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A STRUCTURAL MODEL FOR THE MATRIX OF GENETIC CORRELATIONS BETWEEN COUNTRIES IN INTERNATIONAL EVALUATIONS

Since 1996, Interbull (http://www.interbull.org) has been routinely calculating international breeding values of dairy bulls from their national proofs. With the steady increase in international exchanges of breeding material, these international evaluations have become a decisive tool in selection schemes. In November 2001, 25 countries were subscribing to the service. The current Interbull procedure includes the de-regression of national estimated breeding values (EBVs) followed by the analysis of these deregressed proofs to estimate genetic correlation between countries and to evaluate each bull in each participating country, using a MACE (Multitrait Across Country Evaluation -Schaeffer, 1994) approach.

, a second order maximisation algorithm, is much faster than EM-REML and leads to asymptotic standard errors of the estimates, but can fail when iterative solutions go out of the parameter space. This work is part of PROTEJE (Production Traits European Joint Evaluation -Canavesi et al., 2002), a European project designed to study potential improvements to the current Interbull methodology.

MATERIAL AND METHODS

Structural model. The main problem with Rekaya's structural model (Rekaya et al., 1999) is the arbitrariness of the similarity measures used. The objective definition of a relevant and flexible management or a genetic similarity measure seems hopeless. The basis of the reparameterisation proposed here is to let the data define the most discriminant measures. To illustrate the approach, consider four countries and three unobservable (sets of) characteristics (x i1 , x i2 , and x i3 ) for each country i that condition genetic correlations between countries. These characteristics can be represented as a point in a 3-dimensional space. Let P i = . The proposed structural model defines each genetic correlation (between countries i and j) as a function of the distance between points (P
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. To ensure that genetic correlations are less or equal to 1, define :

ρ ij = exp {-d ij }
[1] The model being overparameterised (there is an infinite set of 4 points with the same distance between them), one can fix one point at the origin (P 1 = [0 0 0]') , the second one along the first axis (P 2 = [x 21 0 0]') and so on: P 3 = [x 31 x 32 0]', P 4 = [x 41 x 42 x 43 ]'. Let v i be the genetic standard deviation in country i. All the elements of the matrix of genetic (co)variances G are functions of the v i 's and d ij 's (with, obviously d ii = d(P i , P j ) = 0). For all i, j:

g ij = v i v j exp {-d ij } As with the original parameterisation, there are n(n+1)/2 unknowns for a matrix G of dimension n: n genetic variances and n(n-1)/2 genetic coordinates x ij . The point estimates have an appealing intuitive interpretation. If these points are close for two countries, the corresponding genetic correlation is close to 1. If the two points are located at the same place, the correlation is 1, which is now within the parameter space. Although we don't have a formal proof at this stage, it was observed that correlation matrices defined using [1] are always (semi-) positive definite, while negative definite matrices cannot be described in this way. More parsimonious models can be easily derived: if only 2 (respectively 1) unknown characteristics are sufficient to explain differences in genetic correlations, expression [1] can still be applied, with points P i chosen on a plane : P 1 = [0 0]'; P 2 = [x 21 0]'; P 3 = [x 31 x 32 ]'and P 4 = [x 41 x 42 ]' (respectively on a line: P 1 = [0]'; P 2 = [x 21 ]'; P 3 = [x 31 ]'and P 4 = [x 41 ]'). The proper dimension can be assessed using likelihood ratio tests. Reduced rank genetic matrices are obtained imposing constraints on the P i 's. An example is when P i is set equal to P j , for some i,j. A limitation however is that negative correlations cannot be represented. This is not a problem when very similar traits are studied (as for lactation yield) but is more troublesome when correlated traits (yield and persistency for example) will be analysed together. AI-REML. The joint estimation of the genetic variances and the P i 's can be implemented using an AI-REML algorithm. The main difficulty lies on the fact that the G matrix is not a linear function of the parameters to be estimated and the strict calculation of the matrix of second derivative of the log restricted likelihood is extremely complex. Instead, Gilmour et al. (1995) proposed to use a simplified average information matrix, ignoring non-zero terms of the second derivatives of G. This strategy is implemented in the ASREML software [START_REF] Gilmour | ASREML Reference Manual[END_REF] Illustration : simulated data sets. A hypothetical dairy cattle "international" population was created. Data covered a period of 5 generations in four countries. For each generation and each country, milk yield of 2560 cows (total: 51200) was simulated according to the model:
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where y ij is the record of a cow i in herd k of country j; b k is a herd effect (25 herds per country and generation) with b k ~N( 0,1); a ij is the true additive genetic value of cow i in country j with a ij = ½ a sire + ½ a dam + φ ij ; φ ij being the cow's mendelian sampling ; a={a ij }~ N(0, G ⊗ A) and e ijk is the residual with e~(0, I I σ² ⊗ e ). Parents of the next generation were selected after a simulated international evaluation (MACE) at each generation. The male population was structured with, at each generation, 40 young sires with 96 daughters each, 16 proven sires with 400 daughters each and 8 sires of sons. In this illustrative example, connectedness was ensured through the use of each bull in each country. genetic and residual variances were σ² a =0.25 and σ² e =0.75 for all countries. Finally, the correlation matrix was chosen (here) to have a uniform pattern: ρ ij = ρ =0.9 (case A) and 0.99 (case B) for all countries i and j,. REML estimates of all parameters were obtained assuming an animal model and using the AI-REML algorithm (with the ASREML software) either with an "unstructured model" or structural models where the P i 's were in a 1, 2 or 3 dimensional space.

RESULTS AND DISCUSSION

AI-REML converged quickly (6 to 7 iterations). As expected (same number of parameters), the maximum log-likelihood value and the estimated genetic correlations were identical with the unstructured model and the structural model in dimension 3 when the common correlation between countries was 0.9 (tables 1 and 2). However, a more parsimonious model (structural model in dimension 2) gave results that are not statistically different from the unstructured model: a likelihood ratio test would accept the structural model in dimension 2. When the P i 's for all countries i and j, were forced to be on a line, the model was very bad. This is not a surprise here: all correlations between equal, one expects the points to be approximately equidistant, which is difficult on a straight line ! When ρ=0.99, the smallest three eigenvalues of G are equal to 0.01 (instead of 0.1 for ρ=0.9): the correlation matrix is much closer to the border of the parameter space. Then, the unstructured model failed completely: the iterative steps of AI-REML took the correlation matrix out of the parameter space and could not find its way back. In contrast, the structural models converged and the model in dimension 1 appears acceptable (table 2). 

CONCLUSION

The two examples presented here display some of the potential advantages of the structural model proposed : it cancels several problems associated with the estimation of genetic correlations required for international evaluations : estimates on ( or very close to) the border of the parameter space can be obtained. Second order REML algorithms do not fail any more.

Convergence is faster and asymptotic standard errors of estimates are available. More parsimonious models (including those leading to reduced ranked genetic correlation matrices) can be proposed and tested. Similarities between countries are easily visualised. Within the PROTEJE project (Canavesi et al., 2002) and in connection with Interbull, we will now study more deeply this type of structural models on more complex situations. In particular the influence of weak connections between countries must be assessed.

Table 1 . Maximum log-likelihood value

 1 

		ρ = 0.9	ρ = 0.99
	Unstructured Model	-24887.7	Did not converge
	Structural model -dimension 3	-24887.7	-24543.5
	Structural model -dimension 2	-24888.2	-24543.7
	Structural model -dimension 1	-24914.1	-24544.9

Table 2 . Estimates of the coordinates of the P i 's and of genetic correlations

 2 

			Coordinates of		lower triangle of the genetic
	ρ = 0.9 ; Structural model	P 1 0	P 2 0.117 0.057 0.102 P 3 P 4	correlation matrix 0.890
	dimension 3	0	0	0.094 0.042	0.895	0.894
		0	0	0	0.073	0.876	0.918	0.904
	ρ = 0.9 ; Structural model	0	0.109 0.040 0.131	0.896	
	dimension 2	0	0	0.097 0.073	0.901	0.887
						0.861	0.926	0.909
	ρ = 0.99 ; Structural model	0	0.000 -0.008 -0.006	1.000	
	dimension 2	0	0	0.000 0.000	0.992	0.992
						0.994	0.994	0.998
	ρ = 0.99 ; Structural model	0	0.004 -0.007 -0.020	0.996	
	dimension 1					0.993	0.989
						0.980	0.984	0.987
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