focus on the effect of an environmental policy reform
in the zero maintenance space. Our approach only makes sense if we restrict the analysis to the
(locally) stable equilibrium. In the case where there exist two steady states, we easily prove that
the only stable solution is the one associated with the lowest level of pollution (see appendix
B.2). We then consider a strengthening in the permits system consisting in a decrease in the

emission quota.

Proposition 2 A decrease in the quota E implies a fall in both the levels of pollution and capital
at the stable steady state.

Proof. It is straighforward that k*.(E) > 0. Now, if we refer to the inverted-U shape of the
assimilation function I'(P), then it is clear that the fall in the quota E causes a fall in the level

of stationary pollution at the low stable steady state: P (E) > 0. m

cr

When only one of the two instruments for pollution control (permits) is effective, we gen-
eralize Jouvet, Michel et Vidal [2002]’s result, obtained for complementary inputs, to the case
where they are substitutable (the elasticity of substitution is equal to one for a Cobb-Douglas

technology).? In fact, we detect the existence of a dilemma between economic growth and envi-

5Note that the authors consider a framework which is quite distinct from ours. They assume that infinite
lifetime permits belong to households that pass them on from generations to generations and rent them to firms.
Thus comparing our results with theirs is a purely informal exercise but, is explained by the closeness of our

problematics.
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ronmental preservation: a stricter policy allows to reduce the level of stationary pollution but it
is done to the detriment of capital accumulation and long run wealth. A reduction of E causes a
drop in both emissions and the pollution accumulated at each period. However, it also generates
a negative income effect since the wage and the environmental allowance decrease. Finally this

effect acts as a brake upon savings and capital accumulation.

Now we turn to the analysis of the positive maintenance equilibrium.

3.2 Positive maintenance equilibrium

A solution with m; > 0 represents the case where a slackening of the financial constraint and/or
a reinforcement in the environmental constraint makes agents willing to engage in maintenance.

In this case, the households’ problem admits an interior solution and the FOC is:

—Ry Ui (cg1, Prr) — vUa(cig1, Prgr) = 0. (19)

The definition of equilibrium is modified and the variable m; now plays an active role:

Definition 2 A competitive interior equilibrium is a sequence of per capita variables {cy, my, s},
a sequence of aggregate variables { Ly, Ky, Ey, P} and a sequence of prices { Ry, wy, ¢} such that:

i/ households and firms are at their optimum: the FOC (19) and the three conditions (6), (7)
and (8), for profit maximization, are satisfied,

i/ all markets clear: Ly = N =1, Kyy1 = s¢(= key1) and Ey = Ey(= e;),

iii/ budget constraints (9) and (10) are satisfied,

v/ pollution evolves according to (11).

The equilibrium analysis consists in considering the system of equations (6)-(8), (11), (19) and
the market clearing conditions. Combining these equations yields the expression of consumption

and maintenance decisions as a function of the capital stock and the quota:
¢ = a Ak B (20)
me = (1—)AKPE P — kyyy. (21)
By substituting expressions (7) and (20) into the FOC, equation (19) rewrites:
—R(kt+1, Er1)Ur(c(ketr, Brir), Pr1) — vU2(c(kis1, Eri), Pia) = 0. (22)

This equation implicitly defines an equilibrium relation, valid for any ¢, between P;, k; and

Etl
P, = ®(ky, Ey) (23)

that governs the dynamics in the whole positive maintenance space.

11



It is decreasing in k;: @1 < 0.5 A rise in k; tends to reduce the cost of maintenance (first term
in (22)) since it lowers the interest factor and increases the consumption (R < 0, ¢; > 0, Uy < 0).
In addition, due to the distaste effect exerted by pollution and the rise in consumption, it also
goes with an increase in the benefits arising from maintenance (¢; > 0, U1y < 0). Therefore, the
higher the capital, the higher the incentive to maintain and the lower the pollution. According
to this relation, at each period, capital stock is inversely linked to the pollution concentration.
Note that the sign of ®5 is a priori indeterminate. If a rise in E; increases the benefits to
maintain (through the increase in ¢()), it is associated with two opposite effects on the cost of
maintenance. In fact, it rises both the interest factor and the consumption. Now, if we assume
that the intertemporal elasticity of substitution o = —U;/(cUyy) is lower than one, which means
that savings is decreasing in the interest factor, the overall effect on the cost is negative. Finally,
we have & < 0.7

Dynamics are then described by the following system of equations,

Pii1 = ®(key1, Erya) (24)
Py =P —T(P)+ Ok, By, key1)

where ©(k;, Ey, ki y1) represents the real emissions:

Oke, By ki) = By = (1= ) AR B} — ki )

In the next step of our analysis, we focus on the properties of the equilibrium depending on
whether or not, the economy has achieved the critical threshold P. We restrict our study to the
interval [0, k(F)] with,

1
R(E) = [(1 - a)aB'—2=?| 7 (25)

on which stationary maintenance is necessarily non negative: m(k, E) > 0 (see appendix A.1).

6Total differentiation of (22) with respect to k yields:
dP;  RiUi + RaUn +yeilie

d_kt RU12 + vUz2

"The expression of ®5 is given by:

@ _ 7R2U1 + RcaUri + veaUra

dE, RU12 + vUa2

The first derivative is positive under the assumptions on preferences and the Cobb-Douglas production function.

The sign of the numerator in ®; is unknown. But, we can rewrite:
1
RyU1 + ReaUni = RoUL (1 — ;)

now, imposing o < 1 implies ®5 < 0.

12



3.2.1 Steady state with irreversible pollution

When pollution is irreversible, the system (24), evaluated at steady state, writes:

P=3o(kE)
O(k,E)=0

where E exists and is the limit value of the quota: E = lim;_,o F;. For a given E, we set the

conditions under which the second equation admits a solution k};(E).

Proposition 3 There ezists a steady state (k% (E), Pi(E)) associated with a level of irreversible
pollution if and only if the global quota is below a limit value Ey, with:

1—«a

Er = (yA(1—a)?) 7 (a(l —a)A)7. (26)

Proof. See appendix A.2 =

This type of solution corresponds to an ecological poverty trap since the level of stationary
pollution is greater than the irreversibility threshold P. Moreover, according to the relation (23),
the level of capital is less than the one reached at any interior solution with reversible pollution.
Therefore, it is also an economic poverty trap. However, contrary to Prieur [2006], it is possible

to impose a condition that prevents from the occurence of such a long run state.

Corollary 1 A necessary and sufficient condition to exclude the existence of poverty traps is to

fiz the quota on emissions to a sufficiently high level: E > Ey.

Thus the environmental policy, enacted at the supranational scale, should autorize firms to
emit a sufficient amount of pollution to avoid the economy possible stabilization in a poverty

trap.

This a priori surprising result is explained by the fact that, in the positive maintenance space,
the economy has two instruments that affect the level of polluting emissions. Now, the existence
of a steady state supposes that real emissions are nill. In other words, depollution by households
must exactly compensate the polluting emissions by firms. This situation precisely occurs when
the exogenous quota is set below the critical value Er. So, the scope of this result must be
relativized. In fact, by fixing £ > Ej, one mechanically ensures the absence of traps. But it
is highly likely that the economy, located in this region, finally suffers a perpetual increase in
pollution associated with an continous erosion of the level of wealth. This kind of development
trajectory is similar to a sort of asymptotic poverty trap (or also to a process of divergence).
We will go back to this important point in section 4.2 devoted to the dynamic analysis. We will

notably have to adress the following questions : Can an economy, that does not initially belong

13



to the irreversible region,to reach it and diverge ? To what extend does the possible divergence

depend on the choice of the quota ?

If one admits that one of the main objectives of economic policy in general, and environmen-
tal policy in particular, is precisely to protect the economy from being dragged down into the
ecological and economic poverty trap, we impose, in the following, that £ > E7. In this context,

we next focus on the properties of a solution that exhibits a reversible level of pollution.

3.2.2 Steady state with reversible pollution:

When stationary pollution stock is less than the threshold, the system to solve becomes:

P =k, E)
I'(P)=0(k E).

Substituting (32) in the right-hand side of the second equation allows us to reduce the study
to the analysis of the behaviour of two functions that only depend on capital. We then get the

following result.

Proposition 4 If

Jnax {r(P)} > max {O(k,E)} (27)
€[0,P] k€lkk(E)]
KE) 2 ¢ ' (P) (28)

where (k) is the rewriting of the equilibrium relation for a given E: o(k) = ®(k, E), then there

erists a steady state (kj.(E), P%(E)) associated with reversible pollution.

Proof. See appendix A.1. =

Condition (27) is similar to the necessary and sufficient condition (18) used to prove the
existence of a corner steady state. In fact, in the interior space, emissions reach their maximum (=
E) when depollution effort vanishes i.e. at the upper bound k = k(E). The additional condition
(28) ensures some correspondance between the domains of variation of the stock variables k£ and
P.

Note that under these two conditions, there exists one or at most two steady state(s). In case
of unicity, we necessarily have kX (E) < ¢~'(P) (which implies P.(E) > P). When there are two
solutions,® pollutions levels are located on both sides of this critical value: Pi"(E) < P < P{(E).

Before studying equilibrium sensitivity to a change in the quota, we consider the most inter-

esting case where there exist two steady states (SS). Local stability analysis is conducted in the

8Since, at equilibrium, pollution and capital are inversely linked, we simplify the designation of solutions by
calling high (resp. low) equilibrium the one characterized by an important (resp. low) level of wealth. Hence, the

high SS is also associated with a weak pollutant concentration.
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appendix B.2. As already mentioned, it is possible to deduce from conditions (27) and (28) the
location of stationary pollution levels with respect to P. Therefore, we know that only the high
equilibrium (k;*(E), P;"(E)) respects the sufficient condition for local stability I'(P) > 0. Since
in OLG models, when there are two solutions, one is locally stable while the other is unstable,
there is a strong presumption that the stable solution will be the one that exhibits the highest

capital stock and the less pollution (our simulations in section 4.2 will confirm this intuition).

Anyway, the analysis of a permit system reform leads to the following conclusions.

Proposition 5 At the stable steady state (k}.(E), Pi.(E)),

- Zf
E>(y(1—a—B) =P (A1 - )/’ (29)
then k3'(E) < 0,
- if, in addition,
@1(k;kr(

then P} (E) > 0.

Proof. See appendix C. m

Increasing E has two opposite effects on real emissions. First, it entails a rise in polluting
emissions by firms. But, it also stimulates maintenance, through the positive income effect, which
in turn tends to reduce emissions. Now, under condition (29), the net effect is positive, that is,

real emissions are increasing in E at equilibrium.

This condition is sufficient to show that a reduction of the quota causes a rise in the stock of
capital at the stable steady state. Let us decompose the effect of a fall in the quota on stationary
variables. This decrease is first associated with a negative income effect (see the budget or
financial constraint (9)). It leads to a drop in the wage and the environmental allowance which
implies that the agent has relatively less resources to devote to savings and depollution (tightening
of the financial constraint). It also results in a substitution effect due to the fall in emissions
and the pollution accumulated at ech period (see the dynamics given by (1)). Ceteris paribus,
with the reduction of the quota, the affected generation can allocate a lower amount of resources
to depollution to maintain environmental quality which will be enjoyed in second period of life
(slackening of environmental constraint). It also allows the households to save a bigger share of

their income which favours capital accumulation.

Now, we have to address the question to know why the latter effect dominates at the stable
(high) steady state. At the high SS, before the reform, the economy is endowed with an important
capital stock. Moreover, pollution level is less than the threshold P and goes hand in hand with

an assimilation function that is increasing in the stock of pollutant. The fall in the quota causes a
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decrease in the income which is a priori unfavourable to both savings and depollution spending.
But, this tightening of the financial constraint remains quite moderate since the economy owns a
sizeable level of wealth. The reduction of the amount of permits sold to firms also implies a slack-
ening of the environmental constraint that was already not very stringent. Therefore, the agent
has some latitude to absorb the repercussions of the income decrease on capital accumulation.
Here the substitution effect is entirely applicable: depollution serves as an adjustment variable in

such a way that the fall in income does not penalize savings. Finally, the level of capital raises.

The second condition (30) concerns the direct and indirect effects of a change in £ on both
real emissions and consumption. An increase in E rises consumption through its (direct) positive
effect on the interest factor. However, it causes a drop in capital (since k}'(E) < 0) that, on
the contrary, lowers consumption (indirect negative effect). The same reasoning applies for real
emissions. If a higher quota means higher emissions (direct positive effect), it is also associated

with a lesser capital and, consequently, lesser emissions (indirect negative effect).

This condition finally states that the ratio of the effects on consumption exceeds the corre-
sponding ratio for emissions. This inequality holds if, for instance, the global impact of a rise
in E on consumption is negative while it is positive for emissions (see appendix () and we have
P (E) > 0. In this case, a reduction of the quota first implies a fall in emissions that tends
to reduce the level of pollution at the stable SS. Second, it results in an increase in equilib-
rium consumption that goes with a decrease in pollution because of the distate effect exerted by

pollution.

Therefore, the reform procures a double dividend since a more restricting quota allows the
economy to reach a steady state where both the level of wealth is higher and the pollution is
lesser. The impact of a fall in E presents some similarities with the conclusions of the litterature
on tax reform (See among others, Bovenberg and Smulders [1995], [1996] or Bovenberg and de
Mooij [1997]). We shall also note that our result, contrary to the aforementioned papers, is
not conditioned by the controversial assumption of the existence of a positive environmental

externality in production.

In this section, we have shown the existence of multiple equilibria with very different prop-
erties. As in Prieur [2006], some of them are similar to ecological and economic poverty traps.
However, in our setting, it appears that it is possible to prevent the economy from stabilizing
at such a state provided that the quota is set at a sufficiently high level. The analysis of the
impact of an environmental policy reform (tightening) on different equilibria properties reveals
two important features. First, in the absence of depollution by households, a stricter policy allows
to reach a less polluted long run state but is detrimental to capital accumulation. Second, in the

interior space, it brings a double dividend.

?Note that if, following Ono [2002], we consider the specific class of separable utility functions that are logaritmic

in consumption, we necessarily have P;;/(E) > 0 under condition (29) alone.
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In the following section, we turn to the dynamic analysis by first studying the localisation and
the evolution of the frontiers (delimiting notably the interior region from the zero maintenance
space) with respect to the quota. Then, we deal with the issue of the admissibility of the
different equilibria. Finally, we go back to the problem of divergence in a numerical example. It
is worthnoting that the second and third steps of the analysis we be conducted under the use of
specific utility and assimilation functions. This approach allows us not only to explicitly study
the admissibility of steady states but also to compute the global dynamics so as to perform the

simulations.

4 Effect of permits on dynamics

4.1 The frontier case

As explained in Prieur [2006], the study of the frontier case is central for analyzing the admissi-
bility of steady states. In order to simplify this analysis and simply draw a tendency concerning

the frontiers’ behaviour relatively to the quota, we assume a constant policy i.e. E; = E Vt.

Definition 3 In the k — P space, the first frontier, delimiting irreversible pollution levels from
reversible ones, corresponds to the irreversibility threshold: P, = P. The second frontier, hereafter
called the indifference frontier, represents the set of points (ki, P;) where the agents are indifferent
whether or not they invest in depollution. Let P, = f(ki, E) be this frontier. When the system is
located in the region above the frontier (resp. below), maintenance is non negative: my > 0 (resp.

my = O)

The location of the steady states with respect to these frontiers is crucial when we are con-
cerned with the question of admissibility. In fact, we have studied the four dynamic systems
corresponding to each possible region in the k — P space. We have next established the existence
of solutions for two of these subspaces. But, it is possible that, during the convergence toward a
stable solution of a determined zone, the equilibrium trajectory crosses one or the other frontier
before reaching the steady state. Now, as soon as the trajectory goes through one of the two
frontiers, the dynamics are governed by a new system totally different from the one valid in the

previous region.

Let us focus on the properties of the indifference frontier. This frontier is implicitly given by
the FOC (12) in which we set m; = p = 0. It defines the pollution as a monotonic decreasing
function of both the capital stock and the quota:'® P, = f(k;, E). The richer the economy, the

10Total differentiation of the FOC gives:

dp; - RiUy + (RUn +9U12)(RiQ2 4+ R)
dky (1 —=T")(RU12 + yUa22)
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lower the level of pollution from which the decision to depollute is taken.'!

Moreover, we note
that the frontier falls, in the space of states variables, when the quota increases.

In fact, starting from an initial state in the corner zone, the economy will engage all the faster
in depollution since the global quota is high. This feature has non trivial implications on the
agents’ behaviour. In fact, emiting an important amount of permits will hasten the moment when
the agents will be willing to devote resources to depollution. This property is directly due to the
tightening of the environmental constraint: more permits allocated to firms means more harmfull
emissions at each period. The explanation is also based on the role played by the redistributive
facet of environmental policy: a rise in F tends to increase the agents’ income and implies that
the weight of the financial constraint diminishes in their tradeoff. Finally, they have a greater
incentive to depollute. On the contrary, fixing the quota to a lower level provokes a shifting of the
frontier toward the top of the k — P space and delays the instant when the depollution becomes

effective.

4.2 Admissibility analysis

One may ask the question to know if whether or not it is better to set a high quota, so to reach the
frontier rapidly but with a potentially important level of pollution, or to resort to a severe policy
with a low quota (which implies a more distant frontier and a slower accumulation of pollution).
Part of the answer is provided by the analysis of the different equilibria admissibility.

From now on, we consider specific forms of the utility and the assimilation functions. More

precisely, we use the following logistic specification of the assimilation,

OP(P—-P) VP, <P
n(p) = PSR V<
0 P >P
and we assume an additive utility function:
Pl
5 -

Ulct+1, Pev1) =logepir —

Let us define the values k(E) and k(E) as follows:

Ql~

E(E) =

<'7¢(15 TE) - a)AElaﬂ)

) = (Sama e

ar, (R1Q2 + R2)U1 + (RU11 4+ yU12)((R1Q2 + R2)Q + RQ2)

dE (1 =T7")(RU12 4+ vU22)
and, under our assumptions on preferences, the Cobb-Douglas technology and the condition on the elasticity of

substitution, these derivatives are negative.
"YWhich explains once again by the evolution of the balance of power between environmental and financial

constraints.
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The indifference frontier, for the example considered here, is given by (see appendix D.1):

gk, E) for any k; € [0, k(E)]
flhB)={ L (_(1 —9P)+ /(1 - 0P 1 4Hg(k:t,E)) for any k; € (E(E),k(E)]  (31)
0 for any ky > k(E)
with,
g(ktaE) - . D

_ —F
vo(1 — o) Akg E1—o—8

Now we can focus on the admissibility of the different steady states. By definition, both corner
and interior reversible solutions satisfy the first admissibility condition, concerning their location
with respect to the irreversibility threshold. The study of the location of the two types of SS
towards the other frontier is explained in appendix D.2. The respect of the second admissibility
condition, simultaneously by corner and interior solutions, imposes that the quota belongs to a
specific range: E € [E;, E,]. The upper bound refers to the location of stationary capital, for a
corner solution, with regard to the striking value I%(E) If the quota exceeds the amount Ej, then
the frontier cuts the abscissa axis (P; = 0) before the level k(E). Therefore, the economy finds
unable to reach the constraint solutions since these last are finally located in the interior space
and consequently are not admissible. Thus the inequality k*.(E) < k(E), that can be rewritten

E < E,, is a necessary condition for admissibility of corner SS.'?

It is worth noting that the ranking between the bounds of the range [E;, Es] and Ey, (defined
by (26)) is a priori unknown. If E; < FEj, then there exists a non empty range (Er, Es) on
which it is possible to fix a quota that avoids poverty traps and satisfies the necessary condition
for admissibility of constraint SS. If, however, E; > E, then we face the following tradeoff:
imposing a quota £ > E, ensures the absence of traps but is also translated into the impossibility
of reaching the corner solutions. On the contrary, by choosing a quota such that E < Ej, the
economy would potentially converge to the better or the worse SS. For interior solutions, the

same reasoning applies, in a symmetrical way, when we consider the ranking between F; and ET..

Now we proceed to simulations so as to measure the global dynamics’ sensivity with respect

to a change in the quota.

4.3 Numerical Example

The study of the interior equilibrium with irreversible pollution has shown that it is possible to
exclude poverty traps provided that the exogenous quota is higher than the critical level Ey, (see
section 3.2.1). However, nothing garantees that the growth path of the economy, located in this

region, is not divergent. The concept of divergence refers to the fact that the polluting economy

12The other inequality E > E; is only a sufficient admissibility condition for interior solutions (see appendix
D.2).
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suffers a perpetual rise in emissions which in turn is goes with a stage of economic recession
(see figure 2 for an illustration of this kind of trajectory).'> Note that divergence can also be

interpreted as the convergence toward an asymptotic poverty trap.

10 T T

T

Pbar
Frontiére ------
Limite Bassin d’Attraction -------

Figure 2: The divergence trajectory

Starting the analysis by assuming that the quota equals a level E > Er, we wonder what
is the impact of the choice of E on the possibility, for the economy, to reach the irreversibility
space'* knowing that it does not originally belong to it.

In order to deal with this issue, we compute the global dynamics of the model for the specifica-

tions given in 4.2 (see appendix F) and make some simulations for the following set of parameters:
{A,0,8,0,7,6,P} ={1.9,0.3,0.6,0.15,1,1,6}

More precisely, we focus on the dynamics in the interior region and compare the evolution of

the stable reversible solution’s basin of attraction'® with the one of the divergence region. Since

!3The intuition behind the existence of this kind of development path is the following. In this region, the
pollutant concentration is such that, on the one hand, nature does not assimilate pollution any more and, on
the other hand, households suffer from the damages caused by pollution. In order to remedy to these damages,
they have no other option than to devote a sizeable share of their resources to the depollution activity. But this
decision goes against savings and consumption (that must remain positive according to preferences). Therefore,
it translated into a break in capital accumulation. Moreover, this effort reveals unsufficient, on the duration,
to compensate for polluting emissions by firms and to stop the rise in pollution. Even if, between the first and
second periods, pollution decreases, we next see a fall in capital stock associated with an increase in pollution.
This impoverishment process will inexorably reoccur, from periods to periods. The trajectory finally meets the
equilibrium relation.

!4The belonging to this region is a determining factor to explain the process of divergence.

15which is unique here and corresponds to the high SS defined in section 3.2.2.
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the irreversibility threshold equals E;, = 0.58, the simulations are made for two distinct value of
the global quota: £; = 0.6 and E, = 1.2. Graphical representations of the basins of attraction,
for both of these values, is displayed in figures 3 and 4.

Bassin d’ Attraction ...
f(k,E) ____

Pbar — —

(Kir,Pir) +

0
0 02 04 06 08 1 12 14
K

Figure 3: Basin of attraction and divergence region when E = 0.6
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Figure 4: Basin of attraction and divergence region when £ = 1.2

The comparison betwen these two graphics clearly reveals that the "frontier" delimiting the
basin of attraction from the divergence region goes down, in the k — P space, when the quota
raises. Whereas diverging suppose to be initially situated in the irreversible pollution region when
the quota is low (except for very low capital levels), we see that the set of initial conditions from

which the economy experiments (asymptotic) divergence exhibits pollution levels less than the
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irreversibility threshold P once the quota is relatively important. In other words, choosing the
strictest quota minimizes, indeed rules out, the risk, for an economy that does not initially suffer
from the irreversibility of environmental damages, to follow a development trajectory character-

ized by the impoverishment in environmental and physical capitals.

This property seems quite natural insofar as a high quota of permits contributes to reinforce
the environmental constraint weight. The rhythm of pollution accumulation is more sustained
and consequently the recovery process of nature is saturated faster. In turn, agents react by
giving the priority to depollution expenditures to the detriment of wealth accumulation. The
impoverishment mechanism decribed above will finally arise for lower pollution levels (and less
than the irreversibility threshold).

From this numerical example, we then confirm the results obtained, for interior solutions,
during the stationary analysis since the observations tend to recommend to announce the lowest

quota provided that it is greather than the critical threshold Ej,.

Before ending this discussion, we have to express the following remark. The fact to emit a
quota E = Ej + ¢, with ¢ > 0 infinitesimal, protects the economy not only from a convergence
toward a poverty trap but also from a process of divergence as soon as its environment, at the
initial period, is safe.' However, it remains the hypothetical cas where initial pollution is already
irreversible. Considering this extreme situation would logically induce us to review appreciably
our conclusions. In this case, one can expect that public autorities will have to set the quota
to a very low level, and less than Ey, in order to allow the economy to stabilize at a stationary
poverty trap. The convergence toward these states may finally constitute a lesser evil with regard

to the perpetual impoverishment that goes with the process of divergence.

5 Conclusion

In an OLG model with irreversible pollution, Prieur [2006] has shown that a possible outcome
of the development process, without pollution control, is the convergence toward an economic
and ecological poverty trap. This paper first addresses the question to know whether or not, a
pollution regulation through the implementation of a permits system is a mean to prevent the
economy from reaching a trap. In this framework, the economy can potentially face two traps of
different nature. The first one is a steady state, with an irreversible level of pollution and a low
level of wealth, in which the economy can stabilize in the long run. The second one is similar
to an "asymptotic" poverty trap in the sense that it corresponds to a growth path associated
with a perpetual erosion in both economic and environmental resources. The analysis reveals the

existence of a critical threshold for polluting emissions. Now, choosing an emission quota above

'6This is the case of study that a priori makes the more sense. In fact, the idea that we get about the role of a
system of pollution regulation is precisely to intervene before facing an irreparable situation.
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this level is a mean to avoid the "stationary" trap. Moreover, fixing the quota at the lowest level
beyond this threshold is also sufficient to protect the economy, that is not initially endowed with

an irreversible level of pollution, against the recession going with the asymptotic trap.

In the context of the absence of traps, we next turn to the analysis of an environmental policy
reform that consists in a reduction of the global quota on emissions. Its repercussions are widely
dependent on the type of equilibrium considered. In fact, the equilibria with reversible pollution
are only distinguished by the fact that private agents engage, or not, in maintenance. Therefore,
at the corner solution (no maintenance), the fall in the quota effectively causes a decrease in
the level of stationary pollution. But, this effort is detrimental to capital accumulation. In other
words, there exists a dilemma, between pollution control and economic growth. On the contrary, at
the interior equilibrium (positive maintenance), we show that a tightening of environmental policy
goes with both a fall in pollution and a rise in capital at steady state. Thus, an environmentally
ambitious reform of the permits system brings a double dividend to the economy. This striking
result echoes the conclusions of the literature on tax reform (see notably Bovenberg and Smulders
[1995], [1996] and Bovenberg and de Mooij [1997]). However, in contrast with these papers, it does
not rest on the controversial assumption of the existence of a strong environmental externality in

production.
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Appendix

A. Existence conditions of interior equilibria

A.1 Properties of m(k, E):

For a given E > 0, we have:

- First, 3%k € [0, +oo[ such that m(k,E) = 0. Let k(E) be this value. We restrict the
remainder of the study to the range [0, k(E)] on which we have m(k, E) > 0 with:

k(E) = [(1 - a)AElfa*B] =

and we see that k'(E) > 0: the upper bound of the interval is increasing in the quota.'” Tt is
worthnoting that this upper bound exactly corresponds to the level of capital k*(E) reached at
the constraint SS.

- Second, 3k € [0, k(E)] such m;(k, E) = 0. Let k(E) be this value. We know m1(k, E) > 0
VEk < l;:(E) with: )

#(E) = |a(l — a)AEY 8|1
note that &'(E) > 0 YE > 0.
- Finally, we get m11(k, E) <0, m(0, E) = m(k(E),E) = 0 VE > 0 and

_ a _l1—a—p

m(k(E),E) = A(1 —a)?[a(1 — a)A]T-a ETT-a > 0VE > 0.

Once these properties are known, we can focus on the existence conditions

A.2 Existence of an irreversible SS (proposition 3):

The capital, at SS, solves the following equation E = ym(k, E). This equation admits a

solution if and only if:

’y( max. m(k,E)) >FE
ke[0,k(E)]

that is, ym(k(E), E) > E.
Direct computations reveal that the relation ym(k(E), E) = E has a unique fixed point Ej
with:

1—«a

E = (vA1-a)*) 7 (a1l — a)A)%

and it follows that ym(k(E),E) > E « E < EJ.

"Moreover, we compute the partial derivatives with respect to E:

ma(k,E) = (1—a—p)(1—-a)Ak®E*? >0
k —(a+B8)(1—a—-pB)1-a)Ak*E* "1 <0

3
&
Il
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A.3 Existence of a reversible SS (proposition 3):

First of all, it is worth noting that the study (existence, stability) of interior steady states will

be performed for a given E. Thus, it is possible to rewrite the equilibrium relation as follows:
O(k, E) = (k) (32)

with ¢'(k) < 0.

The admissibility of a reversible SS requires P < P. According to the equilibrium relation
(32), this is equivalent to k >k= ¢ !(P). So, in order to deals with the issue of existence, the
range |k, k(E)] must be non empty.

Then, the study boils down to compare the behaviour of two functions of k, for a given E. We
restrict this study to the case where E > Ej, the condition that ensures the absence of poverty
traps.

- the first function ©(k) gives the amount of stationary emissions: O(k) = E — ym(k, E).
Its behaviour derives from the properties of m(k, E) and from the condition E > Ej;: ©(k) > 0
Vk €]k, k(E)], ©'(k) = —ymi(k, E), ©(0) = O(k(E)) = E. It is first decreasing until k(E), then
increasing until k(E). It is convex: ©”(k) > 0. Thus, ©(k) has a U shape.

- by substituting the expression of P given by(32) in the assimilation function, we get the
second function A(k): A(k) = T'(¢(k)). The sign of its derivative, A’'(k) = ¢'(k)I"(¢(k)), fol-
lows from the properties of T'() since ¢/(k) < 0: it is negative when (k) € [0,P] « k €
[~ (P), = 1(0)] while it is positive for any k € [~ (P), ' (P)]. Thus, A(k) inherits from the
inverted-U shape of T'(). Moreover, we have A(k) = 0 and A(¢~'(P)) = I'(P) = ['pax-

From these two functions’ properties, we can deduce the ranking at the lower bound of the
interval: ©(k) > A(k) = 0. Following Prieur (2006), we now set the two following conditions:
The first condition,

max_{A(k)} > max {O(k)}
kelk,k(E)] kelk,k(E)]

is a rewriting of the necessary and sufficent condition (18) for the existence of a constraint SS since
it is equivalent to ['yax > E. Tt implies that the two curves intersect on the interval Jk, cpfl(ls)].

Then, we impose a technical condition

K(E) 2 ¢ (P) < P < p(k(E))
so as to ensure not only the non-emptiness of the studied range |k, k(E)] but also that the
intersection point is reached before the upper bound k(E).
Therefore, under these conditions, there exist(s) at least one (and at most two) steady state(s)
with positive maintenance and reversible pollution. In case of unicity, we necessarily have k. <
@_1(]5) and, consequently, P, > P. When there are two solutions, their respective levels of

pollution are located from both sides of the striking value P. Note that the additional condition

27



O(k(E)) > A(k(E)), by fixing the ranking at the upper bound k(E), is sufficient to garantee the

existence of two solutions.

B. Local Dynamics
B.1 The constraint equilibrium:

By linearizing the system (16) around a steady state (k%.(E), P%.(E)), we get:

ki1 = Qi (k. (E), E)dk
APy = (1-T'(P; (E)))dpt

The conditions Q4 (k%.(E),E) < 1 and IV(P(E)) > 0 are sufficient to prove local stability.
For any E > 0, there exits a unique solution k7.(E) and we have Q;(k}.(E), E) < 1. Thus, the
property of stability derives from the location of the level of stationary pollution with respect to
the value P such that I” (]5) = 0. When there is only one solution, it precisely corresponds to this
value, P* (E) = P, which implies that the second condition is not satisfied since I'(P*.(E)) = 0.
When the inequality in (18) is strict, the second equation in (17) admits two solutions that are
located from both sides of P: P%(E)~ < P < PL(E)t « T/(P5(E)Y) < 0 < IV(PL(E)7).

Hence, we can conclude that the "low" SS is locally stable while the other is unstable.

Note that the first condition (resp. the second) reflects the system’s ability to assimilate a

shock on capital (resp. on pollution).
B.2 The interior reversible SS:
For a reversible SS (k}.(E), Pi.(E)), the linearization of (24) gives the Jacobian matrix (.J):
_ (k] (E).E) 11" (P} (E))
( ki1 ) _ o' (k7. (B)— o (k7 (E))— ( dky )

(kL (BB (kE(B)  (1=T'(Py B (k1 (E))
dFi1 o (&5 (B))— o (K (E)—v dFi

Now, it is clear that det(J) = 0. In fact, due to the equilibrium relation (32), the system
reduces to a one dimensional dynamics. Thus, the two eigenvalues are: A\; = 0 and Ay =tra(J)
with _ _

— (kL (E), E) + (1 - T'(PL(E)¢' (K, (E))
¢ (k. (E) = '

Knowing that Q1() > 0 and ¢'() < 0, this expression is positive since the assumption I'(P) <
P VP implies I"(P) < 1 VP,

Therefore, the following condition is sufficient for local stability:

tra(J) =

V(1 = (ki (B), B)) > I'(P(E))¢' (k. (E))

and we shall note that the two conditions set in B.1 (Q1(k}.(E),E) < 1 and I'"(P:(E)) > 0)
ensure that this inequality holds.
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C. Proof of proposition 5

In appendix A.3, we have analyzed the existence of an interior reversible SS by comparing the
behaviour of two functions of k for a given quota E. Now, we consider the impact of a change in
E on the equilibrium outcome (k}.(E), P%(E)).

The steady state solves the following system:

{ P;. = (K}, E)
I'(P;) = Ok, E)

)

By substituting the equilibrium relation in the second equation, we get:

T(®(k., E)) = O(k., E).

) )

*

This equation implicitly defines k. as a function of E: kf. = k}.(E) with,

dkf, Oy — Dol
dE ~ &' -6,

Provided that our analysis only makes sense for the stable SS, we refer to the two sufficient
conditions fo local stability: Qi (k}.(E),F) < 1 and I'(P}(E)) > 0. The sign of the partial
derivatives ®; and ®5 being known, it remains to determine the sign of ©,. The emissions
function writes ©(k, E) = E—~ym(k, E). For any k, its derivative with respect to E is: Oq(k, E) =
1 — 4Qa(k, E). Since Qi2(k, E) > 0, Qs is increasing in k. Computing its value at the upper
bound k(E) yields:

Qo (k(E),E)=(1—a—p3)(A(1 - a))l/(lfa)E*ﬁ/(lfa).
Now, it appears that Qy(k(E), E) < 1/7 is equivalent to:
E>(y(1—a—B)9/8 A1 - a)V/8.

Let E, be this lower bound. For any E > E., we have ©'(k, E) > 0 Vk €]k, k(E)]."® Therefore,
if this inequality holds (condition (29) in prop. 5), then it appears that k}’(E) < 0

Next, we replace kf. with k}.(E) in the equilibrium relation so as to compute the derivative

of P} (E). We get
_. D105 — 90,
PY(E)= ——22 =7
(E) &IV -0

18Since we restrict the analysis to quotas that are greater than the threshold Ej, imposing E; > E. is suficient

to conclude. More precisely, £; > E. <
B>(1-a)l—a*")

This bound is not very restrictive. If we suppose that the share of labour in production 1 — v belongs the range
(0.6,0.7) (which is the common range for the estimations of this parameter), then this inequality is satisfied, for

instance, for ( = 1.
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and, this expression is equivalent to:

Ui(©1R2 — ©2R1) + (RU11 + yU12)(O©1c2 — ©O2c1)

P*/ E —
(E) (P11 — ©1)(RU12 + vUa2)

The denominator and the first term in the numerator are positive. Since RUy; + vUia < 0,

imposing ©1c2 — O2¢; < 0 (second condition in prop. 5) ensures P/(E) > 0. This condition
rewrites: _ _

01k, (E), E) _ ek, (E), E)

O3(k;.(E), E) ~ ca(k7(E), E)

Now, note that consumption and emissions, at steady state, express as follows:

c(ki,(E), E) = R(kj,(E), E) = c;r(E)

O(k;,(E), E) = E — ym(k}.(E), E) = 0 (E)

and their derivative with respect to E reads respectively:

i (E) = c1kjl(E) 4 ¢
@;r(E) = @114::}/(177) 4 Os.

Thus imposing ¢}, (F) < 0 and ©/,(E) > 0 implies:

0w (B), BWIE) _ | __alk(B), E)RE)

©2(k;, (E), E) ca(k, (E), E)

and the condition (30) follows from this ranking.

D. admissibility Analysis
D.1 The indifference Frontier:

First of all, under our specifications for U(c, P) and I'(P), note that the FOC (and the

equilibrium relation) reads:

1
P = .
Lok
The expression of the frontier f(k;, E) then follows from the FOC in which we set m; = p = 0:
1 _
—_— P, —T(P)+ FE)=0. 33
Q(k:t,E)—Mgb( y — () + EB) (33)

Its particular shape is dependent on the level of pollution (reversible or not):

- when pollution is irreversible, the frontier is given by:

1 _
FE

Py = ke, E) = _ _

(34)
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and this expression is valid as long as P, > P, or:

.o 1 >
k<K = (S aaEes)

If E(E) > k(E), then it is always located above the irreversibility threshold.
Assume now that k(E) < k(E)," for any k; > k(E), the computation of the frontier requires

to solve the following polynomial:

1 _
_ —E)=o.
Yo(1 — o) Akg E1=a=6 >

au—mﬁ—a»—(

Let us suppose that the discriminant is positive,

_ 1 _
Af = (1-60P)? +40 = —E|>o0.
1= 0PF (e )
Direct calculations reveal that the first root is always negative and can be excluded. Thus,
we focus on the second root that is a priori associated with positive and lower than the threshold

P values of pollution

—(1—0P) + VAT
B 20 '

The function in (35) is monotonic decreasing in k. So, there existes a unique value k(E) such
that it crosses the abscissa (P = 0) with,

By (35)

® = (S —aaE=s)

and it appears that, for any k; < l%(E), the square root in (35) is non negative. Moreover, we
confirm that A7 is stricly positive on [0, k(E)].

Now, provided that we only consider non negative levels of pollution, the expression of the
frontier, when pollution is reversible, is:

—(1-0P)+VAS for k; < ];(E)

Pt:fQ(ktaE):{ 0 20 (36)

otherwise

Beyond the level lzt(E), it precisely meets the abscissa. It means that the agents engage in

maintenance regardless of the level of pollution.

D.2 Admissibility of reversible SS:

9This condition boils down to impose, for instance,

1

ST o e T
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For a constraint solution, it is straighforward that P*.(E) < P. The admissibility also requires

P:(E) < f(k:.(E),E). If k'.(E) = k(E) < k(E), then the frontier is always located above the
threshold P, on the range [0, k(E)]. Thus the solution is admissible since P (E) < P. Otherwise
(E(E) > k(E)), two cases possibly arise:

- if k(E) < k(E), we have to set a condition on parameters to ensure P*(E) < f(k,
- if k(E) > k(E), then the solution is inadmissible because P*.(E) > f( kX (E)

5), B).

(&
E)=0.

For the positive maintenance SS, by construction we have k.(E) > ¢~ }(P) « P:(E) < P. It

remains to study its location with respect to the indifference frontier. Assume first that k}.(E) <

k(E). On the range [0, k(E)], the frontier is above P, so we have f(k.(E), E) > P > P (E): the
solution is not admissible since it is finally located in the constraint region. Assume next that

k. (E) > k(E), in this case, it is always admissible since:

-if k*(E) €]k(E), k(E)], then direct calculations show that P (E) > f(k.(E), E) — vym(k:(E), E) >

0 and this inequality is satisfied.
- if kL.(E) > k(E), we necessarily have P:(E) > f(k.(E), E) = 0.

To summarize, the following double inequality: k(E) < k(E) < k(E) is a necessary condition
under which the two types of solutions are simultaneously admissible. In fact, if k(E) < k(E)
then the constraint solution alone is admissible while if, on the contrary, k(E) > k(E), only the
interior SS is potentially admissible.

The condition k(E) < /%(E), for a constraint SS, can be rewritten as follows: E < FE, with

- 1 1/(2(1-a))—5)
T <A(1 - Oé)(wﬁ)”‘) '

The inequality k(E) < k(E) is equivalent to:

(AL = @) B P)VI=0yg(E + P) > 1

we cannot express it in terms of a condition on E. But, if we note that £ < P, the right-hand
side is greater than
2((A(1 = a)B' )= yg

and, imposing that this expression is greater than one, which is equivalent to,

_ 1 1/(2(1-a))—B)
B2 = ( =

is sufficient to have k(E) < k(E).

E. Global Dynamics:

- In the constraint region, dynamics are given by:
ko1 = (1 — ) ARFEY o5
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P11 =P(1—-60(P-P))+E

if pollution is reversible. Otherwise, the dynamics for pollution write:
Pi1=P+E

- Dynamics, when maintenance is positive, become:

1
k =
Ty
Py = M P+ Velkn P)? 476

2
with,
x(kt’ Pt) =P+ E— ’)/(1 — Q)AktaEl—a—ﬁ

when pollution is irreversible and, if not:

2(kt, ) = Po(1 = 0(P = P)) + E = 7(1 — a) Ak§ B =277,

33



