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INTRODUCTION 
Since 1996, Interbull (http://www.interbull.org) has been routinely calculating international 
breeding values of dairy bulls from their national proofs. With the steady increase in 
international exchanges of breeding material, these international evaluations have become a 
decisive tool in selection schemes. In November 2001, 25 countries were subscribing to the 
service. The current Interbull procedure includes the de-regression of national estimated 
breeding values (EBVs) followed by the analysis of these deregressed proofs to estimate 
genetic correlation between countries and to evaluate each bull in each participating country, 
using a MACE (Multitrait Across Country Evaluation - Schaeffer, 1994) approach. 
In the Holstein breed, 27 populations were jointly evaluated (Jordani, 2001), requiring the 
knowledge of 27 heritabilities and 351 genetic correlations. These were computed using a 
Restricted Maximum Likelihood approach and an Expectation-Maximisation algorithm (EM-
REML - Sigurdsson et al., 1995). Computational constraints related to REML and EM 
prevents the simultaneous estimation of all genetic correlations. Instead, these were obtained 
combining at most 10 populations at a time and in many cases (127 out of 351), indirect or 
adhoc approximations were used (see the Interbull website). The main reasons for poor 
estimations of genetic correlations were : i) weak genetic links between countries, ii) genetic 
correlations close to the border of the parameter space (they were all between 0.76 and 0.96) 
and iii) extremely slow convergence of the EM algorithm. The problem of imprecise estimates 
of genetic correlations is likely to worsen with new countries joining Interbull. Another 
estimation strategy must be found to maintain confidence and credibility. 
Among other alternatives, Rekaya et al. (1999) proposed a structural (parsimonious) model for 
genetic covariances: in their model, each covariance was described as the sum of an average 
value for all covariances and a multiple regression on measures of genetic, management and 
climate similarities between countries.  
The approach proposed here is another structural model, free of assumptions on the exact 
nature of the characteristics responsible for correlations less than unity. The model should 
allow the estimation of parameters close to (or even on) the border of the parameter space 
(e.g., correlations very close or equal to 1). This is required for the use of more efficient 
estimation algorithms. In particular, it has been found that the AI (Average Information) -
REML algorithm (Johnson and Thomson, 1995, Gilmour et al., 1995), a second order 
maximisation algorithm, is much faster than EM-REML and leads to asymptotic standard 
errors of the estimates, but can fail when iterative solutions go out of the parameter space. 
This work is part of PROTEJE (Production Traits European Joint Evaluation – Canavesi et al., 
2002), a European project designed to study potential improvements to the current Interbull 
methodology. 
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MATERIAL AND METHODS 
Structural model. The main problem with Rekaya’s structural model (Rekaya et al., 1999) is 
the arbitrariness of the similarity measures used. The objective definition of a relevant and 
flexible management or a genetic similarity measure seems hopeless. The basis of the 
reparameterisation proposed here is to let the data define the most discriminant measures. To 
illustrate the approach, consider four countries and three unobservable (sets of) characteristics 
(xi1, xi2, and xi3) for each country i that condition genetic correlations between countries. These 
characteristics can be represented as a point in a 3-dimensional space. Let Pi= . 
The proposed structural model defines each genetic correlation (between countries i and j) as a 
function of the distance between points (P

[ ] ' 3ix2ix1ix

i and Pj). If the euclidian norm is chosen, 

( )∑ −== k
2

jkxikx)jP,iP(dijd . To ensure that genetic correlations are less or equal to 1, 

define : 
 ρij = exp {-dij} [1] 
The model being overparameterised (there is an infinite set of 4 points with the same distance 
between them), one can fix one point at the origin (P1= [0 0 0]’) , the second one along the first 
axis (P2= [x21 0 0]’) and so on: P3= [x31 x32 0]’, P4= [x41 x42 x43]’.  
Let vi be the genetic standard deviation in country i. All the elements of the matrix of genetic 
(co)variances G are functions of the vi‘s and dij‘s (with, obviously dii = d(Pi, Pj) = 0). For all i, 
j: 
        gij= vi vj exp {-dij} 
As with the original parameterisation, there are n(n+1)/2 unknowns for a matrix G of 
dimension n: n genetic variances and n(n-1)/2 genetic coordinates xij. The point estimates have 
an appealing intuitive interpretation. If these points are close for two countries, the 
corresponding genetic correlation is close to 1. If the two points are located at the same place, 
the correlation is 1, which is now within the parameter space.  Although we don’t have a 
formal proof at this stage, it was observed that correlation matrices defined using [1] are 
always (semi-) positive definite, while negative definite matrices cannot be described in this 
way. 
More parsimonious models can be easily derived: if only 2 (respectively 1) unknown 
characteristics are sufficient to explain differences in genetic correlations, expression [1] can 
still be applied, with points Pi chosen on a plane : P1= [0 0]’; P2= [x21 0]’; P3= [x31 x32]’and P4= 
[x41 x42]’ (respectively on a line: P1= [0]’; P2= [x21]’; P3= [x31 ]’and P4= [x41 ]’). The proper 
dimension can be assessed using likelihood ratio tests. Reduced rank genetic matrices are 
obtained imposing constraints on the Pi’s. An example is when Pi is set equal to Pj, for some i,j. 
A limitation however is that negative correlations cannot be represented. This is not a problem 
when very similar traits are studied (as for lactation yield) but is more troublesome when 
correlated traits (yield and persistency for example) will be analysed together. 
AI-REML. The joint estimation of the genetic variances and the Pi’s can be implemented 
using an AI-REML algorithm. The main difficulty lies on the fact that the G matrix is not a 
linear function of the parameters to be estimated and the strict calculation of the matrix of 
second derivative of the log restricted likelihood is extremely complex. Instead, Gilmour et al. 
(1995) proposed to use a simplified average information matrix, ignoring non-zero terms of the 
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second derivatives of G. This strategy is implemented in the ASREML software (Gilmour et 
al., 2000) 
Illustration : simulated data sets. A hypothetical dairy cattle “international” population was 
created. Data covered a period of 5 generations in four countries. For each generation and each 
country, milk yield of 2560 cows (total: 51200) was simulated according to the model: 
  [2] ijkeijakbijky ++=

where yij is the record of a cow i in herd k of country j; bk is a herd effect (25 herds per country 
and generation) with bk~N( 0,1); aij  is the true additive genetic value of cow i in country j with 
aij= ½ asire + ½ adam + φij ; φij being the cow’s mendelian sampling ; a={aij }~ N(0, G ⊗ A) and 
eijk is the residual with e~(0, I I σ²⊗ e). 
 Parents of the next generation were selected after a simulated international evaluation 
(MACE) at each generation. The male population was structured with, at each generation, 40 
young sires with 96 daughters each, 16 proven sires with 400 daughters each and 8 sires of 
sons. In this illustrative example, connectedness was ensured through the use of each bull in 
each country. genetic and residual variances were σ²a =0.25 and σ²e =0.75 for all countries. 
Finally, the correlation matrix was chosen (here) to have a uniform pattern: ρij = ρ =0.9 (case 
A) and 0.99 (case B) for all countries i and j,. REML estimates of all parameters were obtained 
assuming an animal model and using the AI-REML algorithm (with the ASREML software) 
either with an “unstructured model” or structural models where the Pi’s were in a 1, 2 or 3 
dimensional space.  
 
RESULTS AND DISCUSSION 
AI-REML converged quickly (6 to 7 iterations). As expected (same number of parameters), the 
maximum log-likelihood value and the estimated genetic correlations were identical with the 
unstructured model and the structural model in dimension 3 when the common correlation 
between countries was 0.9 (tables 1 and 2). However, a more parsimonious model (structural 
model in dimension 2) gave results that are not statistically different from the unstructured 
model: a likelihood ratio test would accept the structural model in dimension 2. When the Pi’s 
for all countries i and j, were forced to be on a line, the model was very bad. This is not a 
surprise here: all correlations between equal, one expects the points to be approximately 
equidistant, which is difficult on a straight line ! 
When ρ=0.99, the smallest three eigenvalues of G are equal to 0.01 (instead of 0.1 for ρ=0.9): 
the correlation matrix is much closer to the border of the parameter space. Then, the 
unstructured model failed completely: the iterative steps of AI-REML took the correlation 
matrix out of the parameter space and could not find its way back. In contrast, the structural 
models converged and the model in dimension 1 appears acceptable (table 2). 
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Table 1. Maximum log-likelihood value 
 
 ρ = 0.9 ρ = 0.99 

Unstructured Model -24887.7 Did not converge 
Structural model – dimension 3 -24887.7 -24543.5 
Structural model – dimension 2 -24888.2 -24543.7 
Structural model – dimension 1 -24914.1 -24544.9 

 
Table 2. Estimates of the coordinates of the Pi’s and of  genetic correlations 
 

Coordinates of  
P1 P2 P3 P4 

lower triangle of the genetic 
correlation matrix 

0 0.117 0.057 0.102  0.890    
0 0 0.094 0.042  0.895 0.894  

ρ = 0.9   ; Structural model  
dimension 3  

0 0 0 0.073  0.876 0.918 0.904 
0 0.109 0.040 0.131  0.896    
0 0 0.097 0.073  0.901 0.887  

ρ = 0.9   ;  Structural model  
 dimension 2  

     0.861 0.926 0.909 
0 0.000 -0.008 -0.006  1.000   
0 0 0.000 0.000  0.992 0.992  

ρ = 0.99   ;  Structural model  
 dimension 2 

     0.994 0.994 0.998 
0 0.004 -0.007 -0.020  0.996   
     0.993 0.989  

ρ = 0.99   ;  Structural model  
 dimension 1 

     0.980 0.984 0.987 
 
CONCLUSION 
The two examples presented here display some of the potential advantages of the structural 
model proposed : it cancels several problems associated with the estimation of genetic 
correlations required for international evaluations : estimates on ( or very close to) the border 
of the parameter space can be obtained. Second order REML algorithms do not fail any more. 
Convergence is faster and asymptotic standard errors of estimates are available. More 
parsimonious models (including those leading to reduced ranked genetic correlation matrices) 
can be proposed and tested. Similarities between countries are easily visualised. 
Within the PROTEJE project (Canavesi et al., 2002) and in connection with Interbull, we will 
now study more deeply this type of structural models on more complex situations. In particular 
the influence of weak connections between countries must be assessed. 
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