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1. Introduction

Economists often use static games, even when the strategic situation to
be analyzed is made of a blend of stock and flow variables and would call
for a dynamic formulation. For instance, if agents’ decisions have persistent
polluting effects, then it makes sense to consider ambient pollution as a
stock, whereas emissions would better be formalized as flows. One may
prefer static models for their greater simplicity; more satisfactorily, when
dynamic outcomes converge to a steady state, and when the transition is
not of prime interest, static models are meant to capture long run stable
interactions, with an implicit dynamic game in the background. There is
no objection against this approach if the equilibrium of the static game
associated with the steady state coincide with the long run part of the
dynamic equilibrium. Whether or not this coincidence holds depends closely
on the information used by players when they devise their strategies in
the real dynamic game. More precisely, it has been established in various
dynamic games that an open-loop information pattern leads to equilibria
that mimic, possibly exactly, static equilibria in the long run (Reynolds 1989,
Driskill and McCafferty 1990, Dockner 1992). This comes as no surprise,
as I shall develop below, for open-loop Nash equilibria (OLNE hereafter)
are akin to static Nash equilibria. But what happens when players do not
use open-loop strategies? If we persist to use static models as shortcuts
for steady states of unmodelled dynamic games, how inaccurate are static
equilibria?
There are many different answers to the above questions, for inter-temporal

frameworks open the possibility of various dynamic informational environ-
ments, therefore different alternative kinds of strategies, implying outcomes
that can be very different from static equilibria, even in the long run.1 But
one may also ask what qualifications one particular kind of dynamic informa-
tion pattern may produce to static (open-loop) findings? This paper deals
with the markovian information pattern. Under such an information struc-
ture, behaviors at any point of time depend on a reduced set of variables,
typically the current state of the system. Researchers have many reasons to
focus on markovian behaviors, as documented in Maskin and Tirole (2001).
First of all they produce subgame perfect equilibria. There are also a few
practical reasons: i) markov perfect equilibria (MPE) are widely used in ap-
plied dynamic game theory, a fact that justifies further theoretical attention,
ii) their simplicity makes econometric estimation and inference easier, iii)
they can readily be simulated2.
What modification(s) on long run behaviors are produced by a markovian

information structure? For instance, are markovian behaviors systematically
more aggressive than static behaviors? Partial answers can be found in
the literature. Long et al (1999) have analyzed this question for a class

1This conclusion also follows from the folk theorem: roughly speaking it says that with
agents who are sufficiently patient many outcomes, possibly including full cooperation,
can be part of a Nash equilibrium where agents use memory strategies.
2Maskin and Tirole (2001), p. 193, mention the exitence of a Gauss program to simulate

MPE, written by Pakes, Gowrisankaran and McGuire, which is freely accessible on the
net, by anonymous ftp at econ.yale.edu.
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of differential games satisfying homogeneity properties, and which is useful
to modelize resource depletion problems.3 In this class, markov strategies
systematically bring about faster rates of extraction, as compared with open-
loop strategies.
But what for the differential games that do not possess the required ho-

mogeneity properties? Clearly, one cannot expect the same kind of system-
atic result, for outside the class of Long et al (1999) one can find games
where sometimes in turns out that markov strategies increase competition
(Reynolds 1987, Driskill and McCafferty 1989, Dockner 1992, Driskill 2001),
and sometimes competition is softened (Van der Ploeg and De Zeew 1990,
Melese and Michel 1991, Piga 1998, Figuières 2001).
It is not clear what reasons explain those findings. The papers quoted

above are too specific to capture important qualitative properties of markov
strategies with the necessary degree of generality. What is needed actually
is a framework that would be general enough to encompass a priori the two
kinds of results, and to ascertain what component drives the answer. This is
an ambitious stake. Luckily, as this paper show, this challenge is manageable
for an important class of differential games with two state variables, which
embodies most of the papers with two state variables quoted above, and
even some papers with a single state variable. To some extent the present
contribution is technical. It establishes some qualitative and comparative
properties for the MPE and the OLNE; this will be useful for all the future
applied analysis that will make use of the class of games here defined; and
retrospectively it helps understanding and unifying the existing findings in
the literature.
The simplicity of the results is in sharp contrast with the technical difficul-

ties inherently associated to differential games. They summarize as follows:
i) the payoff structure allows one to deduce whether the MPE behaviours are
characterized by markov substitutability - meaning that decision rules are
decreasing functions of the rival capital stock - or markov complementarity
- where decision rules are increasing functions of the rival stock; ii) in games
with markov substitutability (complementarity) markov strategies increase
(soften) competition in the long run.
The paper is organized as follows. Section 2 gives more precisions about

what can be expected from the comparison of OLNE and MPE, in relation
with the goal of this paper. Section 3 presents a general class of differential
games with two state variables. Section 4 is devoted to cooperative and non
cooperative behavioral scenarii that have been used within this context: the
corresponding outcomes are the Pareto efficient (utilitarian) solution, the
OLNE and the MPE. Section 5 shows what information about the MPE can
be deduced from the payoff structure and discusses the relationship between
dynamic and static best responses. Section 6 compares the steady states of
the three scenarii. Illustrations and further insights are provided in Section

3More generally, differential games provide a suitable tool for the study of economic
situations where some state variables evolve over time as a result of inter-temporal and
strategic interactions among agents. Numerous fields have benefited from this tool, in-
cluding industrial economics, macroeconomics, environmental economics, public econom-
ics and management. For a comprehensive introduction the reader can consult Dockner
et al (2000); Amir (2003) provides a non technical extensive account of this literature.
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7. As a by-product an existence result is given for the differential game used
in Figuières (2002). Section 8 summarizes the contribution of this article
and suggests possible extensions.

2. OLNE, MPE and markov interactions

The specificities of the OLNE and the MPE have been widely documented
in the literature on differential games, but it is worth recalling their prop-
erties with the goal of this paper in mind.
Dynamic games with state variables involve subtle and important speci-

ficities as far as agents’ behaviors are concerned. Two specificities absent in
static frameworks are the following. First, a decision at any time has not
only current consequences, but also future consequences via the law of mo-
tion of the state variables. Therefore a rational decision at time t reflects an
inter-temporal trade-off that accounts for this natural dynamic interaction
channel between the present and the future. Secondly, there is an additional
and more subtle channel whereby a decision today can have persistent con-
sequences, typically through rival players’ strategies. The explanation is as
follows. Presumably, agents can rethink their optimal plans at each decision
stage in the future. In that case some restrictions must be imposed on the
strategies to be used by players, in order to rule out empty or non credible
threats, i.e. strategies made of future actions that may no longer be indi-
vidually rational when they are to be actually implemented; in the language
of Game Theory the good candidate strategies are required to be subgame
perfect. Subgame perfection obtains when the strategies are determined by
backward induction. By construction the resulting strategies at any time t
are decision rules conditional on the levels achieved by the state variables
at t. The very nature of those strategies produces indeed a second chan-
nel by which a player can influence the future course of interactions. More
precisely, a change in a player’s action today modifies the evolution of the
state variables that in turn alters the actions to be undertaken by the rival
players, as it can be deduced from their decision rules. This second channel
will be referred to as the Markov Interactions channel.
The OLNE and the MPE are relevant with respect to the behavioral fea-

tures just outlined, i.e. natural dynamic interactions and markov interac-
tions. The OLNE typically captures the first feature, but not the second; the
MPE captures both aspects. The OLNE involves strategies that are simply
functions of time. In other words, at the beginning of the game the players
decide upon the whole sequence of actions to be taken from then onwards.
For this reason it is generally argued that the OLNE is a static interac-
tion concept. Admittedly several authors have explored dynamic situations
where the OLNE has a stationary state identical to the Nash equilibrium of
the associated static “limit game” (Reynolds 1987, Driskill and McCafferty
1989, Dockner 1992). The associated limit game obtains when the param-
eters responsible for structural time-dependence tend to specific values, so
that natural dynamic interactions disappear. In this paper I shall view the
OLNE as an approximation for static interactions (bearing in mind that the
approximation becomes exact when natural dynamic interactions vanish).
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In contrast with the OLNE, even when natural dynamic interactions disap-
pear, the MPE stationary state never coincides with the static equilibrium
of the limit game, for markov interactions remain.
Clearly comparing the OLNE with the MPE is a way to assess what mod-

ifications on behaviors a proper account for the temporal structure brings
about. This amounts to investigate what can be expected frommarkov inter-
actions, which are solely responsible for any difference between the “static”
equilibrium concept and the dynamic one.

3. A class of dynamic frameworks and their associated games

The class of economic situations under consideration includes most of the
two-state differential games used in the economic literature, and some single-
state games as particular cases. Examples are capacity competition between
firms (Reynolds 1986, 1987 and 1991)4, dynamic duopoly with adjustment
costs (Driskill and McCafferty 1989), durable good duopoly (Driskill 2001),
arms race (Van der Ploeg and De Zeeuw 1990, Melese and Michel 1991),
environmental policies (Dockner and Long 1993, Feenstra et al 2001), public
infrastructures competition (Figuières 2002), advertising games (Fershtman
1984, Piga 1998) and dynamic voluntary contributions to a public good
(Fershtman and Nitzan 1991, Itaya and Shimomura 2001).
Two players invest over an infinite horizon to build their stocks. Time is

continuous and the evolutions of the stocks obey:

(1)

½
Żi(t) = Qi(t)− bZi(t),
Zi(0) = Z0i ,

i = 1, 2 ,

where Zi(t) ∈ R+ and Qi(t) ∈ R represent, respectively, player i’s capital
stock and physical investment. Investment is reversible since Qi(t) is not
restricted to be positive. The parameter b ≥ 0 is the physical depreciation
rate.
At each point of time, the two capital stocks contribute to player i’s

instantaneous payoffs according to a function P i(Zi, Zj ). The functions
P i(., . ), i = 1, 2 are assumed to be quadratic, and symmetric in the sense
P j(Zj, Zi) = P i(Zj, Zi). Several economic examples of such revenue func-
tions are given in Section 7 that are all particular cases of the general form:

P i(Zi, Zj) = p0 + p1Zi + p2Zj +
p11
2

Z2i + p12 Zi Zj +
p22
2

Z2j ,

where p0 ≥ 0, p1 > 0, p11 < 0, p22 ≤ 0. The positive sign of p1 ensures that,
at least for some range of the capital stocks, the function P i (., .) increases
with Zi. The other two assumptions on the parameters implies that the
function P i(., . ) is strictly concave with respect to player i’s stock and also
concave with respect to the rival capital stock. There are no restrictions a
priori on the scalars p2 and p12, whose signs will depend on the context.

4One should also mention P. R. Worthington (1969), who offers a discrete-time model
of capacity competition, which is akin to Reynolds’ continuous-time analyis (1987).
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The instantaneous payoffs obtain by subtracting the costs of investment
from P i(., .). Those costs are:

C(Qi) = c1Qi +
c2
2
Q2i , c1 > 0 , c2 ≥ 0 .

Each player associates an inter-temporal payoff to every vector of out-
comes (Z1(.),Q1(.), Z2(.), Q2(.)):

(2) J i =

Z ∞

0
e−rt

£
P i(Zi(t), Zj(t))−C(Qi(t))

¤
dt

for i = 1, 2, j = 1, 2, i 6= j. The parameter r > 0 stands for the common
discount rate.
The investments Qi(.) are endogenously determined: in non cooperative

scenarii they are players’ equilibrium strategies, selected in pre-specified
strategy spaces.
The open-loop strategy space for player i, denoted Sol

i , is the space of
strategies that are piecewise continuous functions of time:

Qi : R+ → R ,
t 7→ Qi (t) .

Let us call Γol the class of open-loop games defined by the two players, the
open-loop strategy space Sol

i , the dynamics (1) and the payoffs (2).

The markov (or feedback) stationary strategy space for player i, denoted
Sm
i , is the space of functions of the stocks:

Qi : R+ ×R+ → R ,
(Zi, Zj) 7→ Qi (Zi, Zj) .

Using this space of strategies Sm
i and the previous elements, one can

define a class Γm of markov differential games.
Whatever the strategy space to be used, the equilibrium concepts of in-

terest are Nash equilibria, i.e. the profile of strategies in which each player
optimizes his payoff, given the strategy of the other agent5.
A last remark is in order. The above class of games also describes actually

two types of differential games with a single state variable. The first type
occurs where the parameters of the functions P i (., .) are such that only the
sum of the stocks matters for the players, i.e. when p1 = p2, p11 = p12 = p22.
The relevant state variable is then Z = Z1 + Z2, and its law of motion is
Ż(t) = Ż1(t) + Ż2(t), i.e.

Ż(t) = Q1 (t) +Q2 (t)− bZ (t) , Z(0) = Z0 = Z10 + Z20.

This single-state sub-class captures Fershtman and Nitzan (1991) and Itaya
and Shimomura (2001)’s papers on dynamic voluntary contributions to a
public good, and Dockner and Long (1992) analysis of international pollu-
tion.
The second type of single-state games is where only the difference of the

stocks matters, like in Van der Ploeg and De Zeeuw (1990) and Melese and
Michel (1991). The parameters are then such that p1 = −p2, p11 = p22 =

5Stackelberg equilibria, sometimes encountered in the literature, will not be considered
here.
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−p12, the relevant state variable is D = Z1−Z2, and the corresponding law
of motion is:

.
D(t) = Q1 (t)−Q2 (t)− bD (t) , D(0) = D0 = Z10 − Z20.

4. Three behavioral scenarii

This section describes the three possible outcomes of particular interest in
our framework, mainly by means of first order conditions that characterize
behaviors. Those conditions are not sufficient to guaranty also existence.
However as they are necessary, the analysis is valid whenever in the game at
hand the outcomes do exist, which has been established in many examples
that belong to the class of games I am considering6. Nevertheless I shall
give an existence result for the example presented in section 6.3, for it has
not already been done elsewhere.

4.1. Efficient behaviors. A Pareto-efficient outcome is a pair of trajecto-
ries (Qc

1(.),Q
c
2(.)) such that there exists no other pair that would make a

player strictly better-off without making the other player worse-off. In our
symmetric context it makes sense to focus on the centralized (utilitarian)
criterion; then (Qc

1(.),Q
c
2(.)) solves:

max
Q1(.),Q2(.)

J1 + J2,

subject to (1).

If λ1 and λ2 are the marginal values of the stocks, the current value
Hamiltonian of the centralized problem is:

H̃ = P 1(Z1, Z2)+P
2(Z2, Z1)−C(Q1)−C(Q2)+λ1 (Q1−bZ1)+λ2(Q2−bZ2) .

The necessary conditions for optimality read as:
Ż1 = 1

c2
λ1 − bZ1 − c1

c2
, Z1(0) = Z10 ,

Ż2 = 1
c2
λ2 − bZ2 − c1

c2
, Z2(0) = Z20 ,

λ̇1 = (r + b)λ1 − (p1 + p2)− (p11 + p22)Z1 − 2p12Z2 ,
λ̇2 = (r + b)λ2 − (p1 + p2)− (p11 + p22)Z2 − 2p12Z1 ,

(SCi)

and the transversality condition is

lim
t→∞ e−rt [λ1(t)(Z1(t)− Zc

1(t)) + λ2(t)(Z2(t)− Zc
2(t))] = 0 ,

where Zc
i (.) is a candidate for optimization and Zi(.) is any other path.

In specific examples some mild conditions are assumed in order to obtain a
convergent centralized solution for this two-point boundary values problem,
leading the stocks to the same positive steady state:

Zc =
p1 + p2 − (r + b)c1

(r+ b)bc2 − (p11 + p12)− (p12 + p22)
.

6In addition, establishing conditions of existence for the general class of games would
produce conditions on the parameters and the stocks that, alone, are not that helpful in
many applications. Specific applications often require additional restrictions, for instance
over the range of admissible stocks, as it is the case in Reynolds (1987), that may conflict,
for some values of the parameters, with those required for existence.
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4.2. Open-loop Nash equilibrium. An open-loop Nash Equilibrium is a

pair of trajectories (Qo
1(.),Q

o
2(.)) defined as follows: the path Qo

i (.) max-
imizes Ji subject to (1), given the rival investment trajectory Qo

j(.), and
therefore the stock trajectory Zo

j , of the other player. From this definition
it is worthwhile noting that each player considers that his investment choice
has no effect on the investment path of the other player.
Using the Maximum Principle to calculate best responses, it follows that

the marginal value of player i’s stock, denoted µi, should equal the marginal
cost of investment C0(Qi) = c1 + c2Qi. And the capital stocks and the
marginal values must satisfy:½

Żi(t) = 1
c2
µi(t)− bZi − c1

c2
, Zi(0) = Zi0 ,

µ̇i(t) = (r+ b)µi(t)− p1 − p11Zi − p12Z
o
j ,

(SNi)

for i = 1, 2. In addition the transversality condition are limt→∞ e−rtµi(t)(Zi(t)−
Zo
i (t)) = 0, i = 1, 2, where Z

o
i (.) is a candidate trajectory and Zi(.) is any

other path.
Putting together (SN1), (SN2), the initial and transversality conditions,

one finds again a two-point boundary value problem. At the steady state
the two players share the same capital stock:

Zo =
p1 − (r + b)c1

(r + b)c2b− (p11 + p12)
.

Some conditions can easily be devised to ensure the existence of a con-
vergent OLNE leading to this positive steady state.

4.3. Markov Perfect Equilibrium. A MPE (Q∗1,Q∗2) can be character-
ized using a dynamic programming approach. The equilibrium markov
strategies solve the following Hamilton-Jacobi-Bellman (HJB) equations:

r V i (Zi, Zj) = max
Qi

{Pi(Zi, Zj)−C(Qi) + V i
1 (Zi, Zj) (Qi − bZi)

+V i
2 (Zi, Zj) (Q

∗
j(Zi, Zj)− bZj)

ª
, i = 1, 2 ,

where V i (Zi, Zj) is player i’s value function, for the subgame starting at
(Zi, Zj), given that the opponent is playing Q∗j(Zi, Zj).
From the HJB equations it is clear that the value function, and therefore

the behavior of each agent, is to be found using the information that the
rival investment is a function of the stocks. At each point of time player
i’s optimal decision is an answer to the question: “how much do I invest
today, given that this decision is costly, that it will affect current and future
stocks, as can be deduced from the law of motion and the rival decision rule,
and given that those stocks contribute to my overall payoffs according to
V i (Zi, Zj)?”. Optimal decisions are such that the marginal cost to invest,
C0(Qi), is equal to its marginal benefit V

i
1 (Zi, Zj).

Since the symmetric class of games under consideration is linear quadratic,
it is usual to look for MPE (Q∗1(Z1, Z2),Q∗2(Z2, Z1)) that are symmetric
and linear functions of the stock variables. Besides, a MPE is said to be
convergent if, when the equilibrium decisions are plugged into the system
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(1), this system is asymptotically stable: whatever the initial conditions, the
capital stocks converge to their steady states.
The first order conditions7 for the maximization of the HJB equations

and the stability requirement mentioned above lead to :

Theorem 4.1. Take a game γm ∈ Γm and let

Q∗1(t) =
v∗1 − c1

c2
+

v∗11
c2

Z1(t) +
v∗12
c2

Z2(t)(3)

Q∗2(t) =
v∗1 − c1

c2
+

v∗11
c2

Z2(t) +
v∗12
c2

Z1(t)(4)

V i (Zi(t), Zj(t)) = v∗0 + v∗1 Zi(t) + v∗2 Zj(t) +
v∗11
2

Z2i (t)(5)

+v∗12 Zi(t)Zj(t) +
v∗22
2

Z2j (t)

where v∗0, v∗1, v∗2, v∗11, v∗12, v∗22 are solution to

r v0 = p0 +
(v1)2

2c2
+
(c1)2

2c2
− c1

c2
(v1 + v2) +

v1 v2
c2

,

r v1 = p1 +
v1 v11
c2

− c1
v11 + v12

c2
− bv1 +

v1 v12
c2

+
v12 v2
c2

,

r v2 = p2 +
v1 v12
c2

− c1
v12 + v22

c2
+

v1 v22
c2

+
v11 v2
c2

− bv2 ,

r v11
2

=
p11
2
+
(v11)2

2c2
− bv11 +

(v12)2

c2
,

r v12 = p12 +
2 v11 v12

c2
+

v12 v22
c2

− 2bv12 ,
r v22
2

=
p22
2
+
(v12)2

2c2
+

v11 v22
c2

− bv22 ,

v11 < bc2 ,

(v12)
2 < (v11 − bc2)

2 ,

then the pair (Q∗1(Z1, Z2), Q∗2(Z2, Z1)) is a convergent and symmetric linear
MPE for the game γm, and V i (Zi(t), Zj(t)) is player i’s value function.

Proof : see appendix A

One recognizes in Theorem 4.1 the Riccati equations for the feedback co-
efficients of the value function. The sign of the feedback coefficient v∗12/c2 in
the markovian strategies (3) and (4) conveys interesting information. De-
pending on the parameters, it can be positive or negative. Intuitively, when
it is negative it corresponds to situations where an increase of player i’s stock
reduces the player j’s incentive to invest. This case can be defined as one of
markov substitutability (see also Figuières (2002) for a related discussion).
On the other hand when v∗12/c2 is positive an increase of Zi increases player
j’s incentive to invest, which can be defined as a case of markov comple-
mentarity. As already emphasized, the difference between the OLNE and

7Those first order conditions are sufficient for maximisation since the expressions in
curly brackets in the HJB equations are concave in Qi.
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the MPE stems from the fact that, with the decision rules of the MPE, the
players do take into account how a change in their current strategy affects
the rival decision via the state variables; in the present class of games, this
behavioral difference is qualitatively captured by the endogenous coefficients
v∗11 and v∗12. I shall come back in particular to the role of the coefficient v∗12
in Sections 5 and 6.

5. Payoff structure and markov interactions

Understanding markov interactions in a differential game is made diffi-
cult by the necessity to find out the MPE, which necessitates to solve the
Riccati equations, a system of non linear equations. Greater insights would
be achieved if it were possible, like for static games, to infer some of the
qualitative properties of the equilibrium without having first to compute it,
by the mere knowledge of the components of the game, and in particular
the knowledge of the payoff structure. This is the purpose of the following
theorem, one of the two main results of the paper, that relates the sign of
one key endogenous variable to the sign of one key exogenous parameter :

Theorem 5.1. Take a game γm ∈ Γm and let

Q∗i (t) =
v∗1 − c1

c2
+

v∗11
c2

Zi(t) +
v∗12
c2

Zj(t), i = 1, 2 j = 1, 2 i 6= j

be a Linear Markov Perfect Equilibrium of γm. Then sign(v∗12) = sign(P i
12) =

sign(p12).

Proof : appendix B

In the class of games Γm the nature of markov interactions at a MPE can
straightforwardly be deduced from the payoffs structure: when the function
P i (Zi, Zj) is such that P12 < 0 (P12 > 0), the game is characterized by
markov substitutability (markov complementarity). As for the single state
games that our two-state frameworks capture, it is left to the reader to check
that both the public good model of Fershtman and Nitzan (1991), and the
pollution game of Dockner and Long (1992), like any game in our class where
only the sum of the two states matters, are games of markov substitutability;
on the contrary, games where only the difference of the stocks matters (Van
der Ploeg and De Zeeuw 1990, Melese and Michel 1991) are games of markov
complementarity.
The distinction between markov substitutability and markov complemen-

tarity is akin to the usual distinction between strategic substitutability and
strategic complementarity in static games. Is there a link between the dy-
namic and the static reaction functions? To answer this question one may
consider intuitively what happens to the MPE when the cost parameters c1
and c2 tend to zero (Reynolds 1987 and Driskill and McCafferty 1989 also
consider similar limit cases), for those parameters give the class of games
Γm its dynamic structure.
When c2 → 0 (but remains positive), the marginal cost is reduced, which

means that incentives to invest are increased. The MPE is still a linear
function of the stocks, but it is characterized by a faster approach path
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towards the steady state; if the other cost parameter c1 also tends to zero
there is an initial infinite rate of investment, whereby agents almost “jump”
directly to the markov steady state. In a sense the game is transformed into a
static one, a “limit game” where the decision variables are the stocks and the
payoffs are P i(Zi, Zj). In static games the nature of strategic interactions
is readily deduced from the payoffs structure. In particular, the sign of the
second order cross derivative:

P i
12(Zi, Zj) = p12

conveys useful information. When p12 is positive (resp. negative) one speaks
of strategic complementarity (substitutability)8. Let us recall that strategic
substitutability (resp. complementarity) in a game means that the best
reply of a player is a decreasing (resp. increasing) function of the opponent’s
actions.
When the parameter c2 is strictly positive, the costs of investment are

increasing and convex; as a result any change in the stocks takes place
gradually over time. This stickiness restores the distinction between stocks
and flows.
So, another way to express the result of this section is the following:

if the “limit games” are characterized by strategic substitutability (comple-
mentarity) then the underlying dynamic games are characterized by markov
substitutability (complementarity).

6. Assessing the impact of markov interactions

This section shows that the decision rules characterized by markov sub-
stitutability lead to less efficient levels of capital; intuitively markov infor-
mation in this case is synonymous of more aggressive play. On the contrary,
when the game features markov complementarity, decision rules entail a
steady state that is closer to the efficient criterion; in this case, markov
information is conducive of more cooperation.
Let us use the optimal control tools to determine the MPE steady state.

When agents use markov strategies, player i’s problem can be stated as
follows. Given that player j’s strategy is

Q∗j (Zi, Zj) =
v1 − q∗

c2
+

v∗11
c2

Zj +
v∗12
c2

Zi ,

player i aims at maximizing (2) subject to (1). Player i’s current value
Hamiltonian is

H̃i = p0 + p1Zi + p2Zj +
p11
2

Z2i + p12ZiZj +
p22
2

Z2j

−c1Qi − c2
2
Q2i + µ11 (Qi − bZi) + µ12

¡
Q∗j (Zi, Zj)− bZj

¢
.

The necessary conditions for optimality are:
Żi = 1

c2
µ11 − bZi − c1

c2
, Z1(0) = Z10 ,

µ̇11 = (r + b)µ11 − p1 − p11Zi − p12Zj − µ12
∂Q∗

j

∂Zi
,

µ̇12 = (r + b− ∂Q∗j
∂Zj
)µ12 − p2 − p12Zi − p22Zj .

(SNm
i )

8See for instance Bulow, Geanakoplos and Klemperer (1985), or Tirole (1988).
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Note the difference with the OLNE necessary conditions, due to the terms
∂Q∗

j

∂Zi
and

∂Q∗
j

∂Zj
. Given that these two terms are

v∗12
c2
and

v∗11
c2
respectively, the

symmetric steady state Zi = Zj = Zm of (SNm
i ) can be calculated to give:

Zm =
p1 − (r+ b)c1 + p2

v∗12/c2

r+b−v∗11/c2

(r + b)c2b− (p11 + p12)− (p12 + p22)
v∗12/c2

r+b−v∗11/c2

.

Lemma 6.1. In the expression for Zm the quantity

v∗12/c2
r + b− v∗11/c2

belongs to the interval ]−1; 1[ .

Proof: appendix C.

We are now ready for the second main result:

Theorem 6.1. When the markov game γm ∈ Γm is characterized by markov
complementarity (P12 > 0) the MPE steady state Zm is between the OLNE
steady state Zo and the centralized steady state Zc.

When the markov game γm ∈ Γm is characterized by markov substitutabil-
ity (P12 < 0) the OLNE steady state Zo is between the MPE steady state
Zm and the centralized steady state Zc.

When P12 = 0 the OLNE and the MPE coincide.

Proof : appendix D.

With the joint use of Theorems 5.1 and 6.1, understanding the effects of
markov interactions for the class Γm is straightforward. A first glance at
the payoffs structure indicates whether the MPE is characterized by markov
substitutability or markov complementarity (Theorem 5.1); then using this
information and Theorem 6.1, one can deduce if Zm is closer to the efficient
steady state than Zo, i.e. if competition is increased or reduced in the long
run.
Further interesting insights require the comparison of the payoffs, after

that of the steady states. In the numerical examples of Section 7 it turns out
that, if commitment can serve as a substitute for cooperation in games with
markov substitutability (because of less aggressive reactions), players are
better-off if they use decision rules in games with markov complementarity
(more collusive reactions). However one should take the usual precautions
with numerical conclusions.

7. Illustrations and further results

7.1. Capacity competition between firms. In the industrial organiza-

tion literature one of the best-known analyses with markov substitutability
is that of Reynolds (1987). For other illustrations see the adjustment cost
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model of Driskill and McCafferty (1989) and Driskill (2001)’s analysis of the
durable good duopoly.
Reynolds’ model is a capital accumulation game of infinite duration be-

tween two industrial firms, whose gross profits at time t correspond to a
choice of functions P i with parameters:

p0 = 0, p1 > 0, p2 = 0, p11 = −2, p12 = −1, p22 = 0,

that is:

P i(Zi, Zj) = Zi(p1 − Zi − Zj), p1 > 0, i = 1, 2, j = 1, 2, i 6= j .

The profits of each firm depend on its own capital and on the capital stock
of its rival. They are reduced-forms of profit functions in a two-stage game
that takes place at each time t. In the first stage the firms decide upon the
scale of production; the second stage is a quantity competition game, con-
figured by the first stage capacity choices (see Reynolds (1987) for details).
Observe from the gross profit functions that we are dealing with markov
substitutability interactions (p12 < 0).
The costs of investment are:

C(Qi) = c1Qi +
c2
2
Q2i , c1, c2 > 0.

At each point of time, net profits are given by the difference between gross
profits and cost functions. The payoffs of the players are the sums of the
discounted net profits:

Ji =

Z ∞

0
e−rt

h
Zi(t)(p1 − Zi(t)− Zj(t))− c2

2
Q2i (t)− c1Qi(t))

i
dt,

where r > 0 is the common discount rate.
The existence of a unique linear and symmetric MPE for this game has

been established under the following sufficient conditions on the model pa-
rameters:

b+
r

2
≤ 1

2
, c2 ≤ 1, c1 ≥ p1

9 (r + b)
.

Reynolds also showed that, at the linear symmetric MPE, the investment
strategies:

Qi(t) =
v∗1 − c1

c2
+

v∗11
c2

Zi(t) +
v∗12
c2

Zj(t) ,
v∗12
c2

< 0 ,

are decreasing functions of the rival capital, and produce long run capacity
above the open-loop steady state (which is itself above the centralized solu-
tion), as one could have expected from Theorems 5.1 and 6.1. The numerical
example in tables 1, 2 and 3 illustrates these results.

Table 1. Parameter values

p0 = 0 p1 = 60 p2 = 0 p11 = −3 p12 = −1 p22 = 0
c1 = 100 c2 = 1 r = 0.1 b = 0 Z1(0) = 10 Z2(0) = 5

Table 2. linear MPE

v∗11 = −1.63 v∗12 = −0.3 v∗1 = 125.22
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Table 3. Steady states and payoffs

MPE Zm = 13.06 Jm
1 = 1702.44 Jm

2 = 1118.57 Jm
1+2 = 2821.02

OLNE Zo = 12.5 Jo
1 = 3320.99 Jo

2 = 2736.89 Jo
1+2 = 6057.88

Cooperation Zc = 10 Jc
1 = 3484.63 Jc

2 = 2869.89 Jc
1+2 = 6354.53

In particular, it can be seen that the different stationary outcomes of the
game, i.e. that of the open-loop Nash equilibrium Zo, of the MPE Zm and
of the cooperative solution Zc, are ranked as follows:

Zc < Zo < Zm .

The cooperative solution in this setting corresponds to the optimal paths
chosen by the cartel and must not be confused with a Pareto outcome:
the investment choice (Qc

1(.),Q
c
2(.)) provides the higher aggregated profits

for the firms at the expense of the demand side of the economy. In this
context of negative externalities it is not surprising to find that the long
run cooperative outcome is lower than the non cooperative ones. And, since
markovian interactions enhance competition, it is not puzzling either that
the long run steady state is higher than the open loop (static Cournot) one.
In fact the markovian industry capacity lies between Cournot and perfect
competition (the same conclusion holds in Driskill and MacCafferty 1989)
and yields a lower capacity price.
Numerically one can also check that the payoffs under the different out-

comes verify :

Jc
i > Jo

i > Jm
i .

In this model, commitment is beneficial for the firms (although it is not
pareto improving).

7.2. Arms race. Van der Ploeg and De Zeeuw (1990) have analyzed the

question of arms accumulation as a differential game between two countries.
This is a micro-founded model where the representative agent’s welfare in
each country depends on the level of security, which is perceived as an in-
creasing function of the domestic stock of weapons but a decreasing function
of the foreign stock. Actually what matters is the discrepancy between the
two countries’ arms stocks. A country’s welfare also depends on the con-
sumption of a private good and leisure. Because of the resource constraint
the higher a country’s investment in arms the higher the security but the
lower the private good consumption and leisure: this is what the authors
called the ”butter versus guns” dilemma. The reduced form of their model
boils down to the following expression for the function P i (Zi, Zj) :

P i (Zi, Zj) = p1 (Zi − Zj)− 1
2
p12 (Zi − Zj)

2 , p1 > 0, p12 > 0 .

In other words the coefficients of the function P i are:

p0 = 0, p1 = −p2 > 0, p11 = −p12 = p22 < 0.

Because the cross product term ZiZj involves a positive factor p12 > 0, the
game is one of markov complementarity (Theorem 5.1).
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The cost to increase the arms stock is:

C (Qi) =
c2
2
Q2i , c2 > 0,

and the differential equations for the evolution of the weapons stocks are
given by (1).
The cooperative outcome leads to a moratorium on investment in weapons,

whereby weapons are driven down over time to zero. Turning to non coop-
erative scenarii, the OLNE presumes that countries cannot condition their
investment in arms on the rival’s weapons stock (because for instance they
cannot observe it) and lead to positive steady states. On the contrary the
MPE presumes that countries can monitor the foreign weapons stock. The
MPE leads to bilateral lower levels of arms and is therefore more efficient;
the authors conclude that a unilateral arms treaty should allow countries to
observe their rival’s weapons stocks. In other words, observability leads to
lower weapon stocks and higher long run welfare for both countries, i.e.

Zc < Zm < Zo,

Jc
i > Jm

i > Jo
i .

Melese and Michel (1991) have considered a slightly more general version of
this game. In their resolution they use the reduced-form of this model with
one single state variable, the difference of the weapons stocks.

7.3. Public infrastructures competition. In Figuières (2002) one finds

a dynamic extension of a public good problem proposed by Widasin (1991).
There are two jurisdictions indexed by i = 1, 2, building their public in-
frastructures Z1(t) and Z2(t) over time. Each jurisdiction is inhabited by a
representative agent. His preferences are reflected by a linear utility function

ui(xi, si) = xi + si ,

defined over each possible pair of a consumption good xi and an index si
of the services that stem from the public infrastructures Z1 and Z2. Put
differently Z1 and Z2 are the inputs in the joined production process of si

si = P i(Zi, Zj)

As a concrete illustration one can imagine two jurisdictions sharing the
same waters (or the same international airspace); the environmental policies
undertaken in one jurisdiction affect the welfare of the other.
Let us focus on quadratic technology P i such as:

P i(Zi, Zj) = p1(Zi +Zj)− (2Zi −Zj)
2, p1 > 0, i = 1, 2, j = 1, 2, i 6= j,

i.e. the parameters are:

p0 = 0, p1 = p2 > 0, p11 = −8, p12 = 4, p22 = −2.
Note that the function P i(., .) is concave with respect to Zi; for some range
of the stocks the index of jurisdiction i is increasing with its own stock of in-
frastructure (P i

1 > 0), and the externalities between jurisdictions’ infrastruc-
tures are positive ( P i

2 > 0). Finally, notice from the payoffs (P12 = 4 > 0)
and Theorem 5.1 that the MPE to follow will be characterized by markov

complementarity between agents, i.e.
∂Qj

∂Zi
> 0.
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At each point of time the jurisdiction i can invest Qi to change her public
stock of infrastructures, so that :

Żi = Qi , Zi(0) = Zi0 .

It is assumed that investment is costly and given by the increasing and
convex function:

C(Qi) =
c2
2
Q2i .

and it is measured in the same terms as the utility of the consumption good
and si.
Each jurisdiction also benefits from an exogenous revenue yi through lump

sum taxes to finance the consumption good expenses and the cost of invest-
ment:

(6) xi +C(Qi) = yi .

The substitution of the budget constraint (6) in the utility function yields:

Wi(Zi , Zj) = yi + P i(Zi , Zj)−C(Qi) , i = 1, 2.

At last, setting yi = 0, i = 1, 2 without loss of generality, one obtains a
differential game where the dynamics are:

Żi = Qi , Zi(0) = Zi0 , i = 1, 2

and the payoffs are:

Ji =

Z ∞

0
e−r t

h
p1 (Zi(t) + Zj(t))− (2Zi(t)− Zj(t))

2 − c2
2
Q2i

i
dt

I shall call γmc this game. It is possible to give an existence result for the
MPE of this game.

Theorem 7.1. The game γmc admits a convergent linear MPE if:p
(cr2 + 24)

·
1

2
cr2 − 1

3

¸
−√cr

µ
1

2
cr2 +

17

3

¶
< 0.

Proof: appendix E.

From the condition given in this theorem, a more tractable sufficient con-
dition for the existence of a convergent MPE is c2r

2 ≤ 2/3. Note that this
result does not preclude the existence of multiple MPE.
Consider the following numerical example.

Table 4. Parameter values

p0 = 0 p1 = 60 p2 = 60 p11 = −8 p12 = 4 p22 = −2
c1 = 0 c2 = 6 r = 0.1 b = 0 Z1(0) = 10 Z2(0) = 0

Table 5. linear MPE

v∗11 = −6.13 v∗12 = 1.84 v∗1 = 103.6
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Table 6. Steady states and payoffs

MPE Zm = 24.01 Jm
1 = 22646.5 Jm

2 = 22595.81 Jm
1+2 = 45242.32

OLNE Zo = 15 Jo
1 = 15885.18 Jo

2 = 15324.63 Jo
1+2 = 31209.81

Cooperation Zc = 120 Jc
1 = 51686.21 Jc

2 = 46910.93 Jc
1+2 = 98597.14

In contexts of positive externalities non cooperative equilibria generally
result in under-investment. From Theorem 6.1 we can be more precise, and
rank the outcomes as follows:

Zo < Zm < Zc .

And in the numerical example it turns out that :

Jo
i < Jm

i < Jc
i .

In the game γmc it appears that markov behaviors induces outcomes that
are nearer to the paretian criterion in the long run. In other words, for this
model commitment is not pareto improving. Rather, if monitoring of the
neighbor’s infrastructures were possible, the local incentives to invest would
reinforce each other.
Note also that under the following alternative properties for the produc-

tion function of the index si

P i
1(Zi, Zj) < 0 , and P i

12(Zi, Zj) < 0 ,

commitment would have been pareto improving.

8. Conclusion

In the context of differential games with two state variables this paper
assesses how markov interactions affect non cooperative (Nash) decisions.
First it is shown how the payoff structure indicates whether the economic

situation at hand is characterized by markov substitutability or markov com-
plementarity. Second, focusing on the steady states and comparing the
MPE with the OLNE, it is proved that if competition is increased in games
with markov substitutability, it is lessened when agents experience markov
complementarity. These simple findings are illustrated by means of several
well-known examples from the literature.
It is sometimes argued that the MPE is a fully dynamic concept, for it is

made of strategies that would remain equilibrium strategies if they were to be
reconsidered in the future, whatever the state of the system. On the contrary
the OLNE does not generally possess this subgame perfection property; it
involves only one decision date, at the beginning of the game, and it is
presented as a somewhat static concept. Adding to this argument, many
authors have exhibited dynamic situations where the OLNE has a stationary
state identical to the Nash equilibrium of the associated static “limit game”.
The associated limit game obtains when key parameters tends to specific
values so that the structural time-dependence is removed. On the contrary
the MPE stationary state never coincides with the static equilibrium. Those
supporting the idea that a static game should be thought of as a dynamic
game in a stationary environment should then be warned that using the
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static Nash equilibrium concept amounts to make an approximation, and the
extent of this approximation depends on the gap between the steady states of
the OLNE and the MPE, which itself depends on whether the dynamic game
is characterized by markov complementarity or markov substitutability.
To conclude I suggest three extensions. A first would be to ascertain that

those results also hold with discrete-time versions of our differential games.
A second would be to check the robustness of the conclusions when the non
cooperative outcomes are Stackelberg equilibria, rather than Nash equilibria.
A last direction for future research would be to explore the importance of
complementarity and substitutability concepts in a class of dynamic games
that goes beyond the linear quadratic specification. This can hardly be done
without the recourse to numeric methods.



18

Appendix

Appendix A. Proof of theorem 4.1

In order to characterize the MPE (Q∗1(Z1, Z2), Q∗2(Z1, Z2)) we will make
use of dynamic programing in continuous time. The value function of agent
i is defined a follows :

V i (Zi(τ), Zj(τ)) =

Z ∞

τ
e−r t

£
P i(Zi(t), Zj(t))−C(Q∗i (Zi(t), Zj(t)))

¤
dt

where the state of the system is governed by (Q∗1(Z1, Z2),Q∗2(Z1, Z2)). The
Hamilton-Jacobi-Bellman (HJB) equations give necessary conditions to char-
acterize the MPE (or feedback Nash equilibrium) :

r V i (Zi, Zj) = max
Qi

©
P i(Zi, Zj)−C(Qi) + V i

1 (Zi, Zj) (Qi − b Zi)

+V i
2 (Zi, Zj) (Q

∗
j − b Zj)

ª
, i = 1, 2 .

The first order condition for the maximization of the r.h.s. of the HJB
equation is :

(7) −c2Q∗i − c1 + V i
1 (Zi, Zj) = 0 ⇔ Q∗i =

1

c2
V i
1 (Zi, Zj)− c1

c2
.

If we report (7) into HJB we obtains the following system with partial deriva-
tives :

r V i = P i(Zi, Zj)+
1

2c2

¡
V i
1

¢2
+
(c1)

2

2 c2
−c1
c2
(V i
1+V

i
2 )−b V i

1 Zi+
1

c2
V i
2 V

j
1−b V i

2 Zj ,

For i = 1, 2. Because of the linear quadratic nature of the problem one can
“guess” quadratic value functions :

V i (Zi, Zj) = v0 + v1 Zi + v2 Zj +
v11
2

Z2i + v12Zi Zj +
v22
2

Z2j ,

for which :

V i
1 = v1 + v11 Zi + v12Zj ,

V i
2 = v2 + v12 Zi + v22Zj .

Equivalently for agent j :

V j
1 = v1 + v11Zj + v12 Zi ,

V j
2 = v2 + v12Zj + v22 Zi .

Reporting those expressions in HJB one obtains :

r v0 + r v1 Zi + rv2Zj + r
v11
2

Z2i + r v12 Zi Zj + r
v22
2

Z2j = p0 + p1Zi + p2Zj

+
p11
2

Z2i + p12ZiZj +
p22
2

Z2j

+
1

2c2
(v1 + v11Zi + v12Zj)

2 +
(c1)

2

2c2
− c1

c2
[v1 + v2 + (v11 + v12)Zi + (v12 + v22)Zj ]

−b(v1Zi + v11Z
2
i + v12ZiZj) +

1

c2
(v2 + v12Zi + v22Zj)(v1 + v11Zj + v12Zi)

−b (v2Zj + v12ZiZj + v22Z
2
j ) .
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Developing the r.h.s. yields a constant term and Zi, Zj, Z
2
i , ZiZj , Z

2
j terms.

Since this equation must be verified for all (Zi, Zj), by identification we
find the so-called Coupled Riccati equations for the coefficients in the value
functions:

r v0 = p0 +
(v1)

2

2c2
+
(c1)

2

2c2
− c1

c2
(v1 + v2) +

v1 v2
c2

,(8)

r v1 = p1 +
v1 v11
c2

− c1
v11 + v12

c2
− bv1 +

v1 v12
c2

+
v12 v2
c2

,(9)

r v2 = p2 +
v1 v12
c2

− c1
v12 + v22

c2
+

v1 v22
c2

+
v11 v2
c2

− bv2 ,(10)

r v11
2

=
p11
2
+
(v11)

2

2c2
− bv11 +

(v12)
2

c2
,(11)

r v12 = p12 +
2 v11 v12

c2
+

v12 v22
c2

− 2bv12 ,(12)

r v22
2

=
p22
2
+
(v12)2

2c2
+

v11 v22
c2

− bv22 ,(13)

that satisfy the coefficients of the value function at the equilibrium. Those
equations correspond to that given in theorem 4.1. From (7) the MPE
strategies are then:

Q∗i =
v∗1 − c∗1

c2
+

v∗11
c2

Zi +
v∗12
c2

Zj .

Plugging these strategies into the differential system (1) one can deduce the
stability conditions:

v∗11 − bc2 < 0 ,(14)

(v∗11 − bc2)
2 − (v∗12)2 > 0 ,(15)

for a convergent equilibrium that, in association with the Riccati equations,
characterize a convergent linear MPE. QED.

Appendix B. Proof of Theorem 5.1

We will make use of the equations in theorem 4.1 and the stability con-
ditions. The last three equations are independent from the others; they
are non linear with respect to v11, v12 and v22. Multiplying by c2 those
equations, after rearrangement :

0 = −r c2 v11
2 + p11c2

2 + (v11)2

2 − bc2v11 + (v12)2 ,
0 = −r c2 v12 + p12 c2 + 2 v11 v12 + v12 v22 − 2bc2v12 ,
0 = −r c2 v22

2 + p22c2

2 + (v12)2

2 + v11 v22 − bc2v22 .

Solving the last equation for v22:

v22 =
p22c2 + (v12)

2

rc2 − 2(v11 − bc2)
.

Notice first that when p12 = 0, from the second equation v∗12 = 0 is a
solution. Then v∗11 solves the quadratic equation

0 = −r c2 v11
2

+
p11c2
2

+
(v11)

2

2
− bc2v11 ,
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and v∗22 follows.
Otherwise when p12 6= 0, making use of the stability conditions and the

fact that p22 ≤ 0,

v22 =
p22 c2 + (v12)

2

rc2 + 2(bc2 − v11)
≤ (v12)

2

rc2 + 2(bc2 − v11)
<
(bc2 − v11)

2

2(bc2 − v11)
=

bc2 − v11
2

.

From this inequality and the second equation

p12c2
v12

= 2(bc2 − v11) + rc2 − v22 >
3

2
(bc2 − v11) + rc2 > 0 .

Therefore p12c2

v12
> 0, meaning that v12 and P i

12 = p12 have the same sign.
QED.

Appendix C. Proof of lemma 1

From the first stability condition of the MPE, one can deduce

v∗11 − c2 (r + b) < v∗11 − c2 b < 0 ,

⇔ [v∗11 − c2 (r + b)]2 > (v∗11 − c2 b)
2 .

From the above inequality and the second stability condition, it follows

[v∗11 − c2 (r + b)]2 > (v∗12)
2 .

⇔ −1 < v∗12
v∗11 − c2 (r + b)

< 1 ,

⇔ −1 < v∗12/c2
v∗11/c2 − (r + b)

< 1 .

QED.

Appendix D. Proof of Theorem 6.1

Let us define the function

ξ (ψ) =
p1 − (r + b)c1 + p2ψ

(r + b)c2b− (p11 + p12)− (p12 + p22)ψ
,

where ψ can take any value over the interval ]−1; 1[ . Note that when ψ = 0
the above expression boils down to the OLNE steady state; when ψ '
1 this expression is arbitrarily close to the efficient steady state; finally

ξ
³

v∗12/c2

(r+b)−v∗11/c2

´
= Zm. Clearly, comparing the OLNE, the MPE and the

centralized steady states amounts to comparing three different values of the

function ξ (ψ) , when ψ = 0, ψ =
v∗12/c2

(r+b)−v∗11/c2
and ψ ' 1.

It is worthwhile noting that this function is monotonous. Indeed its de-
rivative is

ξ0 (ψ) =
p2 [(r+ b)c2b− (p11 + p12)] + [p1 − (r + b)c1] (p12 + p22)

[(r + b)c2b− (p11 + p12)− (p12 + p22)ψ]
2 .

The sign of this derivative depends only on the sign of the numerator, which
is a function of the parameters only. When it is positive the function ξ (ψ)
increases monotonously towards Zc. Since we have ξ (0) = Zo < ξ (1) = Zc,
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it follows that for all ψ ∈ ]0; 1[ one has Zo < Zm < Zc. In addition when
ψ ∈ ]−1; 0[ the following inequality holds: Zm < Zo < Zc.
Using the same logic, the case where the numerator of ξ0 (ψ) is negative

yields Zo > Zm > Zc when ψ ∈ ]0; 1[ , and Zm > Zo > Zc when ψ ∈ ]−1; 0[ .
QED.

Appendix E. A game with markov complementarity. Proof of

Theorem 7.1

According to theorem 4.1 the Riccati equations lead in this example to
the system for v11 and v12 :

(16)

 0 = −c2 r v11 /2− 4 c2 + (v11)2/2 + (v12)2 ,
0 = 8 c2 v11 − 4 c2 r v11 v12 + 4 (v11)2 v12 + (c22 r2 + 2 c2) v12

−(v12)3 − 4 c22 r ,
that satisfy the coefficients of the reaction functions at the equilibrium. This
system, along with the stability conditions :

v∗11 < 0 ,(17)

(v∗11)
2 − (v∗12)2 > 0 ,(18)

for a convergent equilibrium, will permit us to prove the theorem.
The stability condition requires that v∗11 < 0 and (v∗11)2 − (v∗12)2 > 0.

Because here p12 > 0 we also know from Theorem 5.1 that v∗12 > 0. So we
look for solutions such that v∗11 < 0, v∗12 > 0 and |v∗11| > |v∗12|.
The first equation of (16) can be viewed as a quadratic equation for v12.

Its roots are of opposite sign (when not both null), and only the positive
roots is admissible since v∗12 > 0. This first equation thus defines v∗12 as an
explicit function of v∗11 :

(19) v∗12 = φ(v∗11) =
q
−(v∗11)2/2 + c2 r v∗11/2 + 4 c2 .

It is straightforward to check that this function has the following proper-
ties :

φ0 > 0 , φ00 < 0 .
The second equation of (16) implicitly defines v∗11 as a function of v∗12.

Using the expression (19),

(v∗12)
3 = v∗12(v

∗
12)

2 = v∗12
q
−(v∗11)2/2 + c2 r v∗11/2 + 4 c2.

Plugging this expression into the second Riccati equation, after simplifica-
tions and rearrangements one obtains :

(20) v∗11 = Γ(v
∗
12) =

9 (v∗12)3 − (c22 r2 + 34 c2) v∗12 + 4 c22 r
8 c2

Note that :

lim
v12→+∞

Γ(v12) = +∞

Γ(0) =
c2 r

2

One can also check that Γ is convex on R+.
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According to figure G1 the two functions possess an intersection point
in the quadrant v∗11 < 0 and v∗12 > 0 if φ (0) =

√
4c2 < v12 where v12 is

defined as the solution of Γ(v12) = 0. Or equivalently it is necessary that
Γ(
√
4c2) < 0. The necessary and sufficient condition for this last inequality

to hold is

2 (1 + r
√
c2) < c2r

2 .

v12 = φ(v11)

v12

v11

v11 = Γ(v12)

cr
2

Fig. G1. Existence of an intersection point in the relevant quadrant

This is not sufficient however for a convergent MPE, since the stability
conditions imposes that the intersection point in the relevant quadrant is
also such that |v∗11| > |v∗12| (see figures G2a and G2b).
To prove that consider first the point v̂11 such that v̂11 = −φ(v̂11). To

complete the proof it is necessary to show that ṽ11 = Γ(v̂11) < v̂11 (as can
be seen from figure G2a). We need first to calculate v̂11 :

v̂11 = −φ(v̂11)
= −

q
−v̂211/2 + c2 r v̂11/2 + 4 c2 .

⇔ 3

2
v̂211 −

c2r

2
v̂11 − 4c2 = 0 .

This equation has two roots of opposite signs and only the negative one is
relevant, therefore

v̂11 =
c2r

3
−
r

c22r
2

9
+
8c2
3

.

Next the inequality Γ(−v̂11) < v̂11 can be explicitly stated to give

−9v̂311 + (c22 r2 + 34 c2) v̂11 + 4 c22 r
8 c2

− v̂11 < 0 ,
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⇔
−9
µ

c2r
3 −

q
c2

2r
2

9 + 8c2
3

¶3
+ (c22 r

2 + 34 c2)

µ
c2r
3 −

q
c2

2r
2

9 + 8c2
3

¶
+ 4 c22 r

8 c

−c2r

3
+

r
c22r

2

9
+
8c2
3

< 0 ,

which simplifies to

p
(c2r2 + 24)

·
1

2
c2r

2 − 1
3

¸
−√c2r

µ
1

2
c2r

2 +
17

3

¶
< 0 .

The above inequality provides a sufficient condition for a convergent linear
MPE and completes the proof. Two last remarks are worthwhile: i) a suf-
ficient condition for this sufficient condition to hold is c2r

2 ≤ 2/3, ii) there
might exist multiple convergent MPE. QED.

v12 = φ(v11)

v12

v11

v11 = Γ(v12)

cr
2

Fig. G2a. The good case

e
e

e
e

e
e

e
e

e
e

e
ee
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v̂12

v̂11ṽ11

v12 = φ(v11)

v12

v11

v11 = Γ(v12)

cr
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Fig. G2b. The bad case
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