

Physiological and transcriptional responses of Populus euphratica to an increasing drought and a recovery

Marie-Béatrice Bogeat-Triboulot, Mikael Brosché, Didier Le Thiec, David Hukin, Andrea Polle, Jaakko Kangasjärvi, Erwin Dreyer

► To cite this version:

Marie-Béatrice Bogeat-Triboulot, Mikael Brosché, Didier Le Thiec, David Hukin, Andrea Polle, et al.. Physiological and transcriptional responses of Populus euphratica to an increasing drought and a recovery. 12. New Phytologist Symposium: Functional Genemics of environmental adaptation in Populus, Oct 2004, Gatlingburg, United States. 1 p., 2004. hal-02831576

HAL Id: hal-02831576 https://hal.inrae.fr/hal-02831576

Submitted on 7 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Material and methods 100 H1: 10 % soil water content root P. eupratica from Ein avdat park (Israël) was in H2:7.5 % SWC 80 vitro multiplied and ex vitro acclimated. Plants were H3:5% SWC H4:4% SWC 60

grown in a greenhouse and submitted to an increasing drought. While physiology was continuously monitored, leaves and roots were harvested at 4 drought intensities (H1, H2, H3, H4) and 1 recovery point (H5) for biochemical and transcriptome analysis.

17 different normalized and subtracted cDNA libraries were prepared from control and stress exposed trees, and from trees growing in the Ein Avdat valley in Israel. In total 13838 ESTs were obtained from the libraries, and a uni-gene set of 7706 ESTs was reamplified and spotted onto polylysine slides.

The P. euphratica DNA microarrays have been used to determine gene expression profiles in droughted root and leaf samples collected above. All sequences and annotations are available in the Sputnik database at http://sputnik.btk.fi/.

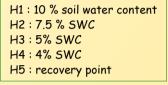
Results and discussion

→ few genes regulated: 55 in leaves (70% up, 30% down) 45 in roots (40% up, 60% down)

→ changes in transcript levels earlier in roots than in leaves.

→ good correspondence between physiology and transcript levels for root growth, photosynthesis, ...

Gene expression in leaves and roots of stressed P. euphratica at 4 drought intensities and following recovery. The Y-axis (log scale) is the ratio [normalized drought channel intensity / control channel intensity]. The displayed genes (each line) were at least two-fold regulated.

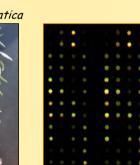

Physiological and transcriptional responses of Populus euphratica to an increasing drought and a recovery

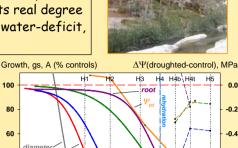
¹BOGEAT-TRIBOULOT Marie-Béatrice, ²BROSCHE Mikael, ¹LE THIEC Didier, ¹HUKIN David, ³POLLE Andrea, ²KANGASJARVI Jaakko & ¹DREYER Erwin

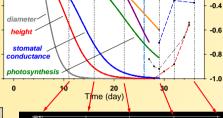
¹UMR INRA-UHP, Forest Ecology and Ecophysiology, INRA-Nancy, France ²Plant Biology, Department of Biological and Environmental Sciences, University of Helsinki, Finland ³Forstbotanisches Institut, University of Göttingen, Germany

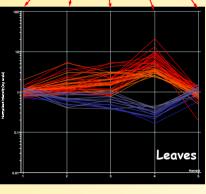
Introduction

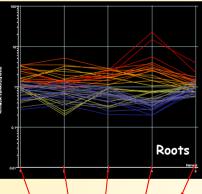
Populus euphratica is a poplar species famous for its ability to cope with high salinity. It also can grow in deserts when it has access to deep soil water. In order to assess its real degree of drought tolerance and to understand the molecular basis of its response to water-deficit, we studied its physiological and molecular responses to an increasing drought.


40


20


n


Kinetics of diameter, height and root growth, gas exchange and predawn leaf water potential during an increasing drought and following recovery.



	Biological process		H1	H2	H3	H4	H5
Leaf	Carbohydrate metabolism	Callose synthase, sucrose synthase, 1-4 $lpha$ -glucan branching enzyme		Я	Я	7	
	Response to abiotic or biotic stimulus	Cyclic nucleotide and calmodulin-regulated ion channel Kunitz trypsine inhibitor Metallothionein Chalcone synthase		7	7	ג גג ע צ	Я
	Amino-acid and protein metabolism	Asparagine synthetase, aldehyde dehydrogenase Cysteine protease		7	7	77 77	ч
	Photosynthesis	PSI reaction center subunit VI and X, PSII protein				Ľ	7
Root	Cell growth/maintenance	Expansin-like protein	7	7	7	7	
	Carbohydrate metabolism	Sucrose synthase Mannitol dehydrogenase, mannan endo 1,4-β-mannosidase	Ľ	л М	لا ۲	لا ٦	
	Transcription	Ethylene response factor 2	ч	И	И	ч	
	Unkown	Major storage protein				77	
	Transport	Aquaporin				Ľ	

Acknowledgements : This research was carried out in the frame of Establish project with the financial support from the European Communities (contract N° QLK5-CT-2000-01377). Arie Altmann is acknowledged for providing the plants and the picture from Ein Avdat valley.

Ein Avdat valley (Israel)

