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                    Abstract 

 

Choquet expected utility has been convinced of being inconsistent within a dynamic 

framework by several authors. We explore different possible definitions for conditional 

Choquet integrals and their implications for updating capacities. We confront the definitions 

with dynamic consistency when information arrives along with time through a Choquet 

version of the Net Present Value. We get the intuition that only one definition is dynamically 

consistent and prove it in a decision model where time is discounted according to the agent’s 

preferences. Our result is illustrated by a simplified real investment problem. Possible 

extensions to dynamically consistent valuation of uncertain cash flows is questioned in the 

conclusion.  
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Updating Choquet valuation and discounting information arrivals 

 

Introduction 

 

Choquet capacities and integrals extend probabilities and Lebesgue integrals to the non-

additive case. They have been applied in decision theory since they were re-discovered by 

Schmeidler (1986) and (1989): the first “Choquet Expected Utility” model. They may be used 

to valuate future uncertain payoffs by economic agents who consider a set of probability 

distributions (instead of a unique one). However, in a dynamic decision or valuation problem, 

several difficulties arise. The main one is that some authors have shown that dynamic 

consistency (almost) implies expected utility (Border and Segal (1994)) and the Bayesian 

updating rule (Epstein and Le Breton (1993)). An other difficulty is that we have several 

updating formulas for capacities and no uncontroversial definitions of “conditional Choquet 

integrals”. In this paper we review definitions and updating formulas and then we question 

their dynamic consistency in the setting of an uncertain cash flow valuation problem. We 

show that only one rule fits in a dynamically consistent model with Choquet integrals. 

Furthermore, we show that this result is not in contradiction with the previous non consistency 

results, because the rule violates an other axiom. An example illustrates why and how. 

 

In a dynamic setting, the Bayesian updating rule is not always implied by the (implicit) 

definition of conditional expectations. This comes from the non linearity of Choquet integrals. 

Consider random variables X  and Y on (S, F, µ) where µ is a probability distribution, the 

three equivalent formulations defining conditional expectations for any set C in F: 

Xdµ =
C
∫ E(X /Y)dµ

C
∫  (1), [X − E(X /Y )]dµ =

C
∫ 0 (2) and [E(X /Y) − X]dµ =

C
∫ 0 (3) are not 

equivalent anymore if integrals are Choquet’s. Furthermore, if ν is a Choquet capacity on F, 

0∫ =
C

Xdν , can be interpreted in two different ways: [X .1C ]dν =
S
∫ 0  or 

[1 −ν ([X > x
−∞

0

∫ ]∩ C)]dx + ν ([X > x
0

+∞

∫ ]∩ C)dx = 0  which may differ depending on the 

measurable set C. 

If, or when, these formulas are equivalent, updating is necessarily Bayesian. However, if 

Choquet integrals represent preferences over a set of uncertain outcomes, each of the formulas 

reflects a particular way to value the future. Indeed, conditioning is a re-action in front of 
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information arrivals and should be determined by some time consistency axioms on 

preferences.  

Furthermore, the future is not made of uncertain states only: Time plays a role in the picture 

(at least as a parameter). Time is usually measured by discount factors, so that the valuation of 

a cash flow is obtained by its Net Present Value (NPV from now on). This formula is relevant 

in some cases. For instance, when financial markets define the term structure of interest rates 

representing trades in riskless bonds, rates or discount factors yield an economic measure of 

time. When time is appreciated by an individual (“preferences for present consumption”), 

however, the linear structure of the present Value is obtained under a separability axiom 

(Koopmans (1972)) which is questionable (see, for instance, Gilboa (1989), Shalev (1997), 

De Waegenaere and Wakker (2001) or Chateauneuf and Rebille (2003)). We shall not tackle 

the separability problem in this paper although we think it is at the heart of dynamic 

valuation1. We shall assume that time and uncertainty are subjectively measured by an agent’s 

preferences if they satisfy some axioms and if they establish a hierarchy between these two 

components of the future: First,  uncertainty is valued according to preferences over uncertain 

payoffs which satisfy specific axioms, and then, time is valued by discount factors on certain 

cash flows (cash flows of certainty equivalents). 

 

In the first section of this paper, we investigate the different versions of conditional Choquet 

integrals and we derive the corresponding updating rules for capacities. This section extends 

previous works by Dempster (1967) and Shafer (1976), Gilboa and Schmeidler (1993), Cohen 

et al. (1993), and is mainly based on Denneberg (1994) and on Chateauneuf, Kast and Lapied 

(2001). Results are summarized in a tableau. 

In the second section, we introduce information arrivals along with time and we interpret 

Choquet integrals as valuations of random payoffs within an extension of the Net Present 

Value formula. We get the intuition that only one definition of conditional Choquet integral 

can be consistent with time valuation: Not surprisingly we find the Chateauneuf, Kast and 

Lapied (1991) one (CKL) because it was constructed to satisfy a time consistency condition. 

The CKL updating rule enforces the role of comonotonicity between the information and the 

payoffs vectors. 

                                                 
1 In the case where the economic measure of time is the financial markets’ one (riskless bond prices), additivity 
of the present value is founded on no arbitrage in tight markets (no bid-ask spreads). However, lending and 
borrowing can never be obtained at the same rate in real markets because of transaction costs, therefore 
questioning the additivity assumption in the NPV.  



Updating Choquet valuation and discounting information arrivals   André Lapied, Robert Kast 
 

 4

This result is proved in section 3 where dynamic consistency, as defined by Kreps and Porteus 

(1978) for a decision making process, is adapted to our pure valuation problem. A simple real 

investment valuation problem is given to link valuation and an optimal decision strategy. The 

contradiction between dynamic consistency and non-Bayesian updating rules is questioned: 

We follow Karni and Schmeidler (1991), Machina (1998) and Sarin and Wakker (1998) to 

figure out which one of the set of consistency axioms these authors have put forward our rule 

violates. A counter-example shows that Consequentialism is the one: The role played by 

comonotonicity in CKL formula gives relevance to future payoffs, even though information  

excludes them. 

 

 

 

1. Conditional Choquet integrals and updating rules for capacities  
 

Let S be a finite space representing uncertain states s ∈S and A, B ⊂ S be events. The decision 

maker’s preferences over uncertain payoffs are assumed to be represented by a Choquet 

integral (Chateauneuf (1991), see section 3) and we note it I in this section with ν for the 

corresponding capacity. I(1A /1B) is the individual value given to 1A, i.e. payoff of 1€ if and 

only if event A occurs, conditional on the realisation of event B. Then:  

)/(1)11/1()1/1( )(/ BAdIIBs
B

ABABA B νν σ ≡===⇒∈ ∫ , where σ(B) is the σ-algebra generated by B and, 

)/(1)01/1()1/1( )(/
C

C

BAdIIBs
B

BABABAC νν σ ≡===⇒∈ ∫ . 

In Denneberg (1994) the conditional Choquet expectation was defined by: 

∀A, B, C ⊂ S,      0)]1/1(–1[ =∫ νdI B

C

AA , 

In Chateauneuf, Kast and Lapied (2001), the Choquet expectation was defined by: 

∀A, B, C ⊂ S,  )(/)1/1(1 BB

C

A

C

A dId σνν ∫∫ = . 

Both formulas extend the implicit definition of mathematical (Lebesgue) expectation with 

respect to a probability µ: 

∫∫ =
CC

dYXEXd µµ )/( , 0)]/([∫ =−
C

dYXEX µ  or 0])/([∫ =−
C

dXYXE µ , which are equivalent.  
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However, the equivalence doesn’t hold for non linear integrals. Furthermore, neither 

Denneberg nor Chateauneuf et al. considered the general case with C∈σ(B) but restricted 

their attention to C = S, for the first one, to B and to Bc for the second authors. 

In addition, 0∫ =
C

Xdν  may be interpreted in two different ways for Choquet 

integrals: [X .1C ]dν =
S
∫ 0  or [1 −ν ([X > x

−∞

0

∫ ]∩ C)]dx + ν ([X > x
0

+∞

∫ ]∩ C)dx = 0  which may 

differ depending on the measurable set C. In the following propositions, we look through all 

cases. 

 

Proposition 1.12: If conditional Choquet expectations I(1A /1B)  are defined by:∀A, B ⊂ S,  

(4) )(/)1/1(1 BB

S

A

S

A dId σνν ∫∫ =  , 

then : 

(i) If 1A and 1B  are comonotonic random variables, 

ν (A/B) =
ν(A ∩ B)

ν (B)
 (Bayes updating rule). 

(ii) If 1A and 1B  are antimonotonic (i.e.1A and –1B are comonotonic) random variables, 

ν (A/B) =
ν(A ∪ BC) – ν (BC )

1– ν (BC)
 (Dempster-Schafer updating rule). 

Proof : All proofs of this section are in Appendix 1. 

Note that the same results hold for I(1A /1B = 0) = ν( A/ BC) . 

The general case where 1A and 1B are not comonotonic nor antimonotonic random variables 

cannot be solved by relation (4). Indeed, we would obtain one equation for two unknowns: 

I(1A /1B = 0)  and I(1A /1B =1)  which are not necessarily equal to 0 nor to 1 as in the two 

previous cases and cannot be ranked, in general, to compute the Choquet integral. 

 

Proposition 1. 2: If conditional Choquet expectations I(1A /1B)  are defined by:∀A, B ⊂ S, 

(5) )(/)1/1(1 BB

C

A

C

A dId σνν ∫∫ = , 

then, for C ∈ {B, BC}: 

(B)
B)(A=(A/B) ν

νν ∩ (Bayes updating rule). 

                                                 
2 The same result was obtained in Chateauneuf, Kast, Lapied (2001) under more restrictive assumptions. 
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ν (A/BC ) =
ν(A ∩ BC)

ν (BC )
 (Bayes updating rule). 

 

Proposition 1. 3: If the conditional Choquet Expectations I(1A /1B)  is defined by:∀A, B ⊂ S,  

(6) [1A – I (1A
S
∫ /1B)]dν = 0 , 

then: 

If 1A and 1B  are comonotonic or antimonotonic random variables, 

ν (A/B) =
ν (A ∩ B)

1+ ν (A ∩ B) – ν(A ∪ BC)
 (Full Bayes updating rule). 

 

Notice that the same results hold for I(1A /1B = 0) = ν( A/ BC) , and that the general case 

where 1A and 1B are not comonotonic nor antimonotonic random variables cannot be solved 

by relation (6). 

 

Proposition 1. 4: If conditional Choquet expectations I(1A /1B)  are defined by:∀A, B ⊂ S,  

(7) [1 A – I(1A
C
∫ / 1B )]dν = 0, 

where C ∈{B, BC}, then: 

(i) if X
C
∫ dν = X .1C

S
∫ dν , 

ν (A/B) =
ν (A ∩ B)

1+ ν (A ∩ B) – ν(A ∪ BC)
, (Denneberg (1994)) 

(ii) if X
C
∫ dν = [ν ({X ≥ x}∩ C) –ν(C)]dx + ν({X ≥ x} ∩C)dx

0

+∞

∫
– ∞

0

∫ , 

ν (A/B) =
ν(A ∩ B)

ν (B)
. 

 

Proposition 1. 5: If conditional Choquet expectations I(1A /1B)  are defined by:∀A, B ⊂ S,  

 (8) [I(1A
S
∫ /1B) – 1A]dν = 0 , 

then: 

If 1A and 1B  are comonotonic or antimonotonic random variables, 

ν (A/B) =
1– ν(AC ∪ BC)

1+ ν (AC ∩ B) – ν (AC ∪ BC )
. 
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Proposition 1. 6: If conditional Choquet expectations I(1A /1B)  are defined by:∀A, B ⊂ S,  

 (9) [ I (1A
C
∫ / 1B) –1A ]dν = 0, 

where C ∈{B, BC}, then: 

(i) if νν dXdX
S

C

C
∫∫ = 1. , 

ν (A/B) =
1– ν(AC ∪ BC)

1+ ν (AC ∩ B) – ν (AC ∪ BC )
. 

(ii) if X
C
∫ dν = [ν ({X ≥ x}∩ C) –ν(C)]dx + ν({X ≥ x} ∩C)dx

0

+∞

∫
– ∞

0

∫ , 

ν (A/B) =
ν(B) – ν(AC ∩ B)

ν(B)
.  

 

 We can summarise the previous results in the tableau billow. We use the following notations: 

(I) )(/)1/1(1 BB

C

A

C

A dId σνν ∫∫ =  

(II) [1 A – I(1A
C
∫ / 1B )]dν = 0 

(III) [ I (1A
C
∫ / 1B) –1A ]dν = 0 

(α) νν dXdX
S

C

C
∫∫ = 1.  

(β) X
C
∫ dν = [ν ({X ≥ x}∩ C) –ν(C)]dx + ν({X ≥ x} ∩C)dx

0

+∞

∫
– ∞

0

∫  

Bayes' rule (Bayes): ν (A/B) =
ν(A ∩ B)

ν (B)
 

Dempster-Shafer's rule (D-S): ν (A/B) =
ν(A ∪ BC) – ν (BC )

1– ν (BC)
 

Full Bayesian Updating rule (FUBU):  

ν (A/B) =
ν (A ∩ B)

1+ ν (A ∩ B) – ν(A ∪ BC)
 

FUBU on conjugate capacity3 (FUBU/C): 

                                                 
3 With ν (A) =  1 –  ν  (AC) . 
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ν (A/B) =
1– ν(AC ∪ BC )

1+ ν (AC ∩ B) –ν (AC ∪ BC )
=

ν (A ∩ B)
1 +ν (A ∩ B) –ν (A ∪ BC)

 

D-S on conjugate capacity (D-S/C): 

ν (A/B) =
ν(B) –ν (AC ∩ B)

ν(B)
=

ν (A ∪ BC) – ν (BC)
1– ν (BC )

. 

 (I) (I) (II) (II) (II) (II) (III) (III) (III) (III) 

   (α) (α) (β) (β) (α) (α) (β) (β) 

 C = B, 

BC 

C = S C = B, 

BC 

C = S C = B, 

BC 

C = S C = B, 

BC 

C = S C = B, 

BC 

C = S 

1A and 

1B 

como 

Bayes Bayes FUBU FUBU Bayes FUBU FUBU

/C 

FUBU

/C 

D-S/C FUBU

/C 

1A and 

1B  

antimo 

Bayes D-S FUBU FUBU Bayes FUBU FUBU

/C 

FUBU

/C 

D-S/C FUBU

/C 

Gen 

case 

Bayes  FUBU  Bayes  FUBU

/C 

 D-S/C  

 

 

Obviously, such a tableau is informative but leaves us at loss as to which formula to apply in a 

valuation problem where information is taken into account. Taking information into account 

means that a decision is a process or a strategy where decisions are taken in accordance with 

information arrivals. In the next sections, time is explicitly represented in accordance with an 

information arrivals process. 

 

2. Time discounting and conditioning valuation 

 

We introduce the intuitions of our model and results through the classical setting of the Net 

Present Value (NPV). The extension to uncertainty of the classical NPV formula applied to a 

random payoff XT at time T is: 

NPV( XT) = ρ(T) V(XT).  
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This is easily interpreted: In the usual NPV setting, V(XT) is XT’s value in Euro at time T and 

ρ(T) is a market interest rate. In our individual decision and valuation setting, V is an 

individual’s valuation of an asset, i.e.  V(XT) is XT’s certainty equivalent in Euro at time T and 

ρ(Τ) is the individual’s discount factor representing preferences for present consumption 

(wealth). 

From now on, V will be a Choquet integral and this will be obtained from axioms on the 

agent’s preferences in section 3. 

Then ρ(T) V(XT) is the present value, i.e. in Euro today, of the certainty equivalent of XT. 

Note that, in the usual setting, the NPV formula requires no arbitrage on riskless bonds (the 

price of a marketed portfolio with non negative and at least one strictly positive payoffs is its 

strictly positive formation cost) in a frictionless market (i.e. borrowing and lending are priced 

the same). In an individual’s valuation problem, time separability is obtained under a 

supplementary axiom on time preferences. 

At a time t  < T, let information Yt arrive (Yt is a random variable, e.g. an intermediary payoff 

at time t, or an index value) and let NPVYt(XT) = ρYt(T)VYt(XT)  be the net value of XT at time t 

(i.e. Euro at time t) with ρYt(T)and VYt(XT) be the corresponding conditional discount factor 

and certainty equivalent, given the information. It is usually assumed that, seen from the 

present, ρYt(T) =ρt(T) is not random. In the literature on interest rates, this assumption is 

called “the rational expectation hypothesis”, we shall justify this below. 

With the previous interpretation in mind, a direct extension to NPV of  conditional integral 

formulas given in the first section would be: 

 

NPV(XT) = NPV[NPVYt(XT)]  (1’) , 

 

 NPV[XT - NPVYt(XT)] = 0  (2’) and 

 

NPV[NPVYt(XT) – XT] = 0  (3’). 

 

Proposition 2.1: Definition (1’) of conditional NPV implies: 

 ρ(T) = ρ(t) V[ρYt(T)] . 

 

Proof: 
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Formula (1’) is: ρ(T) V(XT) = ρ(t) V[ρYt(T) VYt(XT)]. If XT = xT > 0  is not random, then 

formula (1’) becomes: ρ(T) xT = ρ(t) V[ρYt(T) xT] which is: ρ(T) = ρ(t) V[ρYt(T)]. 

 

Proposition 2.2: Under the assumption that the conditional expected rate is non random 

(rational expectation hypothesis): 

  ∀ t < T, ∀ Yt,     ρYt(T) =ρt(T) = )(
)(

t
T

ρ
ρ , 

definition (1’) of conditional NPV holds if and only if conditional valuation 

satisfies: 

  ∀ t < T,    V(XT) =  V[VYt(XT)] (CKL5). 

 

Proof: With a non random expected rate of return, formula (1’) becomes: 

ρ(T) V(XT) = ρ(t) ρt(T)  V[VYt(XT)]  which implies : 

V(XT) = V[VYt(XT)]  (CKL).  

 

Remarks: We don’t obtain the same consistency between formulas (2) or (3) in the 

introduction and the NPV ones (2’) and (3’). Indeed, take (2’),  for instance, we face a 

difficulty at first sight: the difference between a payoff in Euro at time T and a payoff at time t 

doesn’t make sense as those two payoffs are not expressed in the same unit. Formula (2’) 

could be reformulated consistently in Euro at time t:  

(2”) NPV[ρYt(T)  XT - NPVYt(XT)] = 0,   i.e.: ρ(t)V[ρYt(T) XT - ρYt(T)VYt(XT)] = 0,  

or : 

      V[ρYt(T) {XT - VYt(XT)}] = 0. 

  

Equivalently, if ρYt(T) is non zero, equation (2), could be rewritten as: 

 (2”’) NPV[XT - 
)(

1
TYtρ

 NPVYt(XT)]= 0, i.e.: 

      ρ(T)V[XT - 
)(

1
TYtρ

 ρYt(T)VYt(XT)]= 0,  

which collapses to formula (2). 

The same applies to formula (3’) and (3).  

                                                 
5 This formula was proposed in Chateauneuf, Kast and Lapied (CKL) (2001) under an axiom called “time 

consistency” based on the intuition of the accountants’ (past) t ime consistency : ρ(T) = ρ(t) ρ t(T) . 
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However, none of these formulas say something about what conditions the conditional 

discount factors should satisfy. Indeed, if XT = xT is a certain payoff as in proposition 2.2, all 

the formulas are tautological: 0 = 0! 

These remarks give the intuition that formulas (2) and (3) cannot integrate information 

arriving along with time. Next section will show why more precisely. 

 

3. Valuing uncertain future payoff flows 

 

In this section, we extend the theory to cash flows valuation using CKL’s definition (1) under 

the rational expectation hypothesis and show that this definition satisfies Dynamic 

Consistency. 

 

Future, has, at least, two components: Times and States (uncertainty).  

In this paper: T={1, …, T} and S={1, …, S} and let us add a present (certain) state where 

valuation is done (or when decisions are taken in accordance with this valuation). 

 

3.1 Preferences and value functions 

 

A decision maker has preferences over uncertain cash flows: X: T×S à R. 

 Preferences are represented by: W: RT×S à R. 

Note that: X = ∑
S

X( . , s) = ∑
T

X(t, . ) where X(t, . ) is the particular random cash flow: 

 X(t, . ) = (0, ...,0, Xt, 0,..., 0) and Xt  is a random variable from S to R (and, similarly, X( . , s) 

is a particular certain cash flow, i.e. a trajectory from T to R). 

 

We assume the usual hierarchy between T and S in the sense that preferences can be 

decomposed according to three steps: 

 

1- Preferences over certain cash flows are represented by : P: RTà R, 

e.g. ∑=
T

tctcP )()()( ρ  according to axioms on preferences (Koopmans (1972)). 

 

2- Preferences over uncertain payoffs are represented by:  V :RS à R, 
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e.g. V(x) =∑
S

∆X(s)ν[X>X(s)] where ∆X(s) =[X(s+1) – X(s)], X(0) = 0 and the 

s’s are ordered according to the permutation on S which makes X non decreasing. ν 

is a capacity on 2S (Chateauneuf (1991)). 

 

3- Preferences over uncertain cash flows which are represented by W, are such 

that: 

W(X) = W[V(X1), …, V(XT)]. 

(Under some assumptions on which we shall come back in the last section) . 

 

Note that:  

- If m is a lottery with payoffs contingent on the states in S, then capacity ν could be 

interpreted as the result of a deformation function ν = φ(m), (Yaari (1987)). 

- More generally, we could consider U(X(t,s)) instead of X(t,s) in equation (1) 

(Schmeidler (1989),  Quiggin (1982) or Wakker (1989) if ρ or ν are known). 

- The model could be extended to non additive W  (see, for instance, Gilboa (1989), 

Shalev (1997), De Waegenaere and Wakker (2001) or Chateauneuf and Rebille 

(2003)).  

-  ρ and/or ν are not necessarily increasing (signed measures). See De Waegenaere and 

Wakker (2001) who give an interesting justification of negative discount factors. Furthermore, 

a signed ν is a way to take transaction costs into account, see De Waegenare, Kast and Lapied 

(2003). 

However, in the following, we shall keep to an additive W with discount factors (assuming 

Time Separability) and Choquet valuation for random variables (additive on comonotonic sets 

of random variables): 

 W (X ) = ρ(t)V (X t )
t=1

T

∑ . 

 

3.2 Information 

 

Information arrives along with time: Tt∈∀ Yt : (S, 2S) à (I, 2I), with I⊂ R and Yt is such 

that:  Yt
-1(2Ι) ⊂ 2S. 

Furthermore, we assume that (Yt
-1(2Ι))t=1…T is a filtration. We assume also that: 
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X∀ ,  t≤∀τ  Xτ
-1(2Ι) ⊂  Yt

-1(2Ι). For instance, information could be given by the 

Xτ’s themselves6. 

  

Dynamical decision making takes future information arrivals into account, i.e. present 

preferences are consistent with future preferences conditional on information that is then 

available. If information arrives at time t, such preferences will yield “conditional 

valuations” of the future uncertain payoffs of X as from time t, i.e the uncertain cash flow 

 Xt+= (Xt+1, … , XT): 

 

WYt(Xt+) = WYt( Xt+1, … , XT) : I à R. 

 

With: W Yt(Xt+) = ∑
+=

T

t 1τ
ρYt(τ) VYt(Xτ)  and  VYt(Xτ) = ∑

S
∆Xτ(s) νYt[X>X(s)] where ν 

is a “conditional capacitiy” … to be defined. 

Time consistency can only be understood in a decision making process, i.e. a strategy 

according to which decisions are adapted to information arrivals. In order to apply Bellman’s 

principle of dynamic programming, Kreps and Porteus (1978) introduced time consistency in 

the decision process with known probability distributions. A decision dt is taken at time t and 

modifies the probability distribution over future outcomes. Hence, the valuation is the 

expected utility (here, payoff expectation) with respect to the distribution determined by dt. 

Let us note VYt(dt, Xτ) the decision criterion, i.e. the expected value of the cash flow Xτ, τ > t, 

if decision dt is taken with information Yt. Then Kreps and Porteus time consistency condition 

for the decision criterion can be written as: 

Tt∈∀ , 'tt<∀ , tY∀ , 'tY∀ , 

∑
+=

T

t 1τ
ρYt(τ) VYt(dt, Xτ) =  

∑
−

+=

1'

1

t

tτ
ρYt(τ) VYt(dt, Xτ) + ρYt(t’) VYt[dt, Xt’ + Maxdt’ ∑

+=

T

t 1'τ
ρYt’(τ) VYt’(dt’, Xτ)]. 

Let assume decision d0 is taken at the initial time in order to simplify the notations, we have 

Kreps and Porteus Time Consistency (TC):   

 

                                                 
6 These assumptions were those of CKL and the interpretation of their condioning rules is founded on 
comonotonicity of information and uncertain payoffs. 
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Tt∈∀ , tY∀  , 

τ=1

T

∑ ρ(τ) V(d0, Xτ) = 
τ=1

t−1

∑ ρ(τ) V(d0, Xτ) + ρ(t) V[d0, Xt + Maxdt
τ= t +1

T

∑ ρYt(τ) VYt(dt, Xτ)]  (KP). 

 

In our pure valuation context, decisions do not appear explicitly. Valuation bears upon the 

cash flow and is meant to represent preferences. In such a context, (KP) can be interpreted the 

following way: 

Let X be a cash flow and X’ an other one which differs from X only from time t on under 

information {Yt∈B}:         

t≤∀τ  ∈∀s S, Xτ(s) = X’τ(s) and t>∀τ ∈∀s {Yt∈Bc},  Xτ(s) = X’τ(s).  If X is optimal, then 

W(X’) ≤ W(X) and (KP) implies that, given information Yt , we have : WYt(Xt
’+) ≤ WYt(Xt

+). 

Reciprocally, if WYt(Xt
’+) ≤ WYt(Xt

+) then: W(X’) ≤ W(X), otherwise X  wouldn’t be optimal.  

This interpretation is the one taken as a definition by Karni and Schmeidler (1991) as well as 

by Sarin and Wakker (1998) for Dynamic Consistency (DC), expressed in terms of valuation 

instead of preferences: 

 

Definition (Dynamic Consistency): 

Tt∈∀ , tY∀ , IB∈∀ ∀ X, X’: T×S à R such that t≤∀τ  ∈∀s S, Xτ(s) = X’τ(s) and 

t>∀τ ∈∀s {Yt∈Bc},  Xτ(s) = X’τ(s): 

 W(X’) ≤ W(X) ⇔  W {Yt ∈ B }(X t
' + )  ≤ W {Yt ∈ B} (X t

+)  (DC). 

Notice that this equivalence makes no reference to the axioms necessary for the preferences’ 

representation, when in (KP) valuation was the discounted expected payoffs (or expected 

utility). In particular, (DC) is consistent with our assumptions about W. 

 

More directly, (KP) Time Consistency formula expressed in terms of cash flow valuation 

becomes: 

Tt∈∀ , tY∀ :∑
=

T

1τ
ρ(τ) V(d0, Xτ) = 

τ=1

t−1

∑ ρ(τ) V(d0, Xτ) + ρ(t) V[d0, Xt + ∑
+=

T

t 1τ
ρYt(τ) VYt(dt, Xτ)]. 

With our decomposition for W in terms of discount payoffs and Choquet integrals, we obtain 

a definition of Time Consistency similar to what was called dynamic consistency in 

Chateauneuf, Kast and Lapied (2001): 

 

 Definition (Time Consistency):  
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Tt∈∀ , tY∀   W(X) = W[X1, … , Xt + WYt(0, … , 0, Xt+1, … , XT), 0, … , 0]  (TC). 

 

Notice that both (TC) and (DC) are derived from (KP) in a pure valuation context and under 

time separability. Furthermore, they obviously imply (KP) if preferences satisfy the 

assumptions made in 3.1. 

However, in (KP), conditional expectations are well defined by probability theory when, in a 

general preference representation model, conditional valuation has yet to be defined. This is 

this paper’s goal, indeed, and is worked on in next sub-section.  

  

3.3 Conditioning uncertain payoff valuation 

In this sub-section, we concentrate on the particular case where X = (0, … , 0, XT) = (0, XT), 

and we assume that preferences satisfy Model Consistency: separability in time and Choquet 

integral over payoffs at each information date. This yields: 

Tt∈∀ , tY∀  WYt(X) = ρYt(T)VYt(XT) = ρYt(T) ∑
S

∆XT(s) νYt(s). 

It is no wonder then, if the intuitions we put forward in section 2 can be easily proved in this 

setting. 

Indeed, Time Consistency:  W(X) = W[ (0, WYt(0 , XT), 0)],  becomes: 

ρ(T) V(XT) =  ρ(t) V[ρYt(Τ) VYt(XΤ)]. 

 

Then, the following proposition and corollaries are straightforward. 

Proposition 3.1: If Tt∈∀ , Xt = x t is non random, then under (TC):  

∀ Yt,   ρ(T) = ρ(t) V[ρYt(T)]. 

Note that proposition 3.3 yields an (implicit) definition of ρYt(T) 

Corollary 3.1.1: If, Tt<∀ , ∀ Yt,  ρYt(T) = ρt(T) is non random, then, under (TC):  

 Tt<∀ , ρ(T) = ρ(t) ρt(T) (accountants’ time consistency). 

Corollary 3.1.2:  If Tt<∀ , ∀ Yt,  ρYt(T) = ρt(T) is non random, then (TC) obtains if and only 

if:   V(XT) = V[VYt(XT)] (CKL). 

 

More generally, assume that: 

Tt<∀ , ∀ Yt,   V[ρYt(Τ) VYt(XΤ)] = V[ρYt(Τ)]V[ VYt(XΤ)],  
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i.e., in the case where ν is a probability, ρYt(Τ) and VYt(XΤ) are “ν-independent” (the 

implications of such an assertion has still to be found in terms of capacities7!). In accordance 

with our assumption on the hierarchy between time and uncertainty, this formula can be 

interpreted as a discrepancy between the treatment of information on time and on uncertainty. 

For instance, an information could contain two “independent variables”, one affecting 

preferences over present consumption (or one relative to the bond market) and one affecting 

preferences over uncertain payoffs (or one about the stock market trends).  

 

Corollary 3.1.3:  If  Tt<∀ , ∀ Yt,  V[ρYt(Τ) VYt(XΤ)] = V[ρYt(Τ)]V[ VYt(XΤ)], then (TC) obtains 

if and only if (CKL) is satisfied. 

 

In accordance with the intuition obtained within the classical NPV model in section 2, the two 

last corollaries disqualify alternative definitions of conditional Choquet integrals when 

information arrivals and discounting are taken into account. The two sided updating rule we 

introduced in section one is then derived from the necessary conditions of our dynamic 

decision model.  

However, many authors have claimed that non expected models are dynamically inconsistent: 

Epstein and Le Breton (1993), Border and Segal (1994), notably. However other authors have 

moderated this claim by analysing the many axioms or particular conditions on models (often 

implicit) that may interfere: Karni and Schmeidler (1991), Jaffray (1994), Machina (1998), 

Sarin and Wakker (1998) among the more prominent ones. Our model satisfies Time 

Consistency and Model Consistency (sequential consistency in Sarin and Wakker (1998), i.e. 

here: both W and WYt are decomposed into a Choquet integral and a linear discount factor). 

We know from Sarin and Wakker, for instance, that if we add Consequentialism, to the 

previous two conditions, only the multipriors model fits. This would require us to introduced 

pessimism (in the sense of Schmeidler (1989)) instead of comonotone additivity. In fact, the 

problem is simpler: our model doesn’t satisfy Consequentialism. 

 

Definition (Consequentialism): Let B be a set in 2S and X, X’, Y, Y’ be random payoffs such 

that ∀ s ∈Bc, X(s) = X’(s) and Y(s) = Y’(s) and ∀ s ∈B X(s) = Y(s) and X’(s) = Y’(s) then: 

  X 
≈
f B X’ ⇔  Y 

≈
f B Y’. 

And we have: 

                                                 
7 Mathematically, this may introduce a condition on capacities similar to mB(A)=m(A)for a probability. 
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Proposition 3.2:  

(CKL) violates Consequentialism. 

 

The proof, in appendix 2, is a counter example in which:   X pB X'  and   Y fB Y' . 

 

The intuition behind this result justifies our updating rule and relies on the dependence 

between the information and the payoff variables. When both variables are comonotonic 

(hence are positively correlated for any additive probability distribution, Chateauneuf et al. 

(1994)) information and payoffs are dependent and then the information (the set B, in section 

1) is enforced, hence Bayes rule applies. Indeed Bayes rule measures the set on which payoffs 

obtain (A) and the information set (B) coincide. When they are antimonotonic, hence 

negatively correlated, then the information is contrary to payoffs, it’s the set BC which is 

enforced and Dempster-Schaffer rule applies: it measures the set on which payoffs obtain 

when the contrary of information is true.  

More precisely, our updating rule depends on the ranking of payoffs and the ranking of 

information values, including payoffs which are not concerned by information. This is the 

reason why Consequentialism may not be satisfied. 

 

3.4. Applying time consistent valuation to a real investment problem 

 

Mining is often referred to as an example of real investment valuation, (e.g., Pindyck and 

Dixit (1994)). Assume in a very simplified setting that production costs are known and 

constant: c. The future ore price is uncertain and we assume we are looking two periods ahead 

(two years, say), with ore prices going up (u) or down (d) each year. Thus, at cost c, the 

extracted ore value in one year time is Pu or Pd and in two years time: Puu, Pud, Pdu or Pdd. If 

the price in period 1 is too low, i.e. if the information is d (for going down) it may not be 

worth producing anymore if, for instance, Pdd – c < 0. This is a “real option” (the option not 

to produce if the ore price is too low) and its value adds to the investment value in a dynamic 

setting. The option value is the difference between a dynamic valuation and static a one. 

Following our notations, let X = (X1,  X2) be the investment, its uncertain payoffs at time T =2 

are assumed to be such that: Puu – c > Pud – c >  Pdu – c > 0 > Pdd – c. The investor’s 

preferences are represented by a Choquet expectation with respect to a capacity ν at time 0 
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(present) and by a Choquet expectation with respect to capacity νY1 where information at time 

1 is “up”: Y1 = 1B with B = {uu, ud} and Bc = {du, dd}. We have: 

V[1B=1](X2) = (Pdd – c)νB(X2 > Pdd) + (Pud – Pdu) νB(X2 > Pdu) + (Puu – Pud) νB(X2 > Pud) 

       = (Pdu – c)νB(A1) + (Pud – Pdu) νB(A2) + (Puu – Pud) νB(A3) 

with A3 ⊂ A2 = B ⊂ A1. 

Hence, from section 1, we have:  

 νB(A1) = νB(A2) = 
ν (B)
ν (B)

= 1 and 

V[1B=1](X2) = Pud – c + (Puu – Pud) )(
)( 3

B
A

ν
ν . 

Similarly, given that the mine will not be exploited in the Pdd case, we have: 

V[1B=0](X2) = (Pdu – c) )(1
)()( 1

B
BA

ν
νν

−
−  + 0 + 0 because the two last capacities are 

ν(B) − ν (B)
1 −ν (B)

= 0. 

It is easy to see that V[1B=1](X2) = V[1B=0](X2) and then: 

V[V1B(X2)] = V[1B=0](X2)(1 - ν(Β)) +  V[1B=1](X2) ν(B) = V(X2). 

 

 This yields the present expected value of the investment, i.e. its cash flow, including the 

option not to exploit the mine. This means that VY1( X2) is, in fact, the value of the optimal 

investment given information Y1. It is also equal to the net present value of the optimal cash 

flow (under the assumption that the discount factors do not depend on information), in 

accordance with Kreps and Porteus definition of dynamic consistency: 

W(X) = W[X1 + WY1(X2)] = ρ(1) {V(X1) + ρ1(2) V[VY1( X2)]} = ρ(1) V(X1) + ρ(2) V(X2), 

and then V[V1B(X2)] = V(X2), as in the previous equation. 

 

If we take another conditioning rule, the last equality is not satisfied anymore, in general. For 

instance, with FUBU rule, as in Denneberg (1994), we have: 

V[1B=1](X2) = Pud – c + (Puu – Pud) }),,({–)(1
)(

3

3

ddduuuA
A

νν
ν

+ , 

V[1B=0](X2) = (Pdu – c) )(})({1
})({

1Adu
du

νν
ν

−+ , 

V[V1B(X2)] = (Pdu – c) )(})({1
)](–1)[(})({

1

1

Adu
ABdu

νν
ννν

−+
+  + (Pud – Pdu) ν(A2) 

+ (Puu – Pud) }),,({–)(1
)()(

3

3

ddduuuA
BA

νν
νν

+ . 

In general, the last term differs from the first side of the dynamic consistency condition: 
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V(X2) = (Pdu – c) ν(A1) + (Pud – Pdu) ν(A2) + (Puu – Pud) ν(A3). 

Hence, Dynamic Consistency is not satisfied is general. 

 

4. Conclusion and possible extensions  

 

Let us recall the Dynamic Consistency condition for cash flows: 

Tt∈∀ , ∀ Yt,   W(X) = W[X1, … , Xt + WYt(0, Xt+1, … , XT), 0], or under the assumption 

of time additivity on W: 

Tt∈∀ , ∀ Yt,   ∑
=

T

1τ
ρ(t) V(Xt) = ∑

−

=

1

1

t

τ
ρ(τ) V(Xτ) + ρ(t)V[Xt + ∑

+=

T

t 1τ

ρYt(τ) VYt(Xτ)]. 

The formula cannot be simplified because V is generally not additive. This would lead to the 

conclusion that, although we have a dynamically consistent valuation, we couldn’t use it in a 

practical way in a valuation problem.  

 

If we want to stay close to practice, however, note from the tableau in section 1 that we only 

know how to calculate the conditional capacities in two cases: the case where information is 

comonotonic with future payoffs and the case where it is antimonotonic. Given that Choquet 

integrals are additive on comonotonic sets of random variables, the dynamically consistent 

valuation of a cash flow can be computed for cash flows which only consist of comonotonic 

or antimonotonic payoffs at each dates, with information arrivals which are comonotononic or 

antimonotonic with the payoffs as in the example in section 3.4. Obviously, such a condition 

seems very restrictive. However, in many practical problems, this restriction is satisfied or 

acceptable as an approximation (e.g as the valuation of a super hedge, see Dhaene et al. 

(2002)a and (2002)b). Indeed, take the case of an investment similar to that of example 3.4, 

and assume uncertainty is described by binomial lattices (or Bernoullian, if arrows don’t meet 

in the lattice). This representation of uncertainty is merely a discrete version of the usual 

assumption made in the real investment models where uncertainty is defined by a Brownian 

motion and binomial lattices are used to approximate non analytical solutions, in practice. In 

such models, payoffs increase or decrease at each period as do information arrivals, so that 

valuation arrivals can be computed at each date by backward induction.  

 

Nevertheless, the limitation of the formula handiness, added to the non realistic separability 

assumption on time preferences, are incentives to enrich our representation model for 
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preferences over future uncertain cash flows. Let us mention two extensions of the 

hierarchical model which have been investigated: 

 

- We mentioned in the introduction that time separability can be replaced by a 

comonotonic additivity axiom which takes into account hedging opportunities for cash 

flows which do not vary in the same sense (Gilboa (1989), Shalev (1997), De 

Waegenaere and Wakker (2001) and Chateauneuf and Rebille (2003)).  

- In a an other type of model, Heal (1998) and Chichilnisky (1996) proposed a criterion 

mixing a discount factor and an absolute value for the far future. This criterion was 

introduced to minimise the vanishing effect of discount factors on future payoffs, an 

effect incompatible with sustainable development (see Chichilnisky and Heal eds. 

(1998) for a an overview of the related literature).  

 

Even if the hierarchy between time and uncertainty  is maintained for valuation, none of the 

models introduce both non additivity with respect to time AND with respect to uncertainty, 

even in the case of uncertain payoffs.  

For uncertain cash flows, the conclusion of our model indicates that no tractable solutions can 

be hoped for if the hierarchy is maintained, even in the case where discount factors are not 

random. Our next goal in this trend of research is to tackle the problem of valuing the future 

as a whole. In the simple setting of our model, this amounts to have preferences over two 

component payoffs. A more ambitious goal is to forget about the decomposition of the future 

into these two components. There may be more components (e.g. time, random time, 

uncertain payoffs and random payoffs) or no components at all in a subjective vision of states 

of the future world (in the sense of Savage’s Big World). 
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Appendix 1 

 

Proof of proposition 1.1: By definition ν (A) = 1A
S
∫ dν . 

(i) Comonotonicity of 1A and 1B implies A ⊂ B or B ⊂ A. For conditioning, consider the 

non trivial case where A ⊂ B. 

s ∈BC ⇒ s ∈ AC ⇒ 1A = 0 , 

s ∈BC ⇒ I(1A /1B) = I(1A / 1B = 0) , 

then: s ∈BC ⇒ I(1A /1B) = I(1A / 1B = 0) = 0 . 
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s ∈B ⇒ I(1A /1B) = I(1A /1B = 1) ≥ 0 = I(1A /1B = 0) . 

It follows that I(1A
S
∫ /1B )dν/ S( B) = I (1A / 1B = 1)ν(B)  and relation (1) implies: 

I(1A /1B =1) =
ν(A)
ν(B)

=
ν(A ∩ B)

ν(B)
. 

(ii) Antimonotonicity of 1A and 1B implies AC ⊂ B or B ⊂ AC. For conditioning, consider 

the non trivial case where AC ⊂ B. 

s ∈BC ⇒ s ∈A ⇒1A = 1, 

s ∈BC ⇒ I(1A /1B) = I(1A / 1B = 0) , 

then: s ∈BC ⇒ I (1A /1B ) = I(1A / 1B = 0) = dνBC

BC
∫ = 1. 

s ∈B ⇒ I(1A /1B) = I(1A /1B = 1) ≤ 1= I(1A /1B = 0) . 

It follows that I(1A
S
∫ /1B )dν/ S( B) = I (1A /1B = 1) + [1 – I(1A /1B =1)ν (BC)  and relation (1) 

implies: 

I(1A /1B =1) =
ν (A) – ν(BC)

1 – ν(BC)
=

ν(A ∪ BC ) – ν(BC )
1– ν(BC )

, QED. 

 

Proof of proposition 1.2: We have two candidates for X
C
∫ dν  : 

(3) X
C
∫ dν = X1C

S
∫ dν , and 

(4) X
C
∫ dν = [ν ({X ≥ x}∩ C) –ν(C)]dx + ν({X ≥ x} ∩C)dx

0

+∞

∫
– ∞

0

∫ . 

First, consider definition (3). 

1A
C
∫ dν = 1A1C dν = 1A∩C dν

S
∫

S
∫ = ν(A ∩ C) , 

I(1A
C
∫ /1B )dν / S(B) = I(1A /1B )1Cdν

S
∫ . 

If C = B: 

s ∈BC ⇒ I(1A /1B)1B = 0 , 

s ∈B ⇒ I(1A /1B)1B = I(1A /1B = 1) ≥ 0 . 

then:  I(1A
B
∫ /1B )dν / S(B) = I(1A /1B = 1)ν(B) , and (2) implies: 

I(1A /1B =1) =
ν(A ∩ B)

ν(B)
. 
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If C = BC : 

s ∈B ⇒ I(1A /1B)1BC = 0 , 

s ∈BC ⇒ I(1A /1B)1BC = I(1A / 1B = 0) ≥ 0 . 

then:  I(1A
BC
∫ /1B )dν / S(B) = I (1A /1B = 0)ν (BC ) , and (2) implies: 

I(1A /1B = 0) =
ν(A ∩ BC )

ν (BC)
. 

Now, consider definition (4). 

1A
C
∫ dν = ν(A ∩ C

0

1

∫ )dx = ν (A ∩C) , 

If I(1A /1B = 0) ≤ I(1A / 1B = 1) , 

I(1A /1B )
C
∫ dν = ν(C)dx + ν (B ∩ C)dx

I(1A /1B =0)

I(1A /1B =1)

∫
0

I(1A /1B =0)

∫  

= I(1A /1B = 0)[ν(C) – ν(B ∩ C)] + I(1A /1B = 1)ν(B ∩ C) . 

With C = B relation (2) yields: I(1A /1B =1) =
ν(A ∩ B)

ν(B)
, 

and with C = BC we have: I(1A /1B = 0) =
ν(A ∩ BC )

ν (BC)
. 

If I(1A /1B =1) ≤ I(1A / 1B = 0) , 

I(1A /1B )
C
∫ dν  = I(1A /1B = 1)[ν(C) –ν(BC ∩ C)] + I(1A /1B = 0)ν(BC ∩ C) . 

Relation (2) yields the same results, QED. 

 

 

Proof of proposition 1.3: First, suppose that 1A and 1B  are comonotonic random variables, 

then A ⊂ B or B ⊂ A. We consider the non trivial case where A ⊂ B. 

s ∈BC ⇒ s ∈ AC ⇒ 1A = 0 , 

s ∈BC ⇒ I(1A /1B) = I(1A / 1B = 0) , 

then: s ∈BC ⇒1 A – I(1A /1B) = 0 . 

s ∈B ⇒ I(1A /1B) = I(1A /1B = 1) , 

 s ∈A ⇒ 1A – I(1A /1B ) = 1– I(1A /1B = 1) ≥ 0 , 

 s ∈AC ∩ B ⇒ 1A – I(1 A /1B) = – I(1A /1B =1) ≤ 0. 

It follows that 
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[1A – I (1A
S
∫ /1B)]dν = – I(1A /1B = 1) + I (1A /1B = 1)ν(A ∪ BC) + [1 – I(1A / 1B = 1)]ν(A) , 

 and relation (5) implies: 

I(1A /1B =1) =
ν (A)

1 +ν (A) – ν(A ∪ BC )
=

ν(A ∩ B)
1+ ν(A ∩ B) – ν(A ∪ BC)

. 

Now, suppose that 1A and 1B  are antimonotonic random variables, then AC ⊂ B or B ⊂ AC. We 

consider the non trivial case where AC ⊂ B. 

s ∈BC ⇒ s ∈A ⇒1A = 1, 

s ∈BC ⇒ I(1A /1B) = I(1A / 1B = 0) , 

then: s ∈BC ⇒1 A – I(1A /1B ) =1 – dνBC

BC
∫ = 0. 

s ∈B ⇒ I(1A /1B) = I(1A /1B = 1) , 

 s ∈AC ⇒ 1A – I(1A / 1B) = –I(1A /1B = 1) ≤ 0 , 

 s ∈A ∩ B ⇒1A – I(1A /1B ) = 1– I(1A /1B = 1) ≥ 0 . 

It follows that 

[1A
S
∫ – I (1A /1B)dν = –I (1A / 1B = 1) + I (1A /1B = 1)ν (A) + [1– I(1A /1B =1)]ν ( A ∩ B) , 

and relation (5) implies: 

I(1A /1B =1) =
ν(A ∩ B)

1 + ν (A ∩ B) – ν(A ∪ BC )
 , QED. 

 

 

Proof of proposition 1.4: (i) The case where C = B is Denneberg (1994) Proposition 2.2. Let 

us consider the case where C = BC.  

s ∈B ⇒ [1A – I(1A /1B)]1BC = 0, 

s ∈A ∩ BC ⇒ [1A – I(1A / 1B)]1BC = 1 – I(1A / 1B = 0) ≥ 0 , 

s ∈AC ∩ BC ⇒ [1A – I(1A /1B )]1BC = – I(1A / 1B = 0) ≤ 0 , 

then:  

[1A – I(1A
BC
∫ / 1B)]dν = –I (1A /1B = 0) + I (1A / 1B = 0)ν (A ∪ B) + [1 – I (1A /1B = 0)]ν(A ∩ BC) , 

and (6) implies: 

I(1A /1B = 0) =
ν(A ∩ BC )

1 + ν (A ∩ BC) – ν(A ∪ B)
. 

(ii) We have: 
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s ∈A ∩ B ⇒1A – I(1A /1B ) = 1– I(1A /1B = 1) ≥ 0 , 

s ∈A ∩ BC ⇒ 1A – I(1 A /1B) = 1 – I(1A / 1B = 0) ≥ 0 , 

s ∈AC ∩ B ⇒ 1A – I(1 A /1B) = – I(1A /1B =1) ≤ 0, 

s ∈AC ∩ BC ⇒1A – I(1A / 1B) = – I(1A / 1B = 0) ≤ 0 . 

If I(1A /1B = 0) ≤ I(1A / 1B = 1) , 

[1 A – I(1A / 1B )
C
∫ ]dν = {ν[(A ∪ BC) ∩ C] – ν(C)}dx + [ν( A ∩ C) –ν (C)]dx

–I(1A /1B =0)

0

∫
–I(1A /1B =1)

– I(1A / 1B =0)

∫  

+ ν( A ∩ C)dx + ν(A ∩ BC ∩C)dx
1– I(1A / 1B =1)

1– I(1A /1B=0)

∫
0

1– I(1A /1B =1)

∫ . 

With C = B relation (6) gives: I(1A /1B =1) =
ν(A ∩ B)

ν(B)
, 

and with C = BC, we have: I(1A /1B = 0) =
ν(A ∩ BC )

ν (BC)
. 

If I(1A /1B =1) ≤ I(1A / 1B = 0) , 

[1 A – I(1A / 1B )
C
∫ ]dν = {ν [(A ∪ B) ∩ C] –ν(C)}dx + [ν(A ∩ C) – ν(C)]dx

– I(1A / 1B =1)

0

∫
– I(1A / 1B =0)

–I(1A /1B =1)

∫  

+ ν (A ∩ C)dx + ν (A ∩ B ∩C)dx
1–I (1A /1B =0)

1– I(1A /1B =1)

∫
0

1– I(1A /1B =0)

∫ . 

Relation (6) yields the same results, QED. 
 

 

Proof of proposition 1.5: With the same method as in the proof of proposition 3, we have: 

- when 1A and 1B  are comonotonic random variables (A ⊂ B), 

s ∈BC ⇒ I(1A /1B) –1A = 0 , 

s ∈A ∩ B ⇒ I(1A /1B ) –1A = I(1A /1B = 1) – 1≤ 0 , 

s ∈AC ∩ B ⇒ I(1A /1B) – 1A = I(1A /1B = 1) ≥ 0 , 

then: 

[I(1A
S
∫ /1B) – 1A]dν = I(1 A /1B = 1) – 1 + [1 – I (1A /1B = 1)]ν (AC ) + I(1A /1B = 1)ν(AC ∩ B) , 

 and relation (7) implies: 

I(1A /1B =1) =
1– ν(AC )

1 +ν (AC ∩ B) – ν(AC )
=

1 – ν(AC ∪ BC)
1+ ν(AC ∩ B) –ν (AC ∪ BC)

, 

- when 1A and 1B  are anticomonotonic random variables (AC ⊂ B), 
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s ∈BC ⇒ I(1A /1B) –1A = 0 , 

s ∈AC ∩ B ⇒ I(1A /1B) – 1A = I(1A /1B = 1) ≥ 0 , 

s ∈A ∩ B ⇒ I(1A /1B ) –1A = I(1A /1B = 1) – 1≤ 0 , 

then: 

[
S
∫ I (1A /1B ) – 1A]dν = I(1A /1B = 1) – 1+ [1 – I (1A /1B =1)]ν(AC ∪ BC ) + I(1A /1B =1)ν (AC) , 

and relation (7) implies: 

I(1A /1B =1) =
1– ν(AC )

1 +ν (AC ∩ B) – ν(AC )
, QED. 

Proof of proposition 1.6: (i) - when C = B : 

s ∈BC ⇒ [I(1A /1B) – 1A]1B = 0 , 

s ∈A ∩ B ⇒ [I(1A /1B) – 1A]1B = I(1A /1B = 1) – 1≤ 0 , 

s ∈AC ∩ B ⇒ [I(1A /1B) –1A]1B = I(1A /1B = 1) ≥ 0 , 

then:   

[ I(1A
B
∫ /1B ) – 1A ]dν = I (1A /1B = 1) – 1 + [1 – I(1A /1B = 1)]ν(AC ∪ BC) + I (1A / 1B = 1)ν (AC ∩ B)

and (8) implies: 

I(1A /1B =1) =
1 –ν (AC ∪ BC)

1 + ν (AC ∩ B) – ν(AC ∪ BC )
. 

- when C = BC: 

s ∈B ⇒ [I(1A /1B )– 1A]1BC = 0, 

s ∈A ∩ BC ⇒ [I(1A /1B) –1A]1BC = I(1A /1B = 0) – 1≤ 0 , 

s ∈AC ∩ BC ⇒ [I(1A /1B) – 1A]1BC = I(1A / 1B = 0) ≥ 0 , 

then: 

[ I (1A
BC
∫ / 1B) – 1A ]dν = I (1A / 1B = 0) – 1 +[1 – I(1A /1B = 0)]ν(AC ∪ B) + I(1A /1B = 0 )ν(AC ∩ BC)

and (8) implies: 

I(1A /1B = 0) =
1– ν(AC ∪ B )

1 + ν (AC ∩ BC ) – ν(A C ∪B )
. 

(ii) We have: 

s ∈A ∩ B ⇒ I(1A /1B ) –1A = I(1A /1B = 1) – 1≤ 0 , 

s ∈A ∩ BC ⇒ I(1A /1B) – 1A = I(1A /1B = 0) – 1≤ 0 , 

s ∈AC ∩ B ⇒ I(1A /1B) – 1A = I(1A /1B = 1) ≥ 0 , 
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s ∈AC ∩ BC ⇒ I(1A / 1B) –1 A = I(1A / 1B = 0) ≥ 0 . 

- If I(1A /1B = 0) ≤ I(1A / 1B = 1) , 

[ I (1A / 1B)
C
∫ –1A ]dν = {ν[(AC ∪ B ) ∩C] – ν (C)}dx + [ν (AC ∩ C) –ν (C)]dx

I (1A /1B =1)–1

0

∫
I(1A /1B =0)–1

I (1A /1B=1)–1

∫  

+ ν (AC ∩ C)dx + ν(AC ∩ B ∩C)dx
I(1A / 1B =0)

I(1A /1B =1)

∫
0

I(1A /1B =0)

∫ . 

With C = B relation (8) gives: I(1A /1B =1) =
ν (B) –ν (AC ∩ B)

ν(B)
, 

and with C = BC, we have: I(1A /1B = 0) =
ν(BC) – ν (AC ∩ BC)

ν (BC)
. 

- If I(1A /1B =1) ≤ I(1A / 1B = 0) , 

[ I (1A / 1B)
C
∫ –1A ]dν = {ν [(AC ∪ BC) ∩ C] –ν (C)}dx + [ν (AC ∩ C) –ν (C)]dx

I(1A /1B =0)–1

0

∫
I (1A /1B=1)–1

I(1A /1B =0)–1

∫

 

+ ν(AC ∩ C)dx + ν (AC ∩ BC ∩C)dx
I(1A /1B=1)

I (1A /1B =0)

∫
0

I(1A /1B =1)

∫ . 

Relation (8) yields the same results, QED. 
 
 
Appendix 2 

A counter-example: CKL formula doesn’t satisfy Consequentialism (Karni and 

Schmeidler (1991)  

 

Let us consider S = {s1, s2, s3, s4} and four risks X, X’, Y, Y’ with payoffs: 

x({s1}) = 1, x({s2}) = 2, x({s3}) = 7.5, x({s4}) = 8 

x’({s1}) = 1, x’({s2}) = 2, x’({s3}) = 3, x’({s4}) = 13.5 

y({s1}) = 15, y({s2}) = 14, y({s3}) = 7.5, y({s4}) = 8 

y’({s1}) = 15, y’({s2}) = 14, y’({s3}) = 3, y’({s4}) = 13.5 

After event B = {s3, s4} has been realised, the value of these risks are respectively: 

VB(X) = 1 + ν({s2, s3, s4}/B) + 5.5 ν({s3, s4}/B) + 0.5 ν({s4}/B) 

VB(X’) = 1 + ν({s2, s3, s4}/B) + ν({s3, s4}/B) + 10.5 ν({s4}/B) 

VB(Y) = 7.5 + 0.5 ν({s1, s2, s4}/B) + 6 ν({s1, s2}/B) + ν({s1}/B) 

VB(Y’) = 3 + 10.5 ν({s1, s2, s4}/B) + 0.5 ν({s1, s2}/B) + ν({s1}/B) 

From Proposition 1.1: 
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- Because B ⊂ {s2, s3, s4}, B = {s3, s4}, {s4} ⊂ B, the characteristic functions of these three sets 

are comonotonic with the characteristic function of B. Then, their conditional capacities are 

given by Bayes updating rule: ν({s2, s3, s4}/B) = ν({s3, s4}/B) = 1, ν ({s4}/ B) =
ν({s4})
ν(B)

. 

- Because {s1} ⊂ BC, BC = {s1, s2}, BC ⊂ {s1, s2, s4}, the characteristic functions of these three 

sets are antimonotonic with the characteristic function of B. Then, their conditional capacities 

are given by Dempster-Schafer updating rule: ν({s1}/B) = ν({s1, s2}/B) = 0, 

ν ({s1, s2,s4} / B) =
ν({s1,s2, s4}– ν(BC)

1 –ν (BC)
. 

Therefore, we have: 

VB(X) = 7.5 + 0.5 
ν ({s4})
ν (B)

, VB(X’) = 3 + 10.5 
ν ({s4})
ν (B)

 

VB(Y) = 7.5 + 0.5 
ν ({s1,s2, s4} – ν(BC )

1 –ν (BC )
, VB(Y’) = 3 + 10.5 

ν ({s1,s2, s4} – ν(BC )
1 –ν (BC )

 

Let ν be a capacity such that: 

ν({s4}) = 0.3, ν({s3, s4}) = 0.6, ν({s1, s2}) = 0.5, ν({s1, s2, s4}) = 0.7. 

We obtain: VB(X) = 7.75 < VB(X’) = 8.25 and VB(Y) = 7.7 > VB(Y’) = 7.2, 

which is equivalent to:   X pB X'  and   Y fB Y' : A contradiction to Consequentialism. 

 

  
 


