

<u>Fig. 1 : Représentation du couvert par les modèles surfaciques.</u> (source : *Meloni, 1999*).

Fig. 2 : Représentations du couvert par les modèles volumiques discrets.

<u>Fig. 3 : Représentation du couvert par les modèles volumiques géométriques.</u> (source : *Stadt et Lieffers, 2000*).

Code	Description		
Certains	paramètres sont mesurés pour chaque arbre :		
	Numéro de l'arbre (à des fins de référencement)		
	Numéro de l'espèce		
(X,Y)	Coordonnées (X,Y) de l'axe central de l'arbre sur la placette		
Ht	Hauteur totale		
Hb	Hauteur de base du houppier		
D1,30	Diamètre à 1,30 m		
Ry	4 à 8 projections de houppiers et l'azimut des directions correspondantes. Tous les arbres doivent avoir le même nombre de projections.		
D'autres	sont constants pour une espèce donnée :		
	Acronyme de l'espèce		
CfS	Coefficient de forme de la partie supérieure du houppier		
CfI	Coefficient de forme de la partie inférieure du houppier		
Hm	Hauteur de plus grande largeur du houppier (exprimée en pourcentage de la distance verticale entre la base du houppier et son sommet)		
LAD	LAD		
StS et StI	Il est possible de répartir les feuilles uniquement dans une couche périphérique du houppier. Cela fait intervenir deux autres paramètres (un pour la partie inférieure, l'autre pour la partie supérieure) définissant l'épaisseur relative de cette couche périphérique, exprimée en pourcentage de la longueur verticale reliant base et sommet du houppier.		
D'autres	définissent la placette :		
	Dimensions selon les axes X et Y		
Cel	Taille de la cellule élémentaire de la représentation discrète		
AzPlac	Azimut de l'axe X		
	Pente de la placette		
	Azimut de la plus grande pente		
	Latitude de la placette		
Un certai	n nombre d'options sont disponibles :		
	Part relative des rayonnements diffus et direct dans le rayonnement total		
	Paramètre définissant la distribution de luminosité du ciel		
	Période de calcul de l'éclairement relatif, définie par les numéros des jours juliens de début et de fin		
Res	Résolution angulaire (1, 3, 5, 9 ou 15 degrés)		
	Réplication ou non de la placette sur chaque coté pour limiter les effets de bords		
	Correction cosinus ou non. On fait cette correction dans le cas où l'on veut comparer les valeurs calculée à des mesures directes (du fait que ces mesures se font sur une surface horizontale, alors que le modèle calcule la valeur en un point).		

Table 1 : Liste des paramètres du modèle tRayci.

Fig. 4 : Représentation d'un arbre dans tRayci..

Fig. 5 : Courbure obtenue en fonction du coefficient de forme. (source : *Koop*, 1989).

Fig. 6 : Représentation géométrique et représentation discrète.

Fig. 7 : Carte du peuplement de Hêtres.

Fig. 8 : Carte du peuplement de Bouleaux.

Fig. 9 : Illustration du sous-seuillage (à gauche) et du sur-seuillage (à droite), à partir d'un même extrait d'une photographies non seuillée, au centre.

<u>Fig. 10 : Comparaison entre photographie hémisphérique réelle (à gauche) et simulée (à droite) dans le peuplement de Hêtres.</u>

<u>Fig. 11 : Comparaison entre photographie hémisphérique réelle (à gauche) et</u> <u>simulée (à droite) dans le peuplement de Bouleaux.</u>

<u>Fig. 12 : Estimation du LAD, pour les Hêtres. P0 = fraction de trouée et</u> <u>L = longueur de houppier traversée. Droite de régression en noir.</u>

Fig. 13 : Estimation du LAD, pour les Bouleaux. P0 = fraction de trouée et L = longueur de houppier traversée. Droite de régression en noir.

Fig. 14 : Gestion des bords.

Paramètre modifié	Nom de la simulation	Description		
Rayons de houppier				
Ry	Ry4	Un houppier est représenté par 4 rayons au lieu de 8		
	Ry1	8 rayons identiques par arbre = la moyenne des rayons de l'arbre		
	RyE	8 rayons identiques pour tous les arbres = la moyenne des rayons de l'espèce		
	Ry5	Chaque rayon +- 5%		
	Ry10	Chaque rayon +- 10%		
	RyAl	Allométrie Rayon moyen = f(D0)		
Hauteur totale				
Ht	NON SIMULE	Une valeur par espèce = moyenne des Ht des arbres		
	NON SIMULE	Chaque hauteur +- 5%		
	NON SIMULE	Chaque hauteur +- 10%		
	NON SIMULE	Allométrie $Ht = f(D0)$		
Hauteur de base du houppier				
Hb	HbE	Une valeur par espèce = moyenne des Hb des arbres		
	Hb5	Chaque hauteur +- 5%		
	Hb10	Chaque hauteur +- 10%		
	HbAl	Allométrie Hb = f(D0)		
Hauteur de largeur maximale de houppier				
Hm	HmE	Une valeur par espèce = moyenne des Hm des arbres		
	Hm5	Chaque hauteur +- 5%		
	Hm10	Chaque hauteur +- 10%		
	HmAl	Allométrie Hm = f(D0)		
Positionnement des arbres (X,Y)				
(X,Y)	NON SIMULE	Chaque arbre est à 1 m de sa place		
	NON SIMULE	Chaque arbre est à 5 m de sa place		
Diamètre à 1,30 m				
D1,30	NON SIMULE	Une valeur par espèce = moyenne des D1,30 des arbres		
	NON SIMULE	Tous les diamètres $= 0$		

Table 2 : Plan d'expérience prévu et simulations non réalisées (en grisé).

Paramètre modifié	Nom de la simulation	Description			
Densité de su	Densité de surface foliaire				
LAD	LAD1	Valeur estimée – 50 %			
	LAD2	Valeur estimée – 30 %			
	LAD3	Valeur estimée – 10 %			
	LAD4	Valeur estimée + 10 %			
	LAD5	Valeur estimée +30 %			
	LAD6	Valeur estimée + 50 %			
	LAD7	Valeur estimée + 100 %			
	LAD8	Valeur estimée + 200 %			
Coefficients	de forme				
CfS et CfI	si1	Coef. Sup = 1 et Coef. Inf = 1			
	si10	Coef. Sup = 10 et Coef. inf = 10			
	s2i1	Coef. $Sup = 2$ et Coef. inf = 1			
Répartition des feuilles (shell thickness)					
StS et StI	NON SIMULE	Sup = 10 % et inf = 10 %			
	NON SIMULE	Sup = 20 % et inf = 20 %			
	NON SIMULE	Sup = 50 % et inf = 50 %			
Présence de l	bords réalistes				
	Bd1	Sans les bords lointains			
	Bd2	Sans aucun bords			
Orientation de la placette					
AzPlac	NON SIMULE	Orientation + 90°			
	NON SIMULE	Orientation + 180°			
	NON SIMULE	Orientation + 270°			
Taille des cellules					
Cel	cel1	Taille de cellule de 1 m * 1 m			
	NON SIMULE	Taille de cellule de 5 m * 5 m			
Résolution angulaire					
Res	re3	Résolution de 3 degrés			
	re5	Résolution de 5 degrés			
	re9	Résolution de 9 degrés			
	re15	Résolution de 15 degrés			

Table 2 (suite) : Plan d'expérience prévu et simulations non réalisées (en grisé).

Fig. 16 : Comparaison des estimations pour l'éclairement total, pour les Hêtres.

<u>Fig. 17 : Comparaison des estimations</u> pour l'éclairement direct, pour les Hêtres.

Fig. 19 : Eclairement relatif selon les photographies hémisphériques et selon le modèle en fonction de la position sur les transects, pour les Bouleaux..

Eclairement relatif total, BOULEAUX

40%

30%

Fig. 20 : Comparaison des estimations de l'éclairement total, pour les Bouleaux.

Fig. 22 : Comparaison des estimations de l'éclairement diffus, pour les Bouleaux.

Fig. 23 : Relation entre écart sur l'éclairement relatif total et l'ordre dans le classement des photographies réalisé pour les Bouleaux. Abscisse exprimée en numéro d'ordre.

Fig. 24 : Simulation Ry4 : un houppier est représenté par 4 rayons.

Fig. 25 : Simulation Ry1 : un houppier est représenté par 8 rayons tous égaux à la moyenne des rayons de l'arbre.

Fig. 26 : Simulation Ry5 : plus ou moins 5 % sur chaque rayon.

Fig. 27 : Simulation Hb5 : plus ou moins 5 % sur chaque hauteur de base de houppier.

Fig. 28 : Simulation Hm5 : plus ou moins 5 % sur chaque hauteur de plus grande largeur du houppier.

Fig. 29 : Simulation Ry10 : plus ou moins 10 % sur chaque rayon.

Fig. 30 : Simulation Hb10 : plus ou moins 10 % sur chaque hauteur de base de houppier.

Fig. 31 : Simulation Hm10 : plus ou moins 10 % sur chaque hauteur de plus grande largeur du houppier.

Fig. 32 : Simulation RyE : un rayon d'un arbre est égal à la moyenne de ce rayon pour l'espèce.

Fig. 33 : Simulation HbE : chaque hauteur relative de base de houppier est égale à la moyenne de l'espèce.

Fig. 34 : Simulation HmE : chaque hauteur relative de plus grande largeur de houppier est égale à la moyenne de l'espèce.

Fig. 36 : Simulation HbAl : les hauteurs relatives de base de houppiers sont calculées par allométrie en fonction du diamètre à 1,30 m.

Fig. 37 : Simulation HmAl : les hauteurs relatives de plus grande largeur de houppier sont calculées par allométrie en fonction du diamètre à 1,30 m.

Fig. 38 : Simulations LAD1 à LAD8, respectivement –50, -30, -10, 10, 30, 50, 100, 200 % de la valeur estimée. HetLAD 4, 6, 7 non représentées (lisibilité).

Fig. 39 : Simulations SI1 (coef. de forme sup. et inf. égaux à 1, +) et SI10 (coef. de forme sup. et inf. égaux à 1, +).

Fig. 40 : Simulation S2I1 : coefficient de forme supérieur égal à 2 et inférieur égal à 1.

Fig. 41 : Simulations Bd1 (sans bords lointains, +) et Bd2 (sans aucun bords). Bd2 : -×- transect 1, -×- transect 2, d'extrémités sombre ●, et claire O.

Fig. 42 : Simulation Cel1 : taille des cellules de la représentation discrète égale à 1 m * 1 m (au lieu de 25 cm * 25 cm).

Fig. 43 : Simulation Re3 : résolution angulaire de 3 degrés.

Fig. 44 : Simulation Re5 : résolution angulaire de 5 degrés.

Fig. 45 : Simulation Re9 : résolution angulaire de 9 degrés.

Fig. 46 : Simulation Re15 : résolution angulaire de 15 degrés.