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ABSTRACT 
Remote sensing techniques offer a unique solution 

for mapping the growth and nitrogen status of crops and 
monitoring its time course. Therefore these maps are 
powerful tools for recommending spatially precise cultural 
practices, and particularly nitrogen dressing. In this paper, 
we review the main issues to be addressed for estimating 
crop variables from remote sensing and for using them for 
managing variable rate fertilizer application. 
The derivation of canopy state variables such as the leaf 
area index (LAI) and chlorophyll content (Cab) is first 
addressed. It is demonstrated that the inversion of radiative 
transfer models leads to useful estimates of these variables. 
However, because of the ill-posed nature of the inverse 
problem, better accuracy is achieved when using prior 
information on the distribution of the variables and when 
multiplying LAI by Cab to get canopy level chlorophyll 
content. This variable, LAI.Cab is well suited for 
quantifying canopy level nitrogen content.  
The use of such variables for recommending optimal 
nitrogen rates is addressed further. A first way consists in 
deriving different indices (index of nutrition, index of 
deficit of absorption) that can either be substituted into 
classical empirical methods or directly used to calculate 
doses. The combination of remote sensing observations 
with crop models provides a more powerful solution that 
makes it possible to maximize the farmer gross margin 
while limiting risks of nitrate leaching. 

 
Key words: Nitrogen, Chlorophyll, leaf area index, 
Fertilization, Remote sensing, Inversion, Crop model, 
Assimilation, Precision Agriculture. 

INTRODUCTION 
Agriculture has to cope with the double objective of 

increasing yields and limiting injuries to our environment. 
Precision agriculture is a very efficient way of attaining 
these objectives, by taking account of within-field 
variability to recommend variable rate management. For 
nitrogen fertilization, the challenge is to determine the 
optimal rate at each place in the field, taking account of the 
actual status of the crop, its potential growth and soil 
potential supply.  

Remote sensing techniques offer a unique solution for 
mapping actual crop status. The solar reflective domain 
(visible to short-wave infrared) is the most informative 

with respect to canopy variables (leaf area index, LAI and 
chlorophyll content, Cab). At the field level, it has been 
shown (Baret and Fourty, 1997) that nitrogen content was 
not an attainable variable from remote sensing 
observations, nor protein content, even using hyperspectral 
systems. But through its relationship with chlorophyll 
content, it is possible to assess the nitrogen status of the 
crop (Baret et al, 2007). 

In a first part, we will present the different ways of 
linking remote sensing to the nitrogen status of the crop, 
through the estimation of pertinent canopy variables. In a 
second part we will present how we can apply these results 
to nitrogen fertilization recommendations.  

REMOTE SENSING AND NITROGEN 
STATUS 

Different variables have been used to characterize 
the nitrogen status of the crop in order to support decision 
in fertilization management. Among them, the most 
popular is the chlorophyll content of the leaves, as shown 
by the widely spread use of chlorophyll-meters (Hydro-N-
Tester of Hydro-Agri, now Yara and SPAD of Minolta), 
based on the measurement of light absorption by 
chlorophylls (e.g. Piekielek & Fox, 1992; Reeves et al., 
1993; Feibo et al., 1998; Shaahan et al., 1999; Chang & 
Robinson, 2003; Jongschaap & Booij, 2004). The 
legitimacy of those measurements is linked to the close 
relationship between chlorophyll content and nitrogen 
content: this relationship is rarely investigated and 
generally highly variable. 

Beyond the leaves nitrogen content, some authors 
use more complex variables or indices (the nitrogen 
nutrition index NNI, or the deficit of absorbed nitrogen 
which will be defined further).  
We will explore in the further sub-parts the way of 
estimating these variables from remote sensing. 

1. ESTIMATION OF LAI AND CHLOROPHYLL 
CONTENT  

The spectral and directional distribution of top of 
canopy (TOC) reflectance at a given time and location is 
governed by the canopy structure, the optical properties of 
the elements including the soil background, as well as the 
view and illumination geometrical configuration. Because 
of the numerous variables influencing canopy radiometric 
response, it is not straightforward to extract specific 
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canopy variables. It requires inverting radiative transfer 
models, as shown on Fig. 1. 
 

 
 

Fig.1 Scheme showing the inputs and outputs required in  
the forward and inverse problems to estimate canopy  
state variables (in this case LAI and Cab). 

 
In the general scheme proposed, a radiative transfer 

model simulates the TOC reflectance in the forward 
direction from the input variables. These are split into the 
variables of interest such as LAI and Cab and the other 
characteristics (geometrical view and illumination 
configuration, other canopy variables such as leaf 
inclination, leaf water content, soil optical properties…). 
An inverse technique is then used to extract the variables 
of interest. It generally requires prior information on the 
distribution of the input variables to regularize the 
inversion process (Tarantola, 1987). 
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Fig.2  

The inverse problem in remote sensing is generally 
ill-posed (Combal et al., 2002), as several combinations of 
input variables may provide very similar reflectance 
simulations that match closely the actual remote sensing 
observations (Fig.2a). The radiometric information is not 
sufficient to identify a unique solution: the inverse 
problem needs to be regularized by exploiting additional 
information such as prior knowledge on the statistical 
distribution of canopy radiative transfer model input 
variables. The possible solutions (Fig.2b) exhibit a strong 
negative correlation between the retrieved LAI and Cab 
values and have very similar values of canopy integrated 
chlorophyll content corresponding to the product between 
the leaf level chlorophyll content (Cab) and LAI, named 
LAI·Cab. This variable is a quantity physically sound since 
it represents the optical path in the canopy where 
absorption by chlorophyll governs the radiometric signal. 
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Fig. 3 Comparison of retrieval performances for LAI (top), Cab  

(middle), and LAI·Cab (bottom) over sugar beet canopies  
when using no prior information (left) or with prior  
information (right). More details can be found in Combal  
et al. (2001). 
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Remote 
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a) b) 

a) actual reflectance measurements (solid lines, with ± 
standard deviation) and the corresponding closer 
simulations (dots) achieved with a turbid medium 
radiative transfer model.  
b) the input LAI and Cab variables) (‘+’) used to 
simulate the reflectance spectra shown on a) plot. The 
actual LAI and Cab measurements (large cross) are 
shown with their associated confidence intervals 
(corresponding to 1 standard deviation). Data acquired 
over a sugar beet experiment conducted in 1990. More 
details are provided in Combal et al. (2001). 
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The use of prior information on canopy and soil 
input variables within the inversion process allows to 
improve the retrieval performances ( 

Fig. 3). The accuracy and robustness of canopy 
characteristics estimation is even improved when using 
canopy level chlorophyll content (LAI.Cab) as compared to 
leaf level contents (Cab). In the following the interest of 
using canopy integrated chlorophyll content v
be further demonstrated with reference to its
pertinent diagnostic variab

ariable will 
 role as a 

le. 

etween 
N and Cab are highly variable among years and 
development stages, those obtained at canopy level 
between LAI·C  and QN are more robust (Fig. 4).  

2. LINKING LAI AND CHLOROPHYLL TO 
NITROGEN CONTENT 

We investigated the relationship between nitrogen 
and chlorophyll content thanks to a dedicated experiment 
conducted in Laon in 2000 and 2001 over wheat crops 
subjected to a range of nitrogen stresses (Houlès et al., 
2007). It clearly demonstrated the interest of relating 
nitrogen to chlorophyll integrated at canopy level rather 
than at leaf level: while the relationships obtained b

ab

 
Fig. 4 tween a) Cab and N (top), and b) 

rmed by the strong relationship 
unit 
the 

to nitrogen and chlorophyll 

LAI AND CHHOROPHYLL TO CROP 
NIT

ex is the ratio between the 
actu itrogen concentration in shoots to the ideal N 
concentrat n of a crop having the same biomass  
whose growth is not limited by N availability (Lemaire and 

astal, 1997). It is defined as: 

 Relationships be
LAI·Cab and QN (bottom) as observed over wheat  
experimentsconducted at Laon (France) in 2001  
(Houlès, 2004). 
 

However, they still slightly depend on development 
stages: after earing, plants show larger amount of nitrogen 
for the same chlorophyll amount when a large part of 
nitrogen is concentrated in the grains (Fig. 4). For the 
younger stages having also more nitrogen for the same 
amount of chlorophyll, this might be due similarly to 
dilution of nitrogen in the structural biomass with leaf 
development as confi
between leaf nitrogen and leaf chlorophyll content per 
soil area. This clearly shows the complexity of 
processes associated 
distribution in plants.  

3. LINKING 
ROGEN INDICES. 

1.1 Nitrogen Nutrition Index and Nitrogen Absorption 
Deficit  
The nitrogen nutrition ind
al n

io  and

G
 

C

R

N
NNNI =

 

 
where NR is the actual shoot N concentration and NC is the 
'critical nitrogen' concentration. NC is a function of shoot 
biomass and is defined by the 'critical dilution curve'. The 
dilution curve is defined on a graph of biomass (on the 
abscissa) against nitrogen content (on the ordinate) of the 
aerial parts of the plant stand (Justes et al., 1994) (Fig. 5a). 
It represents a situation of optimal nitrogen nutrition. For 
every

gen content 

a

where 

rve delimits three zones on 
the gr

curve we can easily move to a 
ritical nitrogen absorption curve (Fig. 5b): multipling the 

 species it can be constructed from all of the points 
corresponding, for a given date, to the nitro
above which the aerial dry weight does not increase 
significantly despite an increase in the nitrogen supply.  

For C3 plants, including wheat, it can be 
parameterized s follows (Justes et al., 1994): 

NC = 5.35 if WR  ≤ 1 t.ha-1     [2] 

NC = 5.35. WR
−0.442 if WR ≤ 1 t.ha-1    [3] 

NC  is the critical nitrogen content expressed in g N 
per 100 g of dry matter and WR is the dry weight of the 
aerial shoots in t.ha-1. This equation does not depend on the 
variety.  

This critical dilution cu
aph. If the real nitrogen content of a given plant, 

denoted NR, equals NC, the crop is optimally supplied with 
nitrogen. If NR <  NC, it is deficient, and if, on the contrary 
NR >  NC, it is over-fertilised.  

From the critical 
c

[1]
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or te by the dry weight give the curve of the quantity of 
nitrogen absorbed under optimal conditions (QNC) as a 
function of the biomass.  
 

dina

 
Fig. 5 

[4] 

Bot

les 
are 

empirical relationships WR which therefore gives access to 

NC and QNC via the dilution curve (equations [2] and [3]). 
Knowing NNI and NC, equation [1] enables one to find NR 
and from there, QN  thanks to W  (fig. 6a) (method 1). 

Critical curve corresponding to the optimal nitrogen 
concentration in the plant as a function of plant biomass 
(top). The optimal canopy nitrogen content is shown as a 
function of the biomass (bottom).  

 
Thus one can determine, for experimental points 

giving the nitrogen absorbed by a crop (QNR) and its 
biomass (WR), the excess or deficit of nitrogen uptake 
(ΔQN): 

ΔQN = QNR – QNC     

h indices may be used in order to detect nitrogen stress 
and manage the N fertilization. 

1.2 Estimating NNI and ΔQN from Cab and LAI  
Blondlot et al. (2005) suggest estimating NNI by 

empirical relations with the value of Cab obtained from 
remote sensing data. In order to make the estimate more 
precise, we proposed to use not only Cab but also LAI 
(which informs on the crop biomass WR), as both variab

available from remote sensing measurements (Houlès 
et al, 2007). Once NNI and WR are estimated, ΔQN is 
easily deduced. In the following, we illustrate the 
comparison of 3 methods for estimating ΔQN (Fig. 6).  

The variable LAI can be used to estimate through 

R, R

 
 Three methods of calculating the absorption deficit ΔQN.  
a) by taking NNI as an intermediary; b) by taking NR as an 
intermediary; c) by us

Fig. 6

ing QCab to calculate QNR directly. 
The dotted arrows represent experimental relations, the 

ariable QCab, which is in principle best 
evaluated by remote sensing, one can choose to evaluate 
QNR directly from the latter: this we will call method 3 

ig. 6c). 

plain arrows the relations given by equations 1 to 4. (from 
Houlès et al, 2007). 

 
A second method is therefore proposed (fig. 6b) 

which consists of calculating NR directly from Cab using 
experimental relationships. Just as for the first method, one 
can arrive at the quantities absorbed by estimating WR from 
LAI. To further simplify the calculations and to use the 
integrated v

(F

 
Fig. 7

shows the relationship between GLAI and 
. 
c 

 b1    [5] 

a) 

b) 

 Experimental relations between LAI and W (from  
Houlès et al, 2007). 

 
Figure 7 

WR established on the experiment previously described
The relation quite well described by a logarithmi
function:   

R = a1. ln(GLAI) +W
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The correlation coefficients between ln(LAI) and WR are 
mostly above 0.9.  
 
The relation between Cab and NNI is well described for 
each date and by a simple linear relationship (Fig. 8).  

NNI = a2. Cab + b2      [6] 

 

  
 

 (from  

e stage of the 

en the stems begin to be of a 

sorption deficits, ΔQN, is presented on 
the first line of table 1. A cross validation was done in 

. Method 3 
e 

alues for prediction of ΔQN compared 
 values of V) i ues y 

lida

Fig. 8 Experimental relations between NNI and Cab
Houlès et al, 2007). 

 
The correlation coefficients are mostly above 0.92  
The relations between Cab et NR (cf Fig. 4a), are also well 
described by a linear fit:  

NR = a3. Cab + b3     [7] 

The slope strongly depends on the date and th
crop. They are also expressed as functions of the 
temperature sum since sowing. Moreover, early sampling 
dates also show a poorer fit than the others.  

As shown earlier, the relationships between the 
measurements of QCab and QN  are also linear (fig. 4 b) R
and mostly have correlation coefficients very close to 1. 

QNR  = a4. QCab + b4     [8] 

Again, the slope and intercept depend on the crop stage. 
Two groups of points appear: before the 2-node stage and 
from then onwards, i.e. wh
significant size in relation to the leaf area, which can bring 
about changes in the metabolism and in the 
chlorophyll/nitrogen ratio.  

In order to take account of the dependency of the 
relationships on the stage of the crop, we expressed the 
coefficients (ai, bi) for i=1,…,4 , as functions of the sum of 
temperature since sowing (ΔT). We optimized these 
coefficients based on least squares between the observed 
and calculated absorption deficits by each of the three 
methods. The result for the whole dataset of the fitting for 
the calculation of ab

order to evaluate the predictive capacity of these relations 
(Table 1, line 2). 

According to these values, method 1 describes the nitrogen 
absorption deficit less well than the 2 others
appears the best, as it leads to a smaller degradation of th
prediction within the cross-validation process. 

Table 1. RMSEP v
to  RMSE. (C ndicates val  calculated b
cross-va tion.  
 Method 1 Method 2 Method 3 
RMSE 19.4 15.0 15.2 
RMSEP 30.2 (+10.8) 23.0 (+8.0) 18.0 (+2.8) 

r the others it is about 30 and 
25 respectively. It therefore seems preferable to calculate 

E NITROGEN 
FERTI

n index (NNI, sd) or 

 to spatialize a crop model whose 

tial extension of 

will not be applied; below it, it will. In this case, 
one wi

p should therefore be 
necess

(CV) 
 
It predicts the nitrogen absorption deficit with an error of 
about 20 kg.ha-1, whereas fo

ΔQN from QCab and LAI.  

APPLICATION TO PRECIS
LIZATION 

Remote sensing techniques allow to estimate 
different variables, more or less complex, that are linked to 
the nitrogen status of the crop : N content (N, %), N uptake 
in the shoots (QN, kg ha-1), N nutritio
the deficit of N absorption (ΔQN, kg ha-1). Different ways 
of using these variables are possible:  
- taking them as proxies of the indices determined with the 
customary tools that exist on the market;  
- or using them
predictions are used to determine the optimal dose on any 
point of the field. 
In any case, remote sensing brings the spa
the information on the whole fields. 

1. USING CROP NITROGEN INDICES  

In the case of the usual empirical approaches such 
as the N-Tester or Jubil (Justes et al, 1997), they can be 
generalised on the within-field scale by replacing the usual 
measurement of nitrogen status by the estimation of Cab 
ΔQN by remote sensing. In this case, one will be working 
in terms of thresholds: above a certain value of ΔQN, an 
extra dose 

ll have, on any given date, only two kinds of zone in 
the field.  

As ΔQN expresses the deficit of N absorption by 
the plant, it can be used directly to calculate the doses to 
apply. This involves making assumptions about the 
efficiency of the fertiliser, which can however be estimated 
from the absorption deficit and the amounts. The 
recommendation map will then be made up of numerous 
zones which will reflect the variability observed by remote 
sensing. A simplification of the ma

ary so that the recommendations can be applied by 
the variable rate fertiliser spreader. 
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The decision rules which serve here as a pattern 
(e.g. N-tester) were developed primarily to optimise the 
yield. The problems of the sustainability of agriculture 
both from the environmental and the economic points of 
view require a consideration of these factors when 
calculating fertiliser requirements. This then involves 
modifying these decision rules which are decided on the 
basis of empirical databases. Crop models are particularly

le criteria (crop yield, quality, nitrogen 
loss,…

d proposing an optimal strategy for 
fertiliz l, 2004, 

riables that account for both 
ental constraints. This corresponds 

 step. 

 above. Cultural practices and 
clim

 is 

re 

from remote sensing 

g the weights attributed to 
each parameter vector as derived from its 
corresponding likelihood. 

 
useful in this objective  

2. USING CROP MODELS  

Crop models offer many advantages as compared to 
methods based on nitrogen indices. As they take account of 
the different components of the system (soil, plant, cultural 
practices and climatic condition) and of their interaction, 
they can allow to diagnose the actual cause of a N stress : 
it may be effectively due to N shortage but also to a 
limitation of growth by another stress (water stress). Crop 
models also make it possible to evaluate the performance 
of different technical scenarios and optimize them 
according to multip

); they allow also to run climatic scenarios  and 
make predictions.  

The difficulty lies in the possibility of getting the 
necessary input variables in any place of the field.  

In the following, we will illustrate how exploiting a 
crop model (STICS model, Brisson et al, 1998) to quantify 
nitrogen stresses an

er application on wheat crops (Houlès et a
Guérif et al, 2005).  

The approach is decomposed into 2 steps:  
- re-calibration of the model inputs using remote sensing 
observations. This corresponds to the assimilation step. 
- definition of  a decision rule based on a criterion derived 
from the crop model state va
economic and environm
to the recommendation

2.1 Assimilation step 

We hypothesised that the main sources of spatial 
variability was the soil, and neglected the heterogeneity 
due to cultural practices and pests. The model inputs to be 
estimated concerned soil reservoir capacity, roots growth 
and organic N in soil. The observations which were 
available from remote sensing concerned LAI and Cab. Cab 
values were transformed into QN values, according to the 
relationship presented

atic variables measured during the experiments were 
used as model inputs.  

Recalibration of crop models is an inverse problem, 
which is ill-posed similarly to the of canopy state variables 
retrieval from remote sensing. The GLUE Bayesian 
method was therefore used (Beven and Binsley, 1992; 
Makowski et al., 2002), exploiting prior distribution of the 

variables and parameters to be estimated to get the optimal 
values for their posterior distribution. This method
summarized into the following three steps (for more 
details, see Houlès et al, 2004 and Guérif et al, 2006):  
– a large number of parameter vectors (200 000) a

randomly drawn within their prior distribution defined 
from expert knowledge and previous experiments.  

– the output variables corresponding to LAI and QN 
observations, derived 
observations, are simulated for each parameter vector 
using the STICS model; 

– observed LAI and QN values are then compared to the 
simulated values, and the likelihood of each parameter 
vector is computed. The posterior distribution of each 
parameter is estimated usin

 
 
Fig. 9  

 plot and, b) as a result of 

eters. 

Spatial distribution of a) observed LAI and QN values at
two dates in the 280 cells of the
the assimilation procedure, four estimated parameters.  
The pixel size is 20 m * 20 m. 

 
Figure 9 illustrate the results of the process applied to a 
10 ha wheat field, using four dates of LAI and QN 
observations (Fig. 9a) for estimating 13 inputs param
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The retrieved values of the parameters (Fig. 9b) exhibit the 

ge nitrogen rate 
to the areas ounts would 
reduce th

 
Fig. 10 

kg/) for the third application as derived from the 
combination of remote sensing observations and crop 

ze: 20 m * 20 m. 

(from 5 to 20 m as in the case of 

ive 

l, by 

 

same spatial pattern as the LAI and QN observations. 

2.2 Recommendation step 

We proposed a criterion that combines gross margin 
maximisation and the limitation of the risk of nitrogen 
losses. Gross margin is calculated from two state variables 
provided by the model: yield (Y) and protein content (Pg) 
plus the nitrogen fertiliser dose (ND) and price (PN): 
GM=Y·Pg (ND)– ND.PN  . 
The risk of nitrogen losses is approached by the nitrogen 
balance between inputs as fertiliser (DN) and outputs as 
grain protein: NB = ND – 10. Y. Pg/5.7. To limit the risk, 
we impose the constraint on NB to be inferior to a 
threshold (e.g. NBT= 50kg/ha). 
The best strategy leading to optimal N rate is the strategy 
maximising GM among all the strategies satisfying the 
constraint on NB. If no strategy can satisfy the constraint, 
the strategy giving the lowest value for NB is selected.  
This process applied over all the pixels of the field 
provides the optimal nitrogen application map as 
illustrated by Fig. 10 for another 10 ha field. Note that no 
nitrogen application was required over about 20% of the 
field area, because canopy requirements are small enough 
to be covered by soil contribution. A homogeneous 
nitrogen application would lead to excess nitrogen left in 
the soil with some possible leaching downwards the water 
table. Conversely, applying a unique avera

requiring the larger nitrogen am
e yield and the farmer’s income.  

 

Optimal nitrogen application map (Nitrogen amounts in 

model. Pixel si
 

CONCLUSION 
Remote sensing observations in the visible and near 
infrared spectral domains allow mapping canopy leaf area 

index and leaf chlorophyll content. Those are key variables 
for giving information on crops, both in terms of growth 
and in terms of nitrogen status, at different moments 
within the growing season. Knowing these variables with a 
high spatial resolution 
data from satellite SPOT) makes it possible to use them for 
promoting precise agriculture and especially variable rate 
nitrogen fertilization.  
It is here demonstrated that the canopy chlorophyll content 
is more strongly related to the canopy nitrogen content. 
This provides the necessary link between remote sensing 
observations and the canopy state variables used as 
indicators of nitrogen status. Fortunately, chlorophyll 
content is better estimated at the canopy than at the leaf 
levels. This is mainly explained by the possible 
compensations observed in the inversion process between 
leaf level chlorophyll content and leaf area index: several 
combinations of LAI and Cab may lead to very similar 
spectral reflectance responses. However, the uncertainties 
associated to canopy nitrogen content are still significant, 
around 20 to 30 kg·ha-1, which is at the limit of the 
acceptable level. Sources of uncertainties are coming in 
first place from remote sensing estimates of canopy 
chlorophyll content, both because of measurement 
uncertainties, and of the lack of realism of the radiat
transfer models used. In addition, the relationships 
between canopy and nitrogen chlorophyll contents may 
vary slightly depending on the situations encountered.  
We presented different ways to exploit those variables 
obtained from remote sensing for recommending spatially 
variable nitrogen fertilizer application. The first way 
consists to estimate indices as INN or ΔQN that inform on 
nitrogen absorption by the crop and the possible deficit. 
These indices should be used in the same way as the 
manual measurements made in some usual empirical 
method (Ntester, Jubil), having the advantage to be more 
explicit and reliable. They should be also used to directly 
to determine a dose, as ΔQN means the actual deficit of 
absorption. However, this deficit of absorption may not be 
linked to a nitrogen deficit in the soil but to a water stress. 
Prescribing a large amount of fertiliser as a consequence of 
a high value of ΔQN would not solve the problem of 
absorption limitation and would increase the risk of further 
nitrate leaching. Therefore, the use of crop models which 
allow to have a diagnostic on all the components of the 
system (soil, crop), avoids this kind of error. They make it 
possible to build an agro-environmental criterion that can 
be optimized over a number of technical and climatic 
scenarios to calculate an optimal nitrogen dose. The 
development of methods for spatializing the mode
assimilating the observations on LAI and QN, permits to 
account for the within field variability and work out 
spatially variable optimal doses over the whole field. 
Progress is still expected in the precision of LAI and QN 
estimation thanks to improvements in radiative transfer 
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modelling. The performance of data assimilation methods 
is also being improved, as we have a lot to learn from other 
areas of research (hydrology, meteorology, oceanography) 
were assimilation is performed since a long time. Finally, 
the performance will also be improved in the future with

mber of available observations that 

tatus of leaves and canopies, In Diagnosis of 

stress using remote sensing observations and 

s using satellit

Justes, STICS: 

ng canopy

l variables from

structive and rapid 

hua, Chlorophyll 

sensing 
observations assimilation. 3rd International

 

Sym

the increasing the nu
will be affordable in the future projects of satellite clusters. 
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