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Amélioration génétique  ???

L’ensemble des techniques utilisées pour 
modifier le potentiel héréditaire des 
animaux.

Objectif : fournir à l’éleveur un animal qui 
réponde à ses souhaits en recherchant une 
adéquation optimale entre le matériel 
génétique et les conditions du milieu.
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Amélioration génétique  ???

Avant :

Méthodes empiriques

Maintenant :

Programmation

Avant  : « Puisque leurs mères, qui sont demi-
sœurs, sont bonne productrices, je garderais 
certains de ces veaux pour en faire des 
reproducteurs.»

Maintenant : « A partir de l’évaluation génétique 
basée sur la résolution des équations du modèle 
mixte, les meilleures valeurs génétiques sont 
estimées pour les veaux 5 et 18. »
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Régression aléatoire  ???

Random Regression Models (RRM) 
(Henderson, 1982 ; Laird et Ware, 1982)

Etude et utilisation des RRM au cours de 
ces 8 dernières années :

7th World Congress on Genetics Applied to 
Livestock Production, 2002, Montpellier :

24 papiers sur RRM
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Contexte économique

Pop. humaine Demande alimentaire 
(animale)

Prod. Animale en tenant compte des 
contraintes (perception sociale, pollution, 
santé humaine)
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Contexte économique

Programmes avec minimisant les coûts et 
optimisant un système de prod. animale 
écologique et durable.

Collecte de l’information : 

données de type longitudinal 

(ex. poids vif; prod. laitière, etc …)
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Contexte économique

Outils statistiques particuliers pour traiter 
ce type de données et estimer la valeur 
génétique

(Valeur génétique : quantification des effets 
moyens des gènes intervenant pour le 
caractère étudié et transmissibles à la 
descendance.)
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Modèle génétique de base

Yijk = mj + ai + eijk

Yijk: kème performance de l’individu i réalisée dans 
les conditions du milieu j
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Modèle génétique de base

Yijk = mj + ai + eijk

mj: somme des effets du milieu identifiés à laquelle   
est soumise la performance (ex. moyenne générale, 
saison) : EFFETS FIXES
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Modèle génétique de base

Yijk = mj + ai + eijk

ai: valeur génétique de l’animal i (écart à la moyenne)

Déterminisme polygénique : nombreux gènes à effets 
faibles ail sur la performance de l’animal i

ai ~ N ( 0 , σσσσ2
a) (loi des grands nombres) ∑=

l
ili

aa

Ex. : Pour deux individus i et m demi-frères, 
on a : Cov(aiam) = σσσσ2

a/4
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Modèle génétique de base

Yijk = mj + ai + eijk

L’ensemble des effets génétiques {ai}i ~NN ( 0 , Aσσσσ2
a)

A : matrice de parenté

Information avant observations = lien de parenté : 

ai est un effet aléatoire du modèle

ai: valeur génétique de l’animal i (écart à la moyenne)
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Modèle génétique de base

Yijk = mj + ai + eijk

eijk: résiduelle. EFFETS ALEATOIRES

eijk ~ N ( 0 , σσσσ2
e) 
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Modèle génétique de base

Yijk = mj + ai + eijk

ai: valeur génétique. EFFETS ALEATOIRES

eijk: résiduelle. EFFETS ALEATOIRES

Yijk: kème performance 

mj: effets du milieu EFFETS FIXES

MODELE MIXTE
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Structure de base d’un RRM

Yit = F + g(t) + r(a,x,kA)i + r(pe,x,kR) + eit

Yit: observation sur animal i à l’instant t

F : ensemble des effets fixes indépendants de t

g(t) : fonction ajustant la trajectoire phénotypique 
de l’individu « moyen » de la population
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Structure de base d’un RRM

Yit = F + g(t) + r(a,x,kA)i + r(pe,x,kR)i + eit

r(a,x,kA) :  fonction de régression aléatoire.

• a : effets génétiques additifs

• x : vecteur des covariables de temps

• kA : ordre de la fonction de régression

r(a,x,kA)i = ai1×xt1+ ai2×xt1+ … + aikA×xtkA  avec : 

• aij : coefficients de régression aléatoire pour les 
effets génétiques additifs
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Structure de base d’un RRM

Yit = F + g(t) + r(a,x,kA)i + r(pe,x,kR) + eit

r(pe,x,kR) :  fonction de régression aléatoire.

• pe : effets d’environnement permanent

• x : vecteur des covariables de temps

• kR : ordre de la fonction de régression
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Structure de base d’un RRM

Yit = F + g(t) + r(a,x,kA)i + r(pe,x,kR) + eit

Objectif des fonctions de régression aléatoire : 

• modéliser les écarts individuels (dû aux effets 
aléatoires) à la trajectoire phénotypique moyenne

• fournir une description du potentiel génétique de 
l’animal sur la période considérée
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Structure de base d’un RRM

Modélisation des écarts individuels :  

utilisation des polynômes orthogonaux de Legendre 

( standardisés à l’intervalle [ - 1 ; + 1] ) comme 
covariables de temps (Kirkpatrick et coll., 1990)

car :

• faciles à calculer

• Réduction des corrélations des paramètres à 
estimer =>  facilite la convergence des procédures 
d’estimation
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Structure de base d’un RRM

Définition d’une famille de polynômes orthogonaux :  
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Structure de base d’un RRM

Polynômes de Legendre :  
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Structure de base d’un RRM

Réécriture du modèle RRM:   
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Yit = F + g(t) + r(a,x,kA)i + r(pe,x,kR) + eit

ααααim :  coefficients de régression aléatoire pour les effets 
génétiques additifs

γγγγim :  coefficients de régression aléatoire pour les effets 
d’environnement permanent

ϕϕϕϕm(t*ij) : mème polynôme de Legendre pour le temps t*ij
standardisé (t*ij ∈∈∈∈ [ -1 ; +1 ])
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Structure de base d’un RRM

Notation Matricielle RRM:   

Y = Xb + Z1a + Z2p + e

a : vecteur des kA coefficients de régression aléatoire pour 
les effets génétiques additifs; Z1 :  matrice d’incidence

Y : vecteur de N observations

b: vecteur des effets fixes; X matrice d’incidence

p : vecteur des kR coefficients de régression aléatoire pour 
les effets d’environnement permanent; Z2 :  matrice 
d’incidence
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Structure de base d’un RRM

A : matrice de parenté

G : matrice de variance-covariance pour les effets 
génétiques additifs

P : matrice de variance-covariance pour les effets 
d’environnement permanent

I : matrice identité

R : matrice de variance- covariance résiduelle

⊗⊗⊗⊗ : produit de Kronecker ou produit tensoriel
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Structure de base d’un RRM

Rappel : ⊗⊗⊗⊗ produit de Kronecker ou produit tensoriel
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Structure de base d’un RRM

Estimation des paramètres b, a et p : 

équations du modèle mixte
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Structure de base d’un RRM

Propriétés statistiques : 

• si G, P et R sont connues alors :

(BLUE)  b de biais sans estimateurmeilleur  : b̂

(BLUP)  pet  a de biais sans sprédiction meilleurs : p̂et  â

Pour estimer G, P et R (méthode REML) : 

• hypothèse de normalité des variables aléatoires

• EBLUE (empirical best linear unbiased estimator)

• EBLUP (empirical best linear unbiased predictor)
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Exemple :
Étude de la variabilité génétique de la 
croissance de la vache de race Créole

(Gourdine, Menendez-Buxadera et Naves, 2002)

Structure des données :

• 227 vaches dont 117 mères

• critère de sélection : PV18

• mesures de la naissance 
jusqu’à 10 ans

Question : la sélection peut-elle se faire plus tôt ?

Aide à la réponse : utilisation des RRM et résolution 
des équations du modèle mixte
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Soit  yij le jème poids vif mesuré sur la vache i à l’âge 
tij

Yij = Effets fixes (Fi + ΣΣΣΣm (ββββm tij
m)m=0,…3)

+ Effets aléatoires (g(tij) + r(tij) + eij)

F : effet du numéro de portée de la mère sur la 
croissance de l’animal

ΣΣΣΣ( ββββm tij
m) : relation âge-poids de la vache « moyenne »

r : fonction de régression aléatoire pour les effets 
d’environnement permanent

g : fonction de régression aléatoire pour les effets 
génétiques additifs

e : bruit de fond
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Estimation de la partie aléatoire : 

écarts individuels à la trajectoire moyenne 

Héritabilité = 

Genetic correlation 
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Conclusion

RRM : méthode standard en analyse génétique 
quantitative (données longitudinales).

Mais : ce n’est pas une fin :

• Système d’évaluation en constante évolution

• Recherches dynamiques (fonction Splines, 
Bayesien estimation, RRM multivariate) 
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