A Bayesian Approach to model Atlantic salmon life cycle in the Foyle catchment (Northern Ireland)

G. Dauphin ${ }^{1,2,3}$, E. Prévost ${ }^{1}$, C.E. Adams², P. Boylan ${ }^{3}$

1: INRA, UMR ECOBIOP
2: Scottish Centre for Ecology \& the Natural Environment, Glasgow University
3: Loughs Agency
International Statistical Ecology Conference
University of St Andrews, July 10 th 2008

Background

Objectives of population dynamics biology

- Evaluate the size of a population and its dynamics
- Understand the regulation mechanisms
\rightarrow Special interest for harvested population for which sustainable exploitation is required

Data available for harvested population

- Exploitation statistics (catches, effort, etc.)
- Scientific studies independent from fisheries

Heterogeneity of datasets

- Temporal differences (i.e. length of time series differs, changes in time of the sampling)
- Spatial differences (i.e. scale differences, data is not collected in the same place every year)

Background

Problematic

- How do we join all these datasets together in order to reflect the history of the population
- How do we take in account the associated uncertainties

Methodology used

- State-space modelling
- Bayesian inference
- Monte Carlo Markov Chain (MCMC) methods used with WinBUGs software

Background

Bayesian state-space mode! -- - -

Background

 Bayesian inference

: Relationship between hidden states
θ : Parameters
~ process
"os : Bayesian inference

ノ: Dynamic Model
: Observation Models

Case study: the Foyle catchment

* Located in the North-West of Ireland
* Total area: approximately $4500 \mathrm{~km}^{2}$ Wetted area: about 11.5 million m^{2}
* the system is divided in several units (18) corresponding to the different sub-catchments

Case study: A. salmon biology and data available

Case study: A. salmon biology and data available

Case study: A. salmon biology and data available

Case study: A. salmon biology and data available

Modelling

Modelling

Modelling

Results
 Density dependent regulation

Spawners to juveniles ratio relationship

Results

Density dependent regulation

Rmax

z, steepness

Results

Adult returns estimates

Results

Outputs of population management interest

estimation of the commercial fisheries exploitation from 1959 to 2006

Conclusions

Main Outputs:

- Adults returns abundance estimates

Limits of WinBUGS for these model:

- Long calculation time / problems of convergence

Methodology

- Work presented here is an example of a generic approach than can be applied for any population as long as time series are large enough

Predictions/analysis

- This kind of model can be used to provide short term predictions
- Retrospective analysis, "What if" scenarios

Thank you for your attention !

Funding: Loughs Agency
Supervisors: Colin Adams, Patrick Boylan, Etienne Prévost
Acknowledgments: Art Niven, Loughs Agency field crew

