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ABSTRACT 

Increasingly large numbers of microRNAs are being discovered everyday and their 

role in gene regulation being better understood. A number of computational methods for the 

prediction of microRNAs are homology based and can miss out on any unique microRNA. A 

part of this work was dedicated to the development of an effective ab initio pipeline 

(CIDmiRNA) for microRNA prediction. This pipeline showed a sensitivity of 91.7% for 

Human microRNA prediction. 

Entamoeba histolytica is the causative agent of human invasive amoebiasis, a common 

health problem in developing countries. Despite a lot of available information about the 

biology of this organism, no microRNAs have yet been reported. In this work, 6 putative 

microRNA genes were discovered in E. histolytica using CIDmiRNA, a computational 

prediction pipeline. 

Also, the intergenic regions of E. histolytica were analysed, exploring for novel genes 

using computational methods. We were able to predict at least 2 highly likely candidates for 

being novel genes missed out in the current annotation. 
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1. INTRODUCTION 

1.1.1. MicroRNAs: the discovery 

It was reported in 1993 that lin-4, a gene known to exercise temporal regulation over 

C. elegans postembryonic larval development by negative control of the LIN-14 protein, did 

not code for a protein [1]. Instead, it produced two RNA molecules; one was approximately 

22 nt (lin-4S) and the other approximately 61 nt (lin-4L) in length. These RNA molecules 

were found to contain two short blocks of sequence complementary to an element repeated 

seven times on the lin-14 mRNA. It is noteworthy that these target elements lay within the 

3’UTR of the target mRNA, previously proposed to mediate the repression of lin-14 by the 

lin-4 gene product [2]. 

Although examples of anti-sense mechanisms that affect mRNA stability had been 

reported earlier [3, 4, 5, 6], the lin4-lin14 interaction seemed to suggest a novel mechanism of 

translational control mediated through interaction with the 3’UTR in the target mRNA. Since 

then, this suggestion has been backed by results from many studies- both computational and 

experimental. 

1.1.2. MicroRNAs: history, development and current research 

Following the suggestions of an RNA-mediated novel mechanism of translational 

regulation, many more tiny RNA molecules have been discovered. Second in the order was 

let-7, also in C. elegans [7]. These RNA molecules were then being dubbed small temporal 

RNAs (stRNAs) because they were thought to be exclusively involved in temporal patterning 

during development. 

This was followed by a spurt of discovery of about 100 new tiny RNAs by three 

independent teams in 2001. Now, the tiny RNAs were re-christened as ‘microRNAs’ [8, 9, 

10] or, in short, miRNAs. Fourteen new miRNAs were discovered in Drosophila embryo and 

nineteen new miRNAs in HeLa cells [11]; all these were experimentally verified. Fifty new 

miRNAs were discovered in mixed-stage C. elegans and expression of twenty of the twenty 
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two tested could be verified [9]. Fifteen new C. elegans miRNAs were cloned and their 

expression verified [10]; of these, ten were common with those identified with Bartel’s team. 

The extent and significance of miRNA-mediated gene regulation are becoming more 

evident with the increasingly large number of miRNAs being discovered at a rapid pace. 

miRNAs have already been shown to be involved in the control of cell division, cell 

proliferation, cell death, and fat metabolism [12, 13, 14], neuronal patterning [15], modulation 

of hematopoietic lineage differentiation [16], control of leaf and flower development [17, 18, 

19, 20], and even playing both suppressor and enhancer roles in cancer development [21, 22, 

23]. 

The vast implications of miRNA-controlled gene regulation have compelled the 

development of a number of computational approaches for their prediction [24, 25, 26, 27,28]. 

Also, a number of methods are being developed for the prediction of their target mRNAs [29, 

30]. Alongside, work is on towards the elucidation of the finer details of miRNA biology. 

1.2.1. MicroRNAs: gene organisation and expression patterns 

A majority of miRNA genes are known to be standalone, coming from intergenic 

regions far away from known genes, suggesting that they are transcribed from independent 

transcription units [8, 9, 10]. However, a good fraction of miRNAs are known to be produced 

by processing of the spliced-out intronic regions of pre-mRNAs [31,32]. Yet other miRNAs 

appear to be clustered in the genome suggesting some kind of a poly-cistronic expression [8, 

9]. As an example, orthologs of the C. elegans lin-4 and let-7 are seen to be clustered in flies 

and humans [31, 33, 34]. This may also suggest that functionally related miRNAs are 

clustered together. 

MicroRNAs control the expression of other genes, but they themselves are also under 

controlled expression. This can be inferred from their spatial, temporal and numerical patterns 

of distribution. While miR-1 is primarily expressed in the mammalian heart [10, 35], miR-122 

localises primarily in the liver [35]. The C. elegans lin-4 and let-7 miRNAs are expressed in 
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the first and the fourth larval stages of embryonic development, respectively [36, 37]. While 

more than 50,000 molecules of some miRNAs like miR-2, miR-52 and miR-58 are present 

per adult C. elegans cell, miR-124 is present in the same cells at around 800 molecules per 

cell. 

1.2.2. MicroRNAs: gene transcription 

 
Figure 1 

Schematic of the structure of five human pri-miRNAs. miRNA stems are shown in red, 

noncoding sequences in green, introns in blue and coding exons in beige. This figure is not to 

scale. PA, alternate poly-A-site. 

(Source: reviewed by  Cullen, 2004) 

While it is implicit that miRNAs derived from the intronic regions would be 

transcribed by RNA pol II and share their precursors and regulatory elements with the pre-

mRNA of the host gene, the role of RNA pol II in standalone miRNA transcription has only 

recently become clearer. Prior to their maturation into miRNAs (~22 nt), the precursors of 

these molecules fold into a stem-loop structure (~80 nt, called pre-miRNA) that itself is 

transcribed as a part of a larger precursor, several hundred nucleotide long, termed pri-

miRNA. Analysis of 15 standalone miRNAs in humans has revealed that all are derived from 

pri-miRNA precursors that bear a 5’ 7-methyl guanosine cap and a 3’ poly-A tail [39, 40]. 

These findings suggest that pri-miRNAs may well be the structural analogues of protein 

coding messengers. 
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1.2.3. MicroRNAs: maturation 

The first step in miRNA maturation involves the nuclear cleavage of the pri-miRNA, 

liberating the miRNA stem-loop intermediate or the pre-miRNA (precursor miRNA) [41, 42]. 

In animals, this step is mediated by an RNAse III endonuclease called Drosha which cleaves 

the pri-miRNA close to the base of the stem-loop structure [43]. Drosha cleaves the dsRNA 

with a staggered cut and results in a 5’-phosphate and a 2 nt 3’ overhang [43, 44]. The pre-

miRNA is then transported from the nucleus to the cytoplasm by Ran-GTP and the export 

receptor Exportin-5 [45, 46]. Cytoplasmic Dicer enzyme recognises the double stranded 

region of the pre-miRNA, particularly the 5’phosphate and the 3’ overhang at the stem-loop 

base, and cleaves around two helical turns (~22 nt) away from the base [43]. This step results 

in an miRNA/miRNA* duplex with 2 nt overhangs at the 3’ ends, miRNA being the effector 

molecule. 
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Figure 2 

(A) The biogenesis of a plant miRNA (steps 1–6) and its hetero-silencing of loci unrelated to 

that from which it originated (step 7). The pre-miRNA intermediates (bracketed), thought to 

be very short-lived, have not been isolated in plants. The miRNA (red) is incorporated into 

the RISC (step 6), whereas the miRNA* (blue) is degraded (hatched segment). A 

monophosphate (P) marks the 5’ terminus of each fragment. 

(B) The biogenesis of a metazoan miRNA (steps 1–6) and its hetero-silencing of loci 

unrelated to that from which it originated (step 7). 

(Source: reviewed by  Bartel, 2004) 

In plants, the maturation of miRNA from the pri-miRNA involves a Dicer-like 

homologue called DCL1 [47]. The pre-mRNA so formed is then processed by DCL1 (or 

another unidentified enzyme), in a manner analogous to the Dicer function in animals, further 

into the miRNA/miRNA* duplex. While Exportin 5 exports the pre-miRNA to the cytoplasm 

in animals, its homologue, HASTY, is proposed to export the miRNA/miRNA* duplex [48]. 

1.2.4. MicroRNAs: the silencing complex 

Once the mature miRNA has been formed, the pathways in both plants and animals 

appear to be indistinguishable. They resemble the RNA silencing pathways called PTGS in 

plants and RNAi in animals. The mature miRNA becomes incorporated as single-stranded 

RNAs into a ribonucleoprotein complex, known as the RNA-induced silencing complex 

(RISC) [11, 49, 50, 51, 52, 53]. The RISC can recognise the target mRNAs by partial or 

perfect complementarity with the miRNA. 

1.2.5. MicroRNAs: target recognition 

The study of the miRNA sequences and the miRNA/mRNA duplexes has revealed the 

following details about the interaction: (1) The residues 2 to 8 of many invertebrate miRNAs 

show perfect complementarity to the 3’UTR elements [54], (2) the region 2-8 of the miRNAs 

is most conserved among homologous animal miRNAs [24, 55], (3) the elements of mRNAs 

that are complementary to the 2-8 region of the cognate miRNAs are perfectly conserved in 

the orthologous messages of other species [56]. 
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Such asymmetry in the complementary base pairing across the miRNA is probably 

because the RISC presents only this region to initiate pairing to the mRNAs [48]. 

1.2.6. MicroRNAs: mechanisms of action 

MicroRNAs are known to downregulate gene expression by either of two different 

mechanisms: mRNA cleavage and translational repression. The choice of the mechanism used 

is thought to be dependent on the extent of complementarity between the miRNA and the 

mRNA. Cleavage happens if the two strands are nearly completely complementary, whereas 

repression is followed if the complementarity is far from absolute [42, 57, 58, 59]. 

During an miRNA-mediated mRNA cleavage, the cut applied on the mRNA by the 

RISC is precisely between the pairing residues 10 and 11 of the miRNA [50, 57, 60, 61]. 

The prevailing belief is that most animal miRNAs downregulate by repression while 

most plant miRNAs do so by cleavage [48]. The downregulation is often brought about by a 

cumulative action of multiple RISCs acting at the multiple target sites within the 3’UTRs 

[59]. 

1.3. The miRBase [62, 63, 64] 

miRBase is the repository of published microRNA data. It is located on the World 

Wide Web at http://microrna.sanger.ac.uk/ 

Initially started as “miRNA registry”, the miRBase now has three major components:  

(1) miRBase Sequences includes a searchable database of published miRNA sequences and 

annotation. This data was previously provided by the “miRNA registry”, 

(2) miRBase Registry provides a confidential service for pre-publication assigning of official 

names for novel miRNA genes, and 

(3) miRBase Targets is a database of predicted miRNA target genes. 

Each entry in the miRBase Sequence database represents a predicted hairpin portion of 

a miRNA transcript (termed mir in the database), with information on the location and 

sequence of the mature miRNA sequence (termed miR). Both hairpin and mature sequences 
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are available for searching using BLAST and SSEARCH, and entries can also be retrieved by 

name, keyword, references and annotation. All sequence and annotation data are also 

available for download. 

The miRBase has expanded from 506 miRNAs from six organisms in 2004 (Release 

2.0) to include 3518 miRNAs from primates, rodents, birds, fish, worms, flies, plants and 

viruses (Release 8.0). 

1.4. MicroRNA prediction by computational means 

As we have seen in Section 1.2.1, different microRNAs have different spatial, 

temporal and numerical patterns of distribution. Experimental discovery may therefore be 

very difficult or simply impossible for the rare miRNAs, as well as, for those that are 

expressed in specialised stages in the life of the organism. Therefore, computational methods 

have been used to accompany experimental methods to miRNA gene identification. 

Homology searches have revealed orthologues and paralogues of known miRNA 

genes [8, 9, 10, 65]. Since many miRNA genes are known to be present in clusters, another 

approach has been to analyse the regions in the vicinity of known miRNA genes for other 

stem-loop forming structures that may represent additional genes of a genomic cluster [9, 31, 

66, 67]. However, homology based methods cannot be used to detect unique and rare 

miRNAs; this is where the need for ab initio methods of miRNA prediction is felt. 

Till date, five major computational methods have been applied for miRNA prediction 

in nematode, vertebrate, insect and plant candidates. These approaches have been briefly 

discussed below. 

1.4.1. MiRscan [24] 

MiRscan was used on sequences conserved between C. elegans and C. briggsae that 

folded into hairpin-loop structures, about 36,000 in number. The previously published 50 

miRNAs served as training set for the program, which was then used to assign scores to each 

of these 36,000 hairpins, evaluating them on the basis of similarity to the training set with 
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respect to the a number of structural and sequence parameters. The distribution of MiRscan 

scores for the ~36,000 hairpins showed that the 50 genes of the training set mostly lay in the 

high scoring region. 

The use of this method helped detect 30 additional miRNA genes in C. elegans. The 

method could predict miRNAs with a sensitivity of 50% and a specificity of 70%. 

1.4.2. miRseeker [25] 

miRseeker was used to identify miRNA genes by analysing intronic and intergenic 

regions conserved between Drosophila melanogaster and D. pseudoobscura and folding into 

evolutionarily constrained hairpin structures with features characteristic of known miRNAs. A 

number of parameters like nucleotide divergence, selective pressure on the precise sequence 

of the non-miRNA-coding-arm, preferential divergence within the loop structure were derived 

from the conservation analysis of the training set and then used for miRNA prediction. 

This strategy could identify 48 novel miRNA candidates within Drosophila whose 

existence was strongly supported by conservation in other insect, nematode and vertebrate 

genomes. The sensitivity of the procedure was demonstrated to be 75%. 

1.4.3. MIRFINDER [26] 

MIRFINDER was a genome-wide approach used to detect miRNA genes in 

Arabidopsis thaliana genome. This method relied on the conservation of short sequences 

between the genomes of Arabidopsis and rice (Oryza sativa) and on properties of secondary 

structure of the miRNA precursor. Major rules were derived from the reference set, and later 

used in MIRFINDER. These rules included features of structure and sequence and 

conservation. 

The method identified 91 potential miRNA genes, of which 58 had at least one nearly 

perfect match with and Arabidopsis mRNA. 
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1.4.4. ProMiR [27] 

ProMiR uses a probabilistic co-learning method based on the paired hidden Markov 

model (HMM) to implement a general a general miRNA prediction method to identify close 

homologues as well as distant homologues. 

When applied to genome screening for novel miRNAs on human chromosomes 16, 

17, 18 and 19, ProMiR effectively searched distantly homologous patterns over diverse pre-

miRNAs, detecting at least 23 novel miRNA gene candidates. Importantly, the miRNA gene 

candidates do not demonstrate clear sequence similarity to the known miRNA genes. 9 of the 

23 predicted miRNA genes were experimentally confirmed, indicating that ProMiR may 

successfully predict miRNA genes with at least 40% accuracy. 

On 5-fold cross-validation with 136 referenced human datasets, the efficiency of 

classification shows 73% sensitivity and 96% specificity. 

1.4.5. miRAlign [28] 

miRAlign uses both sequence and structure alignment to predict novel miRNAs. This 

method is able to predict distant homologues and considers more properties of miRNA 

structure conservation than previous tools. The method first does a conservation analysis and 

then sequence and structure alignment. Using this tool 59 new miRNAs were detected in 

Anopheles gambiae and it achieved a sensitivity of 70%. 

1.5. Formal Grammars in Bioinformatics 

Fundamental tasks in bioinformatics are mathematical analyses and comparisons of 

macromolecular sequences to determine common or consensus patterns among a family of 

sequences, produce a multiple sequence alignment, discriminate members of the family from 

nonmembers, and discover new members of the family. 

Recently, the benefits of viewing the biological sequences representing DNA, RNA, 

or protein as sentences derived from a formal grammar has been argued [68]. When we view 

DNA, RNA, or protein sequences just as strings or formal languages on alphabets of four 
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nucleotides A, C, G, T or A, C, G, U or 20 amino acids, respectively, a grammatical 

representation and a grammatical inference method can be applied to various problems for 

biological sequence analyses. Especially, the increasing numbers of yielded DNA, RNA, and 

protein sequences highlight a growing need for developing grammatical system in 

bioinformatics, especially stochastic grammars such as Hidden Markov Models (HMMs) and 

Stochastic Context-Free Grammars (SCFGs) [69, 70, 71]. 

1.6. The SCFG_Based_Scorer [72] 

An effective method for learning and building Stochastic Context-Free Grammars 

(SCFGs) to model a family of RNA sequences has been recently provided [71]. In general, the 

folding of an RNA sequence into a functional molecule is largely governed by the formation 

of the standard Watson-Crick base pairs A-U and G-C as well as the wobble pair G·U. Such 

base pairs constitute the so-called biological palindromes in genome and can be clearly 

described by a context-free grammar. In particular, productions of the forms X ?  A Y U , X 

?  U Y A, X ?  G Y C, and X ?  C Y G describe a structure in RNA due to Watson-Crick base 

pairing. Using productions of this type, a CFG can specify a language of biological 

palindromes. 

The SCFG_Based_Scorer [72] uses a Stochastic Context–Free Grammar model to 

decide if a given sequence can fold into the pre-miRNA structure. This is a statistical model 

constructed using base-pairing rules from human microRNA structures. 

The rules used to generate the grammar are: 

(1) The structure consists of a single long stem with a loop at its distal end. 

(2) The paired region of the stem is continuous in only for short intervals; it is interrupted 

by bulges. 

(3) The paired region of the stem at the proximal end is at least 3 base pairs long. 

(4) The paired region of the stem at any other location is at least 2 base pairs long. 

(5) The bulges interrupting the paired region of the stem can be symmetric or asymmetric. 
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(6) The symmetric bulge consists of equal number of unpaired bases on both the strands, 

not exceeding 4 in number on either. 

(7) The asymmetric bulge has unequal number of unpaired bases on both sides, not 

exceeding 4 in number on one side and 7 in number on the other. The differerence in 

the number of unpaired bases on the two strands does not exceed 4. 

(8) Allowed base pairs are A-U, G-C and G-U. 

(9) The terminal loop at the distal end of the structure varies from 4 to 12 bases. 

These rules have been encoded in the form of a grammar consisting of 5 sets of 

rewriting rules (Figure 3) to define the various elements of the miRNA structure and can be 

used to derive parse trees that correspond to miRNA structural elements. The primary 

sequence of the RNA structure can then be derived by tracing the terminal symbols (a, u, g, c) 

on the outside of the tree from one end to another (Figure 4). 

Start: 
S g STEM 

Set IV: 
LOOP g TTTT 
LOOP g TTTTT 
LOOP g TTTTTT 
LOOP g TTTTTTT 
LOOP g TTTTTTTT 
LOOP g TTTTTTTTT 
LOOP g TTTTTTTTTT 
LOOP g TTTTTTTTTTT 
LOOP g TTTTTTTTTTTT 

Set I: 
STEM g A1 STEM1 U1 
STEM g U1 STEM1 A1 
STEM g G1 STEM1 C1 
STEM g C1 STEM1 G1 
STEM g G1 STEM1 U1 
STEM g U1 STEM1 G1 
STEM1 g A1 STEM2 U1 
STEM1 g U1 STEM2 A1 
STEM1 g G1 STEM2 C1 
STEM1 g C1 STEM2 G1 
STEM1 g G1 STEM2 U1 
STEM1 g U1 STEM G1 
STEM2 g A1 STEM2 U1 
STEM2 g U1 STEM2 A1 
STEM2 g G1 STEM2 C1 
STEM2 g C1 STEM2 G1 
STEM2 g G1 STEM2 U1 
STEM2 g U1 STEM2 G1 
STEM2 g S_BULGE 
STEM2 g A_BULGE 
STEM2 g LOOP 

Set II: 
S_BULGE g T STEM T 
S_BULGE g TT STEM TT 
S_BULGE g TTT STEM TTT 
S_BULGE g TTTT STEM TTTT 

Set III: 
A_BULGE g STEM T 
A_BULGE g STEM TT 
A_BULGE g STEM TTT 
A_BULGE g STEM TTTT 
A_BULGE g T STEM 
A_BULGE g T STEM TT 
A_BULGE g T STEM TTT 
A_BULGE g T STEM TTTT 
A_BULGE g T STEM TTTTT 
A_BULGE g TT STEM 
A_BULGE g TT STEM T 
A_BULGE g TT STEM TTT 
A_BULGE g TT STEM TTTT 
A_BULGE g TT STEM TTTTT 
A_BULGE g TT STEM TTTTTT 
A_BULGE g TTTTT STEM TTT 
A_BULGE g TTT STEM 
A_BULGE g TTT STEM T 
A_BULGE g TTT STEM TT 
A_BULGE g TTT STEM TTTT 
A_BULGE g TTT STEM TTTTT 
A_BULGE g TTT STEM TTTTTT 
A_BULGE g TTT STEM TTTTTTT 
A_BULGE g TTTT STEM 
A_BULGE g TTTTSTEM T 
A_BULGE g TTTT STEM TT 
A_BULGE g TTTT STEM TTT 
A_BULGE g TTTTT STEM TT 
A_BULGE g TTTTTT STEM TT 
A_BULGE g TTTTTTT STEM TTT 

Set V: 
T g a 
T g u 
T g g 
T g c 
A1 g a 
U1 g u 
G1 g g 
C1 g c 

 

Figure 4 

SCFG rewriting rules to represent secondary structure of human pre-miRNAs 
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The Scorer is first trained on a positive dataset using the inside-outside algorithm [73]. 

Then, the Cocke-Younger-Kasami [74] method is used for calculating the probability of a 

given sequence being generated using the defined grammar and then generating the most 

probable parse tree for that sequence. If the sequence cannot be generated using the defined 

grammar a negative infinite score is returned by the scorer, otherwise the best log-likelihood 

of generating the sequence is returned as the score (a negative value). 

The SCFG_Based_Scorer is therefore an effective core program that can be used to 

identify the pre-miRNA stem-loop structures and hence to predict miRNAs.  

 
Figure 4 

A parse tree for a part of a pre-miRNA derived using the SCFG rewriting rules 
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1.7.1. Entamoeba histolytica: the parasite 

The organism, first identified by Fedor Losch in 1875, was initially named “Amoeba 

coli”. However, the formal taxonomic classification was put forward by Fritz Schaudinn who 

also named it “Entamoeba histolytica”. In 1925, Emile Brumpt proposed the concept of two 

morphologically identical species, the E. histolytica and E. dispar, the former responsible for 

an invasive disease and the latter surviving as a commensal. 

 

Figure 5 

Life Cycle of Entamoeba 

histolytica 

The parasitic protozoa E. histolytica is the causative agent of human invasive 

amoebiasis, a common health problem in some developing countries. Amoebiasis is 

characterized by potentially fatal intestinal and liver lesions. Worldwide, about 30-50 million 

people are infected and as many as 40,000-100,000 die, directly or indirectly, due to E. 

histolytica infection per annum. Despite the availability of the potent drug metronidazole, E. 

histolytica is a major cause of parasitic deaths worldwide. The motile form of the parasite, the 
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trophozoite, usually lives as a harmless commensal in the lumen of the distal colon, where it 

consumes bacteria as its nutrient source. In the colonic lumen it differentiates into cysts, the 

resistant form, responsible for the transmission of the infection, which has four nuclei and a 

chitin wall.  As a commensal, E. histolytica induces no signs or symptoms in this condition. 

Normally, it causes the disease condition in about 10% of the infected individuals; virulent 

amoebas invade the intestinal mucosa and produce dysentery or amoeboma shedding fewer 

infectious cysts and more noninfectious trophozoites. Occasionally, it can spread through 

blood giving rise to extra intestinal lesions, mainly liver abscess. The main reservoir of E. 

histolytica is man, although morphologically similar amoebas may be found in primates, dogs 

and cats. Human susceptibility to infection appears to be general, but most individuals 

harboring the parasite do not develop disease. Some host properties that favor invasive 

amoebiasis are intestinal microflora, certain nutritional habits, deficient immune response, 

alcoholism and pregnancy [75]. 

1.7.2. Entamoeba histolytica: genome and gene structure 

The total DNA content in E. histolytica is ~0.5 pg DNA per cell, all of which is 

present in the nucleus and there are no other DNA-containing organelles [76]. The haploid 

genome size of E. histolytica was found to be 20 Mb. There are 14 linkage groups with ploidy 

level of four in E. histolytica [77]. The Entamoeba genome is low (~22.4%) in [G+C] content. 

The genome of Entamoeba consists of both linear chromosomes and plasmid-like circular 

DNA molecules; among the latter class are the rDNA circles [78]. In E. histolytica, in contrast 

to other unicellular eukaryotes, rDNA is present exclusively as extrachromosomal circular 

molecules [79]. The rDNA plasmid EhR1 of E. histolytica strain HM1:IMSS  is 24.5 kb in 

size, present in 200 copies, has two transcription units arranged as inverted repeats along with 

several short tandem repeats upstream and downstream of the transcription units. The size of 

the plasmid is different in different strains and species with two major categories: one with 

two RNA transcription units and the other with two rRNA transcription units [80]. The 
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ribosomal plasmid contains multiple potential origins of replication, which are utilized in a 

differential manner. Only a few (3%) Entamoeba genes have introns in them [81]. However, 

sequencing of genomic contigs indicates that introns are more common than previously 

reported [82]. Introns are small in size (~100bp) and show typical eukaryotic features. Genes 

are tightly packed with short intergenic regions about 0.4-2.3 kb. Analysis of several 

promoters in E. histolytica has shown divergence in the core promoter with a non-consensus 

TATA and Initiation region (Inr). These semi-conserved motifs in the core promoter [83] are: 

(1) GTATTTAAA(G/C), the putative TATA element at -30; (2) GAACT, the GAAC box, 

location variable in the core promoter, between  –30 to -14 and (3) AAAATTCA, the putative 

initiator at the start of transcription. Apart from core promoter four positive (URE1, URE2, 

URE4 and URE5) and one negative (URE3) regulatory elements has been localized upstream 

of the lectin gene hgl5 [83]. The conserved TAA/TTT in the untranslated 3’ region might 

function as transcription termination signal. Downstream of these motifs and just upstream of 

the poly-adenylation signal, a stretch of sequence of up to 12 pyrimidine residues is observed 

(Bruchhaus I et al., 1993). RNA polymerase II inhibitor α-amanitin does not inhibit 

transcription of protein coding genes, indicating that the RNA Polymerase II is different from 

other eukaryotes [84], making it similar to T. vaginalis transcription machinery. 

1.7.3. Entamoeba histolytica: the genome projects 

The E. histolytica genome projects are simultaneously underway at The Institute for 

Genomic Research (TIGR) and the Sanger Institute Pathogen Sequencing Unit. The goal of 

the collaborative efforts is to determine 99% of the genomic sequence of E. histolytica strain 

HM1:IMSS, analyze and annotate the data and provide ready equal access to the sequence 

information and analysis. The E. histolytica genome is ~24 Mb in size and split into 14 

chromosomes. A whole genome shotgun sequence (8X coverage) has been produced by 

Sanger Institute in collaboration with The Institute of Genome Research and assembled into 

888 scaffolds. This draft sequence has been published [85] and finishing is now in progress. 
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2. AIMS AND OBJECTIVES 

The aims and objectives of the project titled “Computational analysis of Entamoeba 

histolytica genome: Exploring junk DNA for hidden messages” were as follows: 

1. To develop an effective pipeline for computational identification of microRNAs 

2. To use this pipeline on conserved intergenic regions of Entamoeba histolytica to find 

novel miRNA genes 

3. To find novel genes within the intergenic regions of Entamoeba histolytica 
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3. MATERIALS AND METHODS 

3.1. MicroRNA reference sets and other sequences 

A dataset of 227 human miRNAs, their precursor sequences (pre-miRNAs), and their 

structures were downloaded from the MicroRNA Registry [62, 63] release 6.0 

(http://microrna.sanger.ac.uk/cgi-bin/sequences/browse.pl). Of these, only the experimentally 

verified miRNAs (121 in number) were retained, and the rest discarded. A Training_Dataset 

of 60 pre-miRNAs was then prepared by clustering the experimentally verified pre-miRNAs 

and selecting only the distantly related species. A dataset of the available 230 and 116 pre-

miRNAs from Mus musculus and Caenorhabditis elegans, respectively, were also 

downloaded from the same release. 

500 rRNA sequences from heterogeneous sources were obtained from GenBank 

following a keyword based search for rRNAs. These were designated as the 500_rRNA set. 

Genomic sequences of five viruses were used in this work, including Simian Virus 40 

(NC_001669), Kaposi sarcoma-associated herpesvirus (U75698), Mouse gamma herpesvirus 

68 (U97553), Epstein-Barr virus (NC_001345), and Human cytomegalovirus (NC_001347). 

These genomes were obtained from Genbank; accession numbers have been mentioned within 

parentheses. The GenBank can be accessed at 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide 

Human chromosome 22 assembly (Release 3) was downloaded from Sanger Institute’s 

Website (http://www.sanger.ac.uk/HGP/Chr22/cwa_archive/Release_3_14-09-2001/). 

Annotations from Release 3.1b (March 5, 2002) were used to mask all coding regions before 

the sequences were used further. 

Entamoeba histolytica strain HM1:IMSS genome sequences and annotations, and 

protein database were downloaded from the Sanger Institute FTP server 

(ftp://ftp.sanger.ac.uk/pub/pathogens/Entamoeba/histolytica/). Entamoeba dispar genome was 
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downloaded form the Sanger Institute FTP server 

(ftp://ftp.sanger.ac.uk/pub/pathogens/Entamoeba/dispar/). 

A set of Human Chromosome 22 microarray tiling data was downloaded from the 

GEO database (http://www.ncbi.nlm.nih.gov/projects/geo/). 

3.2. Training of the “SCFG_Based_Scorer” 

The Training_Dataset (60 pre-miRNAs) was used to train the SCFG_Based_Scorer 

[72] such that it could analyse a profile of true miRNAs. Once trained, the Scorer was used to 

score input sequences. A lower absolute value of the score returned by the 

SCFG_Based_Scorer suggests a better likelihood of the sequence being a pre-miRNA. 

3.3. Determining the cutoff score for effective pre-miRNA prediction 

The SCFG_Based_Scorer is designed to score any input sequence for its probability 

of folding into a pre-miRNA structure. It is therefore necessary to fix a threshold value that 

will help make a binary decision of whether the input sequence can fold into a pre-miRNA 

structure or not. To help decide the threshold (1) a Positive_Dataset containing all the 121 

experimentally verified human miRNAs, and (2) a Negative_Dataset containing regions from 

the 500_rRNA set with a duplex stability of at least -13.559 kcal/mol was prepared.  

 

Figure 6 

Frequency distribution of Normalised Scores (from the SCFG_Based_Scorer) for the 

Positive_Dataset and the Negative_Dataset 
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To determine the cutoff score for effective pre-miRNA prediction, the scores returned 

by the SCFG_Based_Scorer for the Positive_Dataset and the Negative_Dataset were 

analysed, and a cutoff value suitably segregating the two sets was chosen (Figure 6). 

3.4 Pre-processing in the microRNA prediction pipeline: the Mfold Filter 

Although the SCFG_Based_Scorer returns scores that identify pre-miRNAs with 

good accuracy, this requires that all the possible sub-windows from any given genomic region 

be supplied to the Scorer one at a time, thus increasing the time taken for pre-miRNA search 

exponentially. To cut down the prediction time, an optinal Mfold filter was introduced. 

Mfold is a popular Minimum Free Energy (MFE) based RNA folding program [86]. 

It was used to fold all the sequences in the Positive_Dataset. The dG values obtained were in 

the range of -46.4 kcal/mol to -15.4 kcal/mol, with a Mean value of -31.856 kcal/mol and a 

Standard Deviation (S.D.) of 6.0990 kcal/mol. A wide range of Mean±3S.D. (-50.153 

kcal/mol and -13.559 kcal/mol) was decided for filtering input sequences. 

To further reduce the time of search, the flexible scanning window shifting by 1 

nucleotide at a time was replaced by a fixed scanning window (length 125 chosen such that all 

possible miRNA lengths could be sufficiently covered) shifting by 10 nucleotides at a time. 

The effectiveness of such a window was confirmed by embedding each sequence of the 

Positive_Dataset in five different randomly generated backgrounds of length 125 each. The 

sequences so generated were then made to pass through the Mfold filter with a flexible 

scanning window shifting by 1 nucleotide. 93.468% of all sub-windows analysed could still 

pass through the filter, suggesting that the 125 length windows will still allow most pre-

miRNAs embedded within the window to pass the filter. Any potential sub-windows excluded 

would be taken care of by the small distance (10 nucleotides) slid at a time. 
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3.5. Pre-processing in the microRNA prediction pipeline: the Structure Filter 

Although the SCFG_Based_Scorer independently identifies pre-miRNAs with good 

sensitivity (91.7 %), it is relatively poor in its specificity. This is because the Scorer’s context-

free nature does not allow it to have a near memory. This means that the relative position of 

any structural element (e.g. S_BULGE, A_BULGE) will not affect the score as long as their 

length does not extend far enough to interfere with another structural element. The absence of 

near memory may result in inappropriate structures getting predicted. Therefore, a previously 

described Structure scoring system [87] was used to assign Structure scores to each of the 

sequences scored positive by the SCFG_Based_Scorer. Structures were obtained by using 

RNAfold [88] and any multiple loops at the terminus were opened up to conform to the 

structures depicted in the MicroRNA Registry. Opening of the multiple loops at the pre-

miRNA hairpin heads for depiction in the Registry was confirmed by communication with 

Sam Griffiths-Jones. 

A score of +1 was assigned to each set of paired bases, +0.5 to each unpaired base in 

symmetrical bulges of length up to 2. A score of –2 was assigned to each base in symmetrical 

bulges of length greater than 2 and a score of –2 was assigned to each unpaired base in 

asymmetrical bulges. 

 

Figure 7 

Frequency distribution of Structure Scores for the Positive_Dataset and the Negative_Dataset 
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The cutoff score was determined by analysing the scores returned by applying the 

Structure scoring system on the Positive_Dataset and the Negative_Dataset, and a cutoff value 

suitably segregating the two sets was chosen (Figure 7). 

3.6. Obtaining the conserved intergenic regions from E. histolytica genome for further 

analysis 

Conserved intergenic regions were obtained from the E. histolytica genome in a 

stepwise manner. The details of the steps follow. 

1) Intergenic regions of the genome were extracted using the current annotation (11,522 

continuous sequences) 

2) The intergenic sequences were BLASTed against the E. dispar genome (with E-value 

cutoff of 1e-9). Sequences at least 50 nt in length and showing at least 92% identity 

with E. dispar were extracted for further processing (78,085 continuous sequences)  

3) The sequences extracted in Step 2 were BLASTed against a LINES_SINES dataset 

(with E-value cutoff of 1e-9; dataset courtesy Kamal Rawal) and any matching 

sequences were excised out (63,267 continuous sequences remained) 

4) To remove any duplicated regions, the sequences obtained from Step 3 were 

BLASTed against the E. histolytica genome (with E-value cutoff of 1e-9) and any 

sequence that returned more than one hit was removed (972 sequences remained) 

5) To remove regions duplicated in E. dispar, the sequences obtained from Step 3 were 

BLASTed against the E. dispar genome (with E-value cutoff of 1e-9) and any 

sequence that returned more than one hit was removed (600 sequences remained) 

6) The sequences obtained from Step 5 were BLASTed against the E. histolytica protein 

dababase (using BLASTX with E-value cutoff of 1e-9) and sequences showing a 

match were segregated into the Putative_Orthologues dataset; the remaining sequences 

were clubbed together as Eh_Unique_Conserved_IG (27 sequences went to 

Putative_Orthologues, 562 went to Eh_Unique_Conserved_IG) 
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3.7. Obtaining the 3’UTRs from E. histolytica genome for further analysis 

To obtain the 3’UTRs from E. histolytica genome, 100 nucleotides downstream from 

the 3’end of the each gene were extracted and added to the dataset Eh_3’UTRs. This resulted 

in 9732 UTRs. 
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4. RESULTS AND DISCUSSION 

4.1. Web-based pipeline for prediction of pre-microRNAs 

An effective pre-miRNA prediction pipeline called CIDmiRNA (for Computational 

Identification of microRNA) was developed, with the SCFG_Based_Scorer (unpublished) at 

its heart. Major features of the pipeline are depicted in Figure 8 below. 

 
Figure 8 

The diagram shows the correlation between the pipeline steps and the options available 

through the Web-based tool CIDmiRNA. The “Input Sequence” can either be directly pasted 

(between 60 and 1000 characters long) or the sequence file uploaded (up to 200 KB large). 

The choice of using the “Mfold Filter” can be exercised by checking/ unchecking the 

corresponding box. The “End Pairing Selector” selects only those sequences that pair at the 

ends, with the minimum length of terminal pairing decided by the value entered in the field 

“Minimum Terminal Stem Length”. The “SCFG_Based_Scorer & Selector” selects sequences 

that qualify the cutoff value entered in the filed “Score Cutoff”. Similarly, the “Structure 

Filter” filters out sequences that do not qualify the value entered in the filed “Structural Score 

Cutoff”. There is also an option of “Batch” processing which allows the user to specify an 

email address for receiving a link to the results once the batch is completed. A drop down 
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menu has been provided to choose the optimal parameter values for a given “Organism”; 

currently, default values for only Homo sapiens are available. 

4.2. Testing of the pipeline on Homo sapiens, Mus musculus, Caenorhabditis elegans 

reported miRNAs 

121 experimentally verified pre-miRNAs of Homo sapiens, and 230 and 116 pre-

miRNAs (both experimentally verified and homology predicted) from Mus musculus and 

Caenorhabditis elegans, respectively, were used as a Test_Set for the CIDmiRNA pipeline. 

Parameters default for Homo sapiens were used on the entire set; Mfold filter was excluded. 

The sensitivties of prediction for the three species were 91.7%, 50.9% and 12.1% (Table 1). 

Sensitivity has been calculated using the relation SN = TP/ (TP+FN), where SN stands for 

sensitivity, TP for true positives and FN for false negatives [89]. 

Table 1 

S. 

No. 

Organism Number 

of Input 

Sequences 

Total 

Length 

(nt) 

Post- 

SCFG_Based_Scorer 

& Selector 

Post- 

Structure 

Filter 

1 Homo sapiens 121* 9,945 113 111 

2 Mus musculus 230# 11,410 119 117 

3 Caenorhabditis elegans 116# 19,184 16 14 

* Experimentally verified miRNAs 
# Experimentally verified or homology predicted miRNAs 

These results suggest that CIDmiRNA can distinguish finer details of pre-miRNA 

structures from one species to another. Since the SCFG_Based_Scorer was trained on a 

human training set, the results were most promising for Homo sapiens. The sensitivity of 

mouse pre-miRNA prediction is worse than that for human, but better than that for the worm. 

The sensitivities of prediction appear to be related to the evolutionary distance between the 

organisms, suggesting that finer details of pre-miRNA structures have undergone divergent 

evolution. 
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4.3. Application on human and viral genomes 

The CIDmiRNA pipeline was also applied on human chromosome (except contigs 2 

and 3) and five viral genomes, including Simian Virus 40, Kaposi sarcoma-associated 

herpesvirus, Mouse gamma herpesvirus 68, Epstein-Barr virus, and Human cytomegalovirus. 

Parameters default for Homo sapiens were used on all of them; Mfold filter was excluded for 

the viral genomes. The results of the analysis have been represented in Table 2. 

Table 2 

S. 

No. 

Chromosome/ Virus Number of 

Input 

Sequences 

Total 

Length (nt) 

Post- 

SCFG_Based_S

corer & 

Selector 

Post- 

Structure 

Filter# 

1 Human Chromosome 

22* 
25,488,164 10,342,054 5,199 

3,176 

(1/2) $ 

2 Simian Virus 40 12,586 5,243 5 3 (2/2) 

3 Kaposi sarcoma-

associated herpesvirus 
294,731 137,508 94 55 (6/12) 

4 Mouse gamma 

herpesvirus 68 
275,205 119,450 98 71 (2/9) 

5 Epstein-Barr virus 6,200,339 172,281 173 134 (4/5) 

6 Human 

cytomegalovirus 
7,625,286 230,287 246 190 (6/9) 

* Contigs 2 and 3 excluded; Mfold filter used 
# Numbers within the parentheses represent the number of known miRNAs predicted/ the 

total number of known miRNAs in that region or virus 
$ When the regions containing another 3 reported miRNAs (in Contigs 2 and 3 of the 

Chromosome) were separately supplied, all the 3 miRNAs could also be detected 

The 3,176 putative miRNAs predicted by the CIDmiRNA pipeline were used to search 

the intergenic tiling microarray data for human chromosome 22 from the GEO database 

(http://www.ncbi.nlm.nih.gov/projects/geo/).  731 of the 3,176 predicted miRNAs were found 
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in the microarray data, suggesting strongly that these sequences are indeed expressed and 

hence are strong contenders of being miRNAs. 

The idea of using this pipeline on human viruses stemmed from the observation that 

viruses within a human cell use the human cellular machinery and should therefore result in 

similar structures of pre-miRNAs as the ones shown by human pre-miRNAs. This idea seems 

to stand validated because prediction for all human viruses shows at least 50% sensitivity of 

prediction. However, prediction for Mouse gamma herpesvirus 68 shows only 22.2% 

sensitivity. 

4.4. Application of the pipeline on the conserved intergenic regions of Entamoeba 

histolytica 

Following a BLAST against E. dispar genome to re-calculate their conservation, the 

Eh_Unique_Conserved_IG dataset prepared earlier was segregated into two subsets: 

Eh_Unique_Conserved_IG_Small (41 sequences) and Eh_Unique_Conserved_IG_Large (521 

sequences). Eh_Unique_Conserved_IG_Small was obtained by picking up sequences that 

were no more than 200 in length and had at least 95% identity with E. dispar. The remaining 

sequences were set to the Eh_Unique_Conserved_IG_Large dataset. 

The Eh_Unique_Conserved_IG_Large dataset was further processed as follows. (1) 

The 521 sequences were BLASTed against E. histolytica genome (using TBLASTX with E-

value cutoff of 1e-9) and all continuous alignments (without stop codons) were discarded (347 

sequences retained). (2) The 347 sequences were then BLASTed against themselves (using 

TBLASTX with E-value cutoff of 1e-9) and any sequence giving more than one hit was 

discarded (100 sequences retained). (3) Of the 100 sequences so obtained, all sequences larger 

than 200 nt or less than 95% identical to E. dispar were discarded. (93 sequences retained) 

The 41 sequences from Eh_Unique_Conserved_IG_Small and the 93 sequences from 

the processed Eh_Unique_Conserved_IG_Large were then pooled together and BLASTed 
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against the est_others database at the NCBI Nucleotide-Nucleotide BLAST server (with 

results limited by an Entrez query string “Entamoeba[organism]”). Any sequences that gave a 

significant hit (>=98% identity) were discarded (a total of 85 sequences retained). 

When the CIDmiRNA pipeline was used (with Minimum Terminal Stem Length 1, 

Window Length 40 to 140, Score Cutoff -0.9, Structural Score Cutoff 10) on the 85 remaining 

sequences, 6 putative pre-miRNAs were predicted (details in Table 3, page 37). A flexible 

window (12 to 25 in length) sliding by 1 nucleotide at a time was used to scan each of these 

predicted miRNAs and supplied to miRanda with default parameters [29] for a target search 

within the previously prepared Eh_3’UTRs dataset. This resulted in 4,040 hits that reduced to 

1,653 on overlap removal. A distribution of the scores of the 4,040 hits across the length of 

each of these pre-miRNAs was observed using target-hit scores returned by miRanda. For 

each position on the pre-miRNA, the scores of all the target-hits of which the position was a 

part were considered. The distribution of total scores at each position for all the 6 pre-

miRNAs was plotted with all pre-miRNAs aligned at their 5’end (Figure 9). This distribution 

shows a perceptible skew in the distribution of the scores, suggesting that the regions with 

greater scores in the distribution are more likely to be parts of the mature miRNA sequence. 

The distribution for the predicted AAFB01001645_miRNA_hit suggests that this pre-miRNA 

possibly matures into two miRNAs. The positions corresponding to the highest cumulative 

score have also been highlighted in Table 3 (page 37). 
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Figure 9 

Distribution of the total target-hit scores for each position of the predicted pre-miRNAs 

Relaxed parameters were chosen for pre-miRNA prediction in E. histolytica because 

its large evolutionary distance from humans could result in very low sensitivities (observed in 

Section 2 above). Relaxing the parameters is an effective dodge to catch any pre-miRNAs that 

have their basic structure conserved, yet the finer details different. 

4.5. Further analysis of the conserved intergenic regions of Entamoeba histolytica 

The Eh_Unique_Conserved_IG dataset was also used for another parallel analysis, 

with an aim to locate any genes not yet annotated. (1) The 562 sequences were BLASTed 

against self (using TBLASTX with E-value cutoff of 1e-9) and all continuous alignments 

(without stop codons) were extracted (227 sequences retained; their range of length was 21 to 

867 nt). (2) Of these 227 sequences, sequences smaller than 100 nt were discarded (75 

sequences retained). 

Each of the 75 sequences obtained above, along with 100 nt flanking regions on both 

sides, was then subjected to a threefold analysis. (1) The sequences were BLASTed against 
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the est_others database at the NCBI Nucleotide-Nucleotide BLAST server (with results 

limited by an Entrez query string “Entamoeba[organism]”) and the nucleotide lengths of any 

significant hits (>=98% identity) with E. histolytica were recorded. (2) The sequences were 

also BLASTed against the nr PROTEIN database at the NCBI translating BLAST server and 

the %identities and the nucleotide lengths of any significant hits were recorded. (3) The 

sequences were supplied to Genscan using default parameters, and the predicted peptide 

length and the gene features were recorded [90]. Sequences that passed on one or more of 

these criteria have been recorded in Table 4 (page 40). 

Of the 22 sequences recorded in the table, 2 passed all the three criteria, 1 passed only 

two criteria, whereas the rest passed on only one of the three criteria. 

The sequences that gave an EST hit are very likely candidates of being genes, because 

their presence in the database already suggests that they are being transcribed. Candidates 

AAFB01000175_(6899-7048) and AAFB01001401_(885-310) can be interesting for further 

analysis because they are not only confirmed to be transcribed and show homology with 

known proteins, but also seem to be coding for some specific feature of a gene. While the 

former is predicted to be an internal exon, the latter is predicted to be an initial exon. Further 

analysis of regions upstream and downstream of these regions can give us more information. 

The sequences that show homology with known proteins need to be compared with the 

entire homologous protein. It is possible that they are essentially small, non-functional parts 

of those proteins acquired long ago in evolution. 

Although Genscan has been shown to be an effective gene prediction tool, some 

caution must be exercised while interpreting the results of Genscan. The default settings of 

Genscan use a Vertebrate training to predict genes. E. histolytica being an early branching 

eukaryote may not faithfully represent all the features of the vertebrate genes. 
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Table 4 

S. 

No. 

Putative new gene 

(Accession/ Locus)* 

BLASTn 

against 

Entamoeba 

ESTs 

BLASTx 

against the 

“nr-

PROTEIN 

database” 

Genscan Analysis# 

1. AAFB01000031 (51989-51807) 337nt – – 

2. AAFB01000073 (15312-15971) – – Init_277aa 

3. AAFB01000073 (16164-17030) – – Sngl_PlyA_290aa 

4. AAFB01000087 (59599-59748) – 100%id_99nt – 

5. AAFB01000134 (13179-12982) – 100%id_96nt – 

6. AAFB01000157 (20046-19636) – 45%id_579nt – 

7. AAFB01000175 (6899-7048) 256nt 61%id_213nt Intr_63aa 

8. AAFB01000200 (30858-30730) – 100%id_96nt – 

9. AAFB01000225 (13629-13483) 231nt – – 

10. AAFB01000240 (43466-43353) 163nt – – 

11. AAFB01000629 (4888-5004) – 100%id_99nt – 

12. AAFB01000663 (3085-2810) – – Sngl_PlyA_105aa 

13. AAFB01000663 (4093-3815) – – Init_119aa 

14. AAFB01000781 (13825-13721) – 100%id_99nt – 

15. AAFB01000855 (16777-17256) – – Init_126aa 

16. AAFB01000862 (8330-8740) – – Intr_138aa 

17. AAFB01000885 (2569-2156) – – Init_177aa 

18. AAFB01000906 (3827-4510) 191_nt – – 

19. AAFB01000968 (11381-11280) 149nt – – 

20. AAFB01001020 (11175-10831) 418_nt – Intr_67aa 

21. AAFB01001311 (3143-3003) 180nt – – 
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22. AAFB01001401 (885-310) 616_nt 33%id_603nt Init_195aa 

* The loci mentioned are those of the conserved regions; however, 100 nt flanking regions 

were also supplied for the three analyses 

# Genscan was with default parameters used from http://genes.mit.edu/GENSCAN.html 

An explanation of the gene features (from the Genscan output page): Init = Initial exon 

(ATG to 5' splice site); Intr = Internal exon (3' splice site to 5' splice site); Sngl = Single-

exon gene (ATG to stop); PlyA = poly-A signal (consensus: AATAAA) 
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