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Abstract

We present here a mathematical model which describes the dynamics of a scrapie
outbreak in a sheep flock. Unlike BSE, scrapie can widely spread in a flock, but the
transmission mechanisms are still incompletely understood. A modelling approach is a
flexible tool for combining epidemiological, demographic, genetic and management data,
and testing through simulation several transmission hypotheses. In particular, we would
like to explore the possibility of increased transmission during lambing seasons, suggested
by the presence of scrapie infectivity in the placenta.

The initial model was elaborated by Woolhouse et al. [21] and has been successfully
used to study several outbreaks in Scottish sheep flocks [18, 25]. It was further developed
and applied to the Langlade flock (INRA Toulouse, France) in which a natural scrapie
outbreak started in 1993 [7]. Extensive data are available, including pedigree, scrapie
histopathological diagnoses and PrP genotypes, which determine the genetic susceptibility
of an animal to the disease.

The flock is structured according to the PrP genotype, the scrapie status (susceptible or
infected) and, for infected sheep only, the transmission route (horizontal or vertical). The
evolution of these population densities through time, age and infection load is given by a
PDE model that includes the following dynamic processes : seasonal lambings, scrapie and
”natural” (all but scrapie: culling, other diseases, etc.) mortality, vertical and horizontal
transmission.

Detailed simulations of the scrapie outbreak reveal that the observed patterns of sea-
sonality in incidence can not be accounted for by seasonality in demography alone and
provide strong support for the hypothesis of increased transmission during lambing. Ob-
servations from several other scrapie outbreaks also showing seasonal incidence patterns
support these conclusions.
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1 Introduction

The aim of this report is twofold: (i) to present a mathematical model which describes the
dynamics of a scrapie outbreak in a sheep flock; (ii) to explore the possibility of increased
horizontal transmission during lambing seasons, suggested by the presence of scrapie infectivity
in the placenta [20].

The epidemiology of scrapie and particularly the transmission mechanisms are still incom-
pletely understood [13]. In the past few years, the development of mathematical models of
the flock-to-flock spread of scrapie has provided a valuable tool with which to assess the force
of infection and the efficiency of surveillance and control strategies [16, 9, 14]. Modelling in
more details the dynamics of the within-flock transmission of scrapie has allowed us to improve
our understanding of scrapie susceptibility, transmission and pathogenesis [19, 11, 12, 18]. In
diseases such as scrapie with long incubation periods relative to lifespan, the epidemiology
cannot be fully understood without reference to flock demography and management. More-
over, the confounding effects of incubation period, lifespan, age-dependent susceptibility and
the changing force of infection make direct analyses of the case data difficult. A mathematical
model of transmission dynamics provides a flexible tool for combining epidemiological, demo-
graphic, genetic and management data, and exploring through simulation the consequences
of alternative biological scenarios.

Here, we consider an outbreak of scrapie in the Langlade experimental sheep flock in which
a natural scrapie outbreak started in 1993 [7] and for which extensive demographic, genetic
and scrapie case data are available. We consider two alternative scenarios, one in which
horizontal transmission occurs throughout the year, and a second, “seasonal model”, in which
horizontal transmission is confined to the lambing period. Model outputs are compared to
data on scrapie incidence, age at case, flock genetics and genotypes of scrapie cases.

This report starts with the description of the main features of the disease in section 2
(p. 2), and the Langlade data on which this study is based in section 3 (p. 3). Then
section 4 (p. 4) gives a detailed presentation of the scrapie transmission model, including
the global population dynamics (4.1), and the demographic (4.2) and epidemiological (4.3)
processes; appendix A (p. 24) contains a short summary of the mathematical model; in
appendix B (p. 25), possible extensions to the model are mentioned. Section 5 (p. 12)
deals with parameter estimation, either directly from the Langlade data, or through the
model. Simulation results are shown in section 6 (p. 15), and discussed in section 7 (p. 20),
supporting the hypothesis of increased transmission during lambing. Finally, references
(p. 22) are listed.

Preliminary results of this study were presented at the International Conference on TSEs in
Edinburgh, September 2002 [22], and at the IIIrd INRA seminar on TSEs and prions, February
2003 [23, 6]. An paper, mostly based on these results, was submitted to Archives of Virology in
December 2003 [24]. Moreover, a companion paper [4] has been submitted.
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2 Scrapie

Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) that affects
sheep and goats. TSEs are slowly progressive, fatal, neuro-degenerative disorders that are
characterised by the accumulation in the brain of a conformationally abnormal form of the
prion protein PrP [17]. Human TSEs are rare, Creutzfeld-Jakob disease (CJD), first described
in 1920, being the most common. Animal TSEs include bovine spongiform encephalopathy
(BSE), which started in the UK in 1985, and chronic wasting disease (CWD), which affects
cervids in the USA. Scrapie is the oldest known TSE, its first mention dates back to the 18th
century. It is a common pathology in European flocks, endemic in certain regions. Scrapie is
more thoroughly described [13, 5], but can be characterised by the following points.

• Unlike BSE which can contaminate humans (variant CJD), there is no evidence that
scrapie constitutes a human health risk. However, experimental studies have shown that
BSE can infect sheep, even if no natural contamination has been observed. Clinical signs
are alike in sheep, but diagnostic tests can differentiate both diseases.

• There is no consensus that the scrapie prion constitutes the infectious agent of the dis-
ease, although the protein-only hypothesis (1997 Nobel price for Prusiner) is supported
by recent evidence [1].

Several “strains”, defined by the incubation period and lesion profile of the brain in
infected mice, have been observed.

• Unlike BSE, scrapie can widely spread in a flock, but the transmission mechanisms

are still incompletely understood. Vertical transmission, i.e. maternal transmission to
lamb, is thought to occur although it is possible that contamination occurs post-natally
rather than in utero [3]. Horizontal transmission is likely to occur by the oral route
since the earliest detection of scrapie infectivity in naturally infected individuals is in
the digestive tract (infection of the Peyer’s patches followed by replication in the gut-
associated lymphoid tissues and spread to the central nervous system) [2]. However,
there may be other routes of entry (e.g. scarification).

Presence of scrapie infectivity in the placenta [20] suggests the possibility of increased
transmission during lambing via the ingestion of contaminated placental material.

• Polymorphisms of the PrP gene encoding for this protein at codons 136, 154 and 171
largely control the genetic susceptibility and resistance of sheep to the disease [15]. Some
genotypes confer partial or full resistance to scrapie. The genetics of scrapie is breed
and “strain” dependent.

• Scrapie is associated with a long incubation period (ca. 2 years), that varies according
to the scrapie strain and at an individual level, the PrP genotype (as short as 11 months
in fully susceptible animals).

Some dose-effect experiments were conducted in mice, where the incubation period ap-
peared to depend on the inoculating dose, but not on superinfection [10].

• Scrapie is a fatal disease. Clinical signs usually consist in behavioural changes, tremor
(hence the French name “tremblante”), pruritus (hence scrapie) and locomotor incoor-
dination. They may vary greatly between individuals and last from a couple of weeks
up to 6 months, but sheep are generally culled shortly after the onset of these signs.

• Currently there is no effective treatment.

• Preclinical tests on live animals are currently being developed (tonsil biopsies), but none
are validated yet. The clinical diagnosis of scrapie is confirmed by brain histopathology
or/and immunohistochemistry.
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3 Langlade data

The Langlade experimental sheep flock was founded in 1971 by INRA near Toulouse. It is
attached to the SAGA, Station d’Amélioration Génétique des Animaux, and is used as a tool
to study the genetics of reproduction, the resistance to internal parasites and to compare sire
breeds. Before 1996, most animals belonged to the Romanov breed, a prolific breed with a
mean litter size of 3.1 in adults, ranging between 1 and 6 lambs. From 1979 to 1996, the
Romanov flock was composed of 600-800 ewes and was genetically closed.

A natural scrapie outbreak started in the flock in 1993 and has been studied ever since. It
is probable that the disease was introduced in the flock by animals from a particular cohort
(born in October 1991) involved in parasitological experiments, although no formal association
could be found between the parasites and the onset of scrapie [7]. It constitutes a remarkable
scrapie cluster: this cohort was the first to show scrapie clinical signs and all individuals had
been removed by August 1993.

60

80

20

1998 1999
0

199719941993

40

year

cases

1992 1995 1996

Figure 1 – Scrapie outbreak in the Langlade Romanov flock.

Extensive data are available on sheep born between 1983 and 2001. Pedigree data include:
sex, breed, date of birth, date of death, reason for death, sire and dam ID. The PrP genotypes
of most breeding animals since 1993 are also known. Genetic susceptibility to scrapie is
determined by polymorphisms of the PrP genotype at codons 136, 154 and 171. Four alleles
were identified in the flock: VRQ, ARQ, AHQ and ARR. Cases have been observed in eight of
the ten resulting genotypes (all except AHQ/ARR and ARR/ARR), but the majority of cases
occur within the three most susceptible genotypes: VRQ/VRQ, ARQ/VRQ and ARQ/ARQ.
When scrapie was suspected, the diagnosis was confirmed by a histopathological test [7].

Study flock As the flock management changed over the course of time, a first study was
conducted on a shorter 4-year period, from January 1992 until December 1995. The period
covers the introduction of the animals involved in the parasitological experiment into the
flock, to the time when breeding practices changed. No selection scheme on the PrP genotype
was conducted prior to 1996, so breeding and culling were a priori independent of the PrP
genotype. Far more ewes than rams were maintained in the flock, and many lambs were culled
under the age of 8 months, so they did not play a major role in the transmission of scrapie
within the flock. The study flock therefore corresponds to the Romanov replacement ewes.
During the 4 years of this study, replacement ewes were produced once a year during a short
lambing period of 40 days in January-February.
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4 The scrapie transmission model

The deterministic mathematical model described here is based on [21]. The main changes and
developments introduced to study the possibility of increased transmission during lambing
seasons, and to fit the Langlade data are: seasonality in birth and transmission, a control
term on the birth rate to follow the variable population size, and an upwind integration
scheme to increase the numerical stability.

The scrapie model is founded on a set of hypotheses and simplifications which are listed
below.

• The model does not discriminate by sex; since only a small number of breeding rams
are kept, only the population of ewes is considered.

• A continuous and bounded age structure is introduced in the flock.

• Breeding is seasonal, random mating is assumed, and all ewes give birth to the same
number of lambs.

• Culling represents all sources of mortality, scrapie excluded. It is assumed to depend on
the age of the animal only.

• There is no way to identify infected sheep, so all sheep are bred and culled indepen-
dently from their scrapie status. Culling here represents all sources of mortality, scrapie
excluded.

• The infected sheep instantly die at the end of the incubation period, once they start
showing clinical signs. Therefore, only susceptible and incubating sheep are considered.

• The vertical and horizontal transmission routes are distinguished. Vertical transmission
corresponds here to in utero or perinatal maternal transmission.

• Infected sheep are also structured according to their infection load, which is a contin-
uous and bounded variable that increases exponentially with time. It is related to the
infectiousness of the sheep and is also a measure of the incubation period.

• In this study, the infectiousness is proportional to the infection load.

• The incubation period is long and variable.

• The genetic susceptibility factor is introduced.

• An age susceptibility factor can be introduced.

The flock is structured according to the PrP genotype (g ∈ {1, . . . , Ng}), the scrapie status
(susceptible S or infected I) and, for infected sheep only, the transmission route (horizontal
H or vertical V ). Time (t), age (a) and infection load (θ) are continuous variables in the
model. Hence, to represent the evolution through time of the resulting population densities
(e.g. Hg(t, a, θ)) with respect to age and infectiousness, the model consists of a set of partial
differential equations (cf. subsection 4.1).

The model incorporates the following components: seasonal breeding and routine culling
for the flock demography (cf. subsection 4.2); genetic susceptibility, a long and variable incuba-
tion period preceding clinical signs and death, (seasonal) horizontal and vertical transmission
for the epidemiology of scrapie (cf. subsection 4.3).

A schematic representation is given in Figure 2. A concise overview of the model is also
given in appendix A.
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g: genotype

a: age
t: time

θ  : infection load

θ

θ

Breeding g’   g

Hg(t,a,  )
Susceptible

Vg(t,a,  )

H Infected

V Infected

Sg(t,a)

Culling

transmission
Horizontal

transmission
Vertical/maternal

Scrapie
mortality

Figure 2 – Representation of the flock structure and processes incorporated in the
scrapie model. Vertical transmission corresponds to maternal transmission (in utero
and perinatal). Culling represents all non scrapie mortality. Time, age and infection
load (related to infectiousness) are continuous variables in the model. Breeding of
susceptible and infected lambs (dashed lines) involves genetic recombination.

4.1 Population dynamics

The population densities, which constitute the state variables of the model, are:






Sg(t, a) susceptible,

Hg(t, a, θ) infected by horizontal route,

Vg(t, a, θ) infected by vertical route,

with: Ig = Hg + Vg.

They are functions of the following continuous variables:

time t
�

0

age 0 � a � amax = A
Time and age evolve at the same speed:

da

dt
= 1. (1)

The age variable is bounded, so that animals reaching age A are eliminated.

infection load – infectiousness 0 � θ � θmax = 1 (for infected groups only)
The infection load represents the development of the disease. The flow of individuals
entering an infected group is given a positive initial load θ0, set by a distribution φ
(usually a gamma distribution). During the incubation period, it grows exponentially,
with an infection growth rate cg that may depend on genotype g:

dθ

dt
= cgθ. (2)

This variable is also bounded, so that individuals die of scrapie once it reaches θmax.
Variations in the initial load θ0 therefore lead to different incubation periods.

The infection load is also related to the infectiousness of the infected sheep (cf. patho-
genesis and transmission in 4.3).

The partial differential equations representing the evolution through time of the population
densities with respect to age and infection load are exposed below: equations (3,4,5) describe
the flock dynamics and (3′,4′,5′) are the boundary conditions ; but first the conservation laws
are applied.
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4.1.1 Conservation laws

Let J(t, a, θ) be the population density of the infected sheep contaminated by either the
horizontal or the vertical route, and of any genotype (J = Hg or Vg, ∀g). Conservation laws
are applied to establish the evolution through time of this variable, for a > 0 and θ > 0. In
this section, we consider that there is no mortality.

The number of individuals in interval [a, a + ∆a] × [θ, θ + ∆θ] is:

∫ a+∆a

a

∫ θ+∆θ

θ

J(t, a, θ)dθda.

This number only varies due to the inflow of individuals through boundaries a− and θ−, and
to the outflow of individuals through boundaries a+ and θ+ (cf. Figure 3).

θ

a

θ−

a+a−

θ+∆θ

a

θ

θ+

aa+ ∆
Figure 3 – Conservation laws for an infected group of the population dynamics model
in space (a, θ), with no mortality.

Variables a and θ verify equations (1) and (2) (here we note cg = c). Therefore, the inflow
through boundary θ− is:

∫ a+∆a

a

dθ

dt
(t, a, θ) J(t, a, θ) da =

∫ a+∆a

a

cθ J(t, a, θ) da.

With a similar reasoning to express the flows through the other boundaries, the following
equation is obtained:

d

dt

∫ a+∆a

a

∫ θ+∆θ

θ

J(t, a, θ) dθ da = +

∫ a+∆a

a

cθ J(t, a, θ) da [θ−]

−

∫ a+∆a

a

c(θ + ∆θ) J(t, a, θ + ∆θ) da [θ+]

+

∫ θ+∆θ

θ

J(t, a, θ) dθ [a−]

−

∫ θ+∆θ

θ

J(t, a + ∆a, θ) dθ [a+]

= −

∫ a+∆a

a

∫ θ+∆θ

θ

∂[cθ J(t, a, θ)]

∂θ
dθ da [θ− & θ+]

−

∫ θ+∆θ

θ

∫ a+∆a

a

∂J(t, a, θ)

∂a
da dθ, [a− & a+]

which induces the conservation law below:

∂J(t, a, θ)

∂t
+

∂J(t, a, θ)

∂a
+

∂[cθ J(t, a, θ)]

∂θ
= 0.
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4.1.2 Susceptible sheep

The susceptible sheep Sg(t, a) are exposed to scrapie contamination (β) from infected ewes
I ′g and culling (µ), while newborn susceptible lambs from susceptible (b) and also a fraction
(1− γ) of infected ewes of genotype g′ are introduced in the flock:

∂Sg

∂t
+

∂Sg

∂a
(t, a) = −µ(a)Sg(t, a)

− Sg(t, a)
∑

g′

∫ A

0

∫ 1

0
βg(t, θ

′, a)Ig′(t, a
′, θ′)dθ′da′,

(3)

Sg(t, 0) =
∑

g′

Ggg′(t)

∫ A

0
b(t, a′)Sg′(t, a

′)da′

+
∑

g′

Ggg′(t)

∫ A

0

∫ 1

0
b(t, a′)(1− γg(θ

′))Ig′(t, a
′, θ′)dθ′da′.

(3′)

4.1.3 Horizontally infected sheep

The horizontally infected sheep Hg(t, a, θ) are also exposed to culling (µ), but they only
become infected after their birth, through the horizontal contamination process (β):

∂Hg

∂t
+

∂Hg

∂a
+

∂cgθHg

∂θ
(t, a, θ) = −µ(a)Hg(t, a, θ)

+ φ(θ)Sg(t, a)
∑

g′

∫ A

0

∫ 1

0
βg(t, θ

′, a)Ig′(t, a
′, θ′)dθ′da′,

(4)

Hg(t, 0, θ) = 0,

Hg(t, a, 0) = 0.
(4′)

4.1.4 Vertically infected sheep

The vertically infected sheep Vg(t, a, θ) are culled (µ) and a proportion (γ) of the lambs born
from infected ewes of genotype g′ are introduced in the flock:

∂Vg

∂t
+

∂Vg

∂a
+

∂cgθVg

∂θ
(t, a, θ) = −µ(a)Vg(t, a, θ), (5)

Vg(t, 0, θ) = φ(θ)
∑

g′

Ggg′(t)

∫ A

0

∫ 1

0
b(t, a′)γg(θ

′)Ig′(t, a
′, θ′)dθ′da′,

Vg(t, a, 0) = 0.

(5′)

4.2 Demographic processes

4.2.1 Culling

Sheep are routinely culled. Replacement ewes at Langlade were selected according to various
characteristics (e.g. milk production, fecundity) so as to ensure the continuation of the flock.
The remaining lambs were culled prior to 8 months of age and are not represented in the
model. The older and less fertile ewes were also culled; some sheep died as a result of disease,
accidents etc. All these causes with the exception of scrapie are incorporated into the mortality
rate which is assumed to vary only with age. This mortality rate is based on a Weibull risk
function:

µ(a) = κλ(λa)κ−1 for: 0 < a < A. (6)

A survival analysis on the data is performed to estimate these parameters (cf. section 5.1).
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4.2.2 Seasonal breeding

Birth rate Breeding at Langlade was controlled. Ewes produced replacement animals from
their second mating onwards; the lambing took place once a year during a 40-day period in
January-February. This lambing period is reproduced in the model and for the remainder of
the year, no animals are born. The birth rate b(t, a′) determines the number of new lambs
arriving in the flock during the lambing season. It represents the mean number of offspring
produced by a breeding ewe of age a′ per time unit. It is assumed to be the same for all
mature ewes, i.e. ewes of age a′ ∈ [a1, a2]. So the birth rate verifies:

b(t, a′) =

{

b(t) s(t) for a1 � a′ � a2 (mature ages),

0 otherwise,
(7)

where s(t) is a seasonal function, the season being defined by its annual duration T and its
shift ts with respect to the initial time t = 0:

s(t) =

{

1 if (t mod 1 yr) ∈ [ts, ts + T ] (lambing period),

0 otherwise.
(7’)

The birth rate is automatically adjusted so that the total flock size at the end of the
lambing period attains a predefined target value Pc based on the data. So b(t) is a control
on the population size.

Let P (t) be the total population size and Pb(t) the breeding population size at time t:

P (t) =
∑

g

∫ A

0

(

Sg(t, a) +

∫ 1

0

Ig(t, a, θ) dθ

)

da, (8)

Pb(t) =
∑

g

∫ a2

a1

(

Sg(t, a) +

∫ 1

0

Ig(t, a, θ) dθ

)

da. (9)

The total population size fluctuates as follows:

dP (t)

dt
=

∑

g

(

Sg(t, 0) +

∫ 1

0
Ig(t, 0, θ) dθ

)

︸ ︷︷ ︸

birth u(t)

−
∑

g

cg

∫ A

0
Ig(t, a, 1) da

︸ ︷︷ ︸

scrapie mortality ms(t)

−
∑

g

(

Sg(t, A) +

∫ 1

0
Ig(t, A, θ) dθ +

∫ A

0
µ(a)

(

Sg(t, a) +

∫ 1

0
Ig(t, a, θ) dθ

)

da

)

︸ ︷︷ ︸

non scrapie mortality mn(t)

.

During the lambing period, the birth corresponds to u(t) = b(t) Pb(t). To compensate
the mortality, it should be chosen so as to ensure that dP/dt = 0, i.e. u(t) = ms(t) + mn(t).
However, our goal is to attain a target population size Pc at the end of the lambing period.
So we add a first order dynamics to the birth term:

u(t) = ms(t) + mn(t) + K[Pc − P (t)],

and we obtain the following birth rate:

b(t) =

∑

g

[
Sg(t, A) +

∫ 1
0 Ig(t, A, θ) dθ +

∫ A

0 µ(a)
(
Sg(t, a) +

∫ 1
0 Ig(t, a, θ) dθ

)
da

Pb(t)
+

∫ A

0 cgIg(t, a, 1)
]
+ K[Pc − P (t)]

Pb(t)
. (7”)

The population size dynamics during the lambing period then becomes: dP/dt = K[Pc−P (t)].
Choosing K = 3/T , T being the length of the lambing period, at the end of this period we
should have: P ' Pc.
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Breeding matrix The birth rate b(t, a′)1 gives the global inflow of lambs in the flock, but
they need to be distributed among the different genotypes. As only the female population is
considered in this model, the genotypes of these lambs are deduced from the dam genotypes
only. Therefore, a breeding matrix G(t) = (Ggg′(t)) has to be introduced, that gives the
proportion of lambs of genotype g born from dams with genotype g′ (or the probability for
ewes g′ to give birth to lambs g). It mainly depends on the breeding practices.

Example – In a simple case with two alleles r and R, three genotypes are obtained:
(1) rr, (2) Rr, and (3) RR, as ordered in the matrix. Defining q(t) as the frequency of
allele r among the sires and assuming random mating, the breeding matrix is given by:

G(t) =






q(t) q(t)/2 0

1 − q(t) 1/2 q(t)

0 1−q(t)
2

1 − q(t)




 .

Assuming that the rams and the ewes have the same allele frequencies in the flock, the
following equation is obtained:

q(t) =

∫ A

0

(

S1(t, a) + S2(t, a)/2 +
∫ 1

0 [I1(t, a, θ) + I2(t, a, θ)/2]dθ
)

da

∑3
g=1

∫ A

0

(

Sg(t, a) +
∫ 1

0
Ig(t, a, θ)dθ

)

da
.

Note that
∑

g Ggg′(t) = 1.

In this model, genotypes are also assigned according to a random mating hypothesis,
which can be summarised as follows: the allele frequencies in dams and lambs are the same
at each lambing, and lamb genotypes represent a random recombination of these alleles. It
corresponds to a population with no allele selection at matings and is therefore related to the
Hardy-Weinberg equilibrium. However, selection is likely to occur throughout the year due to
scrapie cases.

To test this random mating assumption, χ2 tests were used to compare allele and genotype
frequencies at each lambing period. Results are shown in Table 1. With the exception of one
lambing season (1994) for the dam and lamb alleles (a), the frequencies are not significantly
different (p > 0.05). This shows that the data are generally in accordance with the hypothesis
of random mating (a) and recombination (b). It also confirms that having the same birth
rate for all mature ewes won’t have a major impact on the lamb allele frequencies (c). So the
breeding matrix is derived from the flock allele frequencies, as in the example above.

Table 1 – Results of the χ2 tests used to validate the random mating hypothesis, by
comparing at each lambing: (a) the allele frequencies of the dams and of their female
lambs that were subsequently used for replacement; (b) the allele frequencies of the
dams which gave birth to only one replacement ewe and of those which had more
than one; (c) the theoretical, i.e. computed from a random recombination of the allele
frequencies, and observed lamb genotype frequencies.
Data correspond to the Romanov replacement ewes at Langlade from 1992 to 1995.

Lambings
χ2 tests (p values)

1992 1993 1994 1995

(a) dam/lamb alleles 0.1182 0.1735 0.0276 0.5380

(b) lamb genotype 0.9717 0.9997 0.8843 0.7721

(c) dam alleles 0.4130 0.4327 0.8487 0.0530

1In this subsection, a variable with a ′ usually refers to the dam, and a variable without to the lamb.
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4.3 Epidemiological processes

4.3.1 Genetic susceptibility

Genetic susceptibility to scrapie is determined by polymorphisms of the PrP genotype at
codons 136, 154 and 171. Some genotypes confer partial or full resistance to scrapie. The
genetics of scrapie is breed and “strain” dependent. The relative genetic susceptibilities
σg are defined as the proportion of scrapie cases in each genotype and are estimated from the
data: σg ∈ [0, 1], where 0 corresponds to full resistance to scrapie.

4.3.2 (Seasonal) horizontal transmission

To test the hypothesis of increased horizontal transmission during lambings, we considered
two model variations: one in which horizontal transmission occurs throughout the year, and a
second, “seasonal model”, in which horizontal transmission is confined to the lambing period.
The only difference between the two models resides in the horizontal transmission rate.

Horizontal transmission is assumed to be proportional (i) to the number of available sus-
ceptible individuals weighted by their relative susceptibilities, and (ii) to the sum of all infected
animals weighted by their infectiousness.

Here, the infectiousness of an infected sheep is considered proportional to its infection
load, so it increases exponentially with time during the incubation period.

Therefore, the horizontal transmission rate β is independent of the genotype and age
of the infecting sheep, but depends on its infection load θ′.2 It incorporates the genetic
susceptibility σg of the infected sheep and an age-dependent susceptibility function f(a) can
be added. The transmission rate is set to zero outside the lambing period for the seasonal
model only, in which case the seasonal function s(t) defined in (7’) is introduced. The absolute
transmission rate is determined by a scaling factor kh, which needs to be estimated and is
fixed independently in each model, to allow for two very different horizontal transmission
periods. The resulting horizontal transmission rate is:

βg(t, θ
′, a) = kh σg θ′ δ(t) [f(a)], with: δ(t) =

{

s(t) for the seasonal model,

1 otherwise.
(10)

Age-dependent susceptibility was added to examine the sensitivity of the model out-
puts to this factor, but is not usually retained (cf. section 6.3). f is assumed to decline
exponentially with age: f(a) = e−ηa. In [18], a step function was chosen (animals are suscep-
tible upto a maximum age and then become resistant), but it seemed less appropriate in this
case as scrapie deaths were observed for old animals in the Romanov flock.

4.3.3 Vertical / maternal transmission

Vertical transmission in the model corresponds to in utero or perinatal maternal transmission
to lamb. By definition, it only occurs during the lambing periods, which are seasonal here.

The vertical transmission rate γ defines the proportion of infected lambs born from
infected ewes. As in the horizontal case, it depends on the relative genetic susceptibilities of
the lambs and the infectiousness of the dams:

γg(θ
′) = kvσgθ

′, (11)

Note: As γ represents a proportion, the scaling factor kv ∈ [0, 1]; it needs to be estimated.

2In these subsections, a variable with a ′ usually refers to the infecting animal, and a variable without to

the infected sheep.
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4.3.4 Pathogenesis – incubation

Once an individual is contaminated, the development of the disease is described in the model
by means of the infection load θ. The initial infection load θ0 for a newly vertically or
horizontally infected animal is assumed to follow a distribution φ, which is independent of
genotype. The infection load then increases exponentially during the incubation period, up to
a level θmax corresponding to clinical signs, at which point sheep are removed from the flock
(2).

The initial load distribution φ is usually chosen as a gamma distribution, with a prob-
ability density function:

φ(θ) =
l(lθ)k−1e−lθ

Γ(k)
, (12)

where Γ is the gamma function (Γ(k) = (k − 1)! if k is an integer). The mean initial load
is set at 10% of the terminal load θmax, chosen arbitrarily to be 1. As the infectiousness is
proportional to the infection load, it means that an infected sheep is ten times more infectious
at the end of the incubation period than at the beginning. The mean of the gamma distribution
is therefore fixed (k/l = 0.1), but the variance (v = k/l2) still needs to be estimated:

{

l = 10 k,

v = 0.01/k.
(12’)

The exponential rate of increase cg of the infection load (2) determines the length τ of the
incubation period corresponding to the initial infection load θ0 ∈ [0, 1]:

τ = −
ln θ0

cg
, with: τ ∈ [0, +∞[. (13)

Because the initial infection load θ0 follows a distribution φ rather than being set at a fixed
value, a corresponding distribution ϕ of incubation periods is obtained.

Distribution of incubation periods – The incubation period τ can be deduced from
the initial infection load θ0:

θ0 = e−cg τ with: θ0 ∈ [0, 1] & cg > 0 ⇒ τ = −
ln θ0

cg
with: τ ∈ [0, +∞[.

The initial infection load θ0 follows a distribution with a probability density function φ.
To establish the density probability function of the incubation period distribution, let
x ∈ [0, 1] and y = − ln x

cg
∈ [0, +∞[.

p(θ0 � x) = p(τ � y)

=

∫ 1

x

φ(u)du

=

∫ 0

y

φ(e−cgv)(−cg e−cgv)dv [u = e−cgv]

=

∫ y

0

cg e−cgvφ(e−cgv)dv.

So the incubation period τ follows a distribution with a probability density function ϕ:

ϕ(t) = cg e−cgtφ(e−cgt) with: t ∈ [0, +∞[. (13’)

Thanks to (12’), only two of the three parameters of this distribution need to be estimated:
cg and var.
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5 Parameter estimation

All parameters (and variables) in this model are non negative. They are shown in Table 2.
The demographic parameters (5.1) and the genetic susceptibilities (5.2) are estimated directly
from the data, the remaining epidemiological parameters (5.4) need to be estimated through
the model. Moreover, the initial condition (5.3) is also estimated from the data.

Table 2 – Parameters used in the scrapie transmission model (3,3′), (4,4′) & (5,5′).

Demographic parameters

description function equation(s) value

A maximum age – (6,8) 13 years

a1 minimum breeding age Pb(t) (7,9) 22 months

a2 maximum breeding age Pb(t) (7,9) 10.5 years

T length of the lambing period s(t) (7’) 40 days

ts shift of the lambing period s(t) (7’) 10 days

κ mortality rate (Weibull shape) µ(a) (6) 2.04

λ mortality rate (Weibull 1/scale) µ(a) (6) 0.158 year−1

Epidemiological parameters

description function equation(s) value

σg relative genetic susceptibilities β, γ (10,11) cf. Table 3

η age-dependent susceptibility rate β (10) usually 0

kh horizontal transmission scaling factor β(t, a, θ) (10) 0.045 year−1*†

kv vertical transmission scaling factor γ(t, a, θ) (11) 1*

cg exponential growth rate of the infection load [dθ
dt , τ ] (2,13) 1.35 year−1*

k initial load distribution (gamma shape) φ(θ) (12) 12*

l initial load distribution (gamma 1/scale) φ(θ) (12) l = 10 k

*Parameters estimated through the model.
†Parameter estimated for the seasonal model.

5.1 Demographic parameters

The maximum age, breeding ages and lambing season parameters are straightforward to obtain
from the data.

The mortality rate is based on a Weibull risk function that was fitted to the study flock
data (cf. Figure 4), and corresponds to a mean life expectancy in the absence of scrapie of
5.60 years with a maximum lifespan of 10 years. In the model a maximum lifespan of 13 years
(the longest lifespan observed in this flock) was allowed, as some of the older animals were
still alive at the end of the study period.

Weibull distribution for the culling age – The age at death Ad for all causes
except scrapie follows a Weibull distribution in the model.

The Weibull probability density function is: fW (a) = κλ(λa)κ−1e−(λ a)κ

, with:

mean =
Γ((κ+1)/κ)

λ and variance =
Γ((κ+2)/κ)−[Γ((κ+1)/κ)]2

λ2 .

The survival function SW (a) = e−(λa)k

represents the probability to survive upto age a.
It is used in Figure 4 to fit the data.

The hazard or risk function µ(a) = κλ(λa)κ−1 represents the risk of dying at age a,
knowing that you have survived upto age a:

µ(a) = lim
∆→0+

p(a � Ad < a + ∆ | a � Ad)

∆
=

fW (a)

p(a � Ad)
=

fW (a)
∫
∞

a
fW (a′)da′

.

12



0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1.0

age (years)

su
rv

iv
or

sh
ip

Figure 4 – Survival curves based on the 1986-1995 birth cohorts: Kaplan Meier
curve (solid line) and Weibull fitted curve (dashed line) with parameters κ = 2.04 and
λ = 1/6.32. Ewes that died before January 1, 1992 (beginning of the study period) were
left truncated and ewes still alive on January 1, 1996 (end of the study period) were
right censored. The raw data and fitted function correspond to mean life expectancies
5.46 and 5.60 years respectively.

5.2 Relative genetic susceptibilities

Genetic susceptibility to scrapie is determined by the PrP genotype, defined in the Langlade
Romanov flock as a combination of the following four alleles: VRQ, ARQ, AHQ and ARR. As
cases have been observed in all but two of the ten corresponding genotypes, the alleles AHQ
and ARR were not aggregated in this study as had been done previously [25, 18]. The relative
genetic susceptibilities used in the model are estimated from the data and are presented in
Table 3.

Table 3 – Relative genetic susceptibilities estimated as the relative scrapie incidence
for each genotype in the Romanov study flock (replacement Romanov ewes present at
Langlade between January 1992 and December 1995).

Genotype (g) VRQ ARQ ARQ AHQ ARR AHQ ARQ AHQ AHQ ARR
VRQ VRQ ARQ AHQ VRQ ARQ ARR VRQ ARR ARR

Susceptibility (σg) 0.803 0.606 0.403 0.125 0.078 0.062 0.029 0.020 0 0

5.3 Initial condition

The simulation starts on the first of January 1992 with 693 sheep. Most are susceptible sheep
and their age follows the Weibull survival fun.

The cluster of scrapie cases in the October 1991 cohort involved in the parasite experi-
ments makes this group of animals a good candidate for the primary infections in the flock.
Accordingly, a corresponding fraction of the initial population, in terms of age and genotype
distributions, is assumed to be infected at the beginning of the simulation, i.e. 18 horizontally
infected sheep out of 693. The infection loads of these animals are set so as to lead to scrapie
cases 20 months later (together with parameter cg).

There are no sheep infected by the vertical route initially.
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5.4 Epidemiological parameters

Apart from the relative genetic susceptibilities, the parameters associated with scrapie trans-
mission cannot be easily derived from the data. Therefore, a simulation-based approach was
taken, whereby the incubation period parameters (k, l and cg) and transmission scaling factors
(kh and kv) were adjusted simultaneously in order to achieve the observed total number of
cases and shape of epidemic curve during the study period. The exponential rate of increase
of the infection load cg is assumed to be the same for all genotypes.

To get a rough estimate of the proportion of cases occurring by maternal transmission, the
population attributable risk percentage was computed in the Romanov flock, the risk factor
being defined as having a scrapie affected dam [13]. The value obtained (PAR%=13.7%)
cannot be considered as an accurate quantitative estimate, but it gives an indication. So the
vertical transmission scaling parameter kv was selected in order to obtain roughly 10% of cases
by this route during the first years of the epidemic.

The horizontal transmission scaling factor kh was estimated independently for the seasonal
and the non seasonal transmission models. To be able to compare both models, all other
parameters were given the same values. If this is expected for the data derived parameters,
it is less so for the incubation period parameters: as no values could be found to get a better
fit for the non seasonal model, the seasonal model estimates were kept for both. The best fit
for these parameters was obtained with a narrow gamma distribution for the initial infection
load, corresponding to a mean incubation period of 1.73 years (cf. Table 2 and Figure 5).
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Figure 5 – Curve representing the probability density function of the incubation pe-
riod distribution (mean 1.73, variance 4.7×10−2), derived from the gamma distribution
associated to the initial infection load (mean 0.1, variance 8.3× 10−4).

Population attributable risk percentage – The population attributable risk per-
centage gives a rough estimate of the maternal transmission. The exposed population is
defined as the sheep that have a scrapie affected dam. Ne is the number of sheep, Ce the
number of cases, and Ie = Ce/Ne the incidence in the exposed group. No, Co, and Io are
similarly defined in the non exposed group, and Nt, Ct, and It in the total population.

The relative risk is: RR = Ie

Io
.

The attributable risk is: AR = Ie − Io.

The population attributable risk corresponds to the proportion of cases due to the risk
factor in the total population. Eliminating the risk factor, the exposed population would

get CoNe/No cases instead of Ce. So: PAR =
C−CoNe/No

Nt
= ARNe

Nt
.

The population attributable risk percentage is the proportion of cases due the risk factor

among all the cases. So: PAR% = C−CoNe/No

Ce+Co
= PAR

It
.

Note: PAR% represents both the maternal transmission, and an increased genetic suscep-
tibility in the exposed group, as contaminated dams have more susceptible genotypes.
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6 Simulation results

Simulations were performed using a Fortran program. For numerical stability of the seasonal
model, the previously used centred integration scheme (Lax-Wendroff [25, 18]) was replaced
with an upwind integration scheme (Godounov) which respects the causality of the system.

The two models were simulated: the seasonal model, in which horizontal transmission is
confined to the lambing periods, and the non seasonal model, in which it occurs throughout the
year. They only differ in their horizontal transmission rate kh. Both scenarios are compared
in 6.1. Further outputs for the seasonal model only are shown in 6.2. Finally, the sensitivity
of these outputs to various factors is explored in 6.3.

6.1 Comparison of the seasonal and non seasonal models

In Figure 6, both scenarios reproduce a time course of peaks and troughs in the scrapie
incidence data (as a result of seasonality in births), but the seasonal model produces more
marked peaks which correspond far better in timing to the observed peaks.
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Figure 6 – Comparison between the observed (bars) and simulated (solid line) scrapie
case distribution over time; the simulation was performed with the seasonal transmis-
sion hypothesis. Comparison with the non seasonal transmission case (dashed line),
all parameters except the horizontal transmission scaling factor kh being equal.

6.2 Outputs for the seasonal model

• In Figure 7, the overall trends in the age distribution of scrapie cases are captured but
the initial peak corresponding to sheep infected close to birth is underestimated.

• In Figure 8, the fluctuations of the flock size (due to the seasonality in births) are well
reproduced, except in the second half of 1993, when the mortality is underestimated.

• The frequency distribution of cases by genotype in Figure 9 is in excellent agreement
with the data.

• Figure 10 shows the time course of the allele frequencies: overall trends are reproduced
but the decline in frequency of the two most susceptible alleles, VRQ and ARQ, is less
than that observed.
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Figure 7 – Comparison between the observed (bars) and simulated (solid line) age dis-
tribution of scrapie cases; the simulation was performed with the seasonal transmission
hypothesis.
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Figure 8 – Comparison between the observed (thin line) and simulated (thick line)
flock size over time; the simulation was performed with the seasonal transmission
hypothesis.
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Figure 9 – Comparison between the observed (grey bars) and simulated (thick line)
genotype distribution of scrapie cases; the simulation was performed with the seasonal
transmission hypothesis.
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Figure 10 – Comparison between the observed (symbols) and simulated (lines) allele
frequencies over time: VRQ (dashed line, + symbol), ARQ (solid line, x symbol), AHQ
(dotted line, o symbol), ARR (thick line, � symbol); the simulation was performed with
the seasonal transmission hypothesis.
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6.3 Sensitivity of the results

Further simulations were conducted on a longer time period to assess the sensitivity of the
above results to a number of factors.

• The incidence patterns described above are quite robust to the length of the lambing
season in the model, as shown in Figure 11. Taking twice its usual value barely changed
the total incidence, and even with a 6 months period, the seasonality is conserved. The
peaks observed when there is no seasonality are due to the cluster of initial cases.
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Figure 11 – Influence of the length of the lambing season T on the total incidence.
The curves correspond to a period of 40 days (thik line, usual period), 80 days (dotted
line), 6 months (dashed line), and the whole year (solid line).

• Figure 12 shows the total incidence for three incubation period distributions ϕ plotted
in Figure 13. Each ϕ is deduced from the initial load distribution φ, as shown in
equations (12), (13), and (13’). As its mean is set to 0.1, changing φ consists in changing
its shape parameter k, a higher k corresponding to a higher variance (12’). It also leads
to higher values of the mean and variance of the incubation period ditributionϕ, as
indicated in Figure 13. Increasing the variance of the incubation period tends to
smooth the annual peaks observed in Figure 6.

• Simulations performed without vertical transmission are qualitatively similar to those
presented above, but, as might be expected, slightly lower the incidence peak in younger
animals observed in Figure 7 (very few cases by the vertical route were obtained, less
than 10%).

• Implementing age-dependent susceptibility does not improve the overall model fit; a
higher peak at younger ages in the age distribution of cases is obtained but the incidence
patterns match observations less well.

• Finally, a higher culling rate generates less scrapie cases, but a relatively higher incidence
peak in younger animals.
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Figure 12 – Influence of the incubation period distribution on the total incidence.
The curves were plotted for various values of the shape parameter k of the gamma
distribution used for the initial infection load: 12 (thick line, usual shape), 5 (solid
line), and 2 (dashed line). The corresponding incubation period distributions are
shown in Figure 13.
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Figure 13 – Incubation period distribuations used in Figure 12. They correspond to
a log-like transformation of the gamma distribution used for the initial infection load,
as shown in equations (12), (13) and (13’), for various values of the shape parameter
k: 12 (thick line, usual shape), 5 (solid line), and 2 (dashed line).
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7 Discussion

We have presented a detailed model of scrapie transmission dynamics within a sheep flock.
The model successfully reproduces key features of the outbreak including seasonal variation
in incidence, age-related patterns of incidence, the distribution of genotypes amongst scrapie
cases and the decline in susceptible genotypes during the course of the outbreak.

Figures 6, 11 & 12 Specifically, we have used this model to explore the hypothesis of
increased transmission during lambing which might result from ingestion of scrapie-infective
placental material. Two extreme scenarios were considered, one in which horizontal transmis-
sion occurs throughout the year and a second, seasonal model, in which horizontal transmission
occurs only during the lambing period. Our results clearly demonstrate that the assumption

of restricted horizontal transmission in the model produces a time course of incidence which

matches far better the seasonal patterns in the incidence data. However, our results cannot
exclude the possibility of some small amount of transmission occurring outside the lambing
period which would be difficult to observe. Further simulations have shown that these results
are quite robust to the length of the lambing season, but that the seasonal pattern of scrapie
cases is lost as the incubation period distribution becomes more variable.

Figures 7 & 8 Although no age-dependent susceptibility was incorporated in the model,
the age distribution of scrapie cases displays a strong peak at young ages due to high levels of
exposure from birth. However, the height of peak is underestimated by the model, possibly
due to increased susceptibility in younger animals (though simulations were not conclusive).
The use of a continuous age distribution in the model, which does not reproduce the popula-
tion cohort structure exactly, might also have the effect of smoothing the curve. Finally, due
to some difficulties in simulating year-to-year variations in flock management, the number of
newborns was globally underestimated by the model which therefore reduced the potential
number of young sheep exposed to scrapie in the flock. In support of this hypothesis, simu-
lations that were run with a higher mortality rate, which is compensated in the model by a
higher birth rate to maintain flock size, did generate a correspondingly higher incidence age
peak.

Figures 9 & 10 The number of scrapie cases per genotype is extremely well reproduced by

the model. Therefore, it seems likely that the discrepancy between model and data in the time
evolution of the allele frequencies is due to sheep that did not show clinical signs of scrapie.
Since the mortality rate of these animals is assumed to depend neither on their genotype, nor
on their scrapie status, one possible explanation is that the selection of replacement ewes was
not entirely independent from genotype, although the hypothesis of Hardy-Weinberg equilib-
rium was globally verified on the data. Another interesting possibility is that the decline in the
frequencies of the most susceptible alleles is underestimated as a consequence of additional

mortality due to pre-clinical scrapie in these individuals. Further evidence supporting this
claim can be found in [4].

Incubation period The incubation period of 1.73 years estimated for the Langlade Ro-
manov outbreak is slightly shorter than previous estimates, for example the 1.9 year incubation
period estimated for the NPU Cheviot flock [25]. This could be explained by the particularly
high force of infection in the early stages of the outbreak or by genotype dependency in the

incubation period. Evidence supporting such differences in the incubation period has come
from both experimental [8] and recent modelling work [18]. In the Romanov data, we found
differences in the observed distributions of age at scrapie death amongst the three most sus-
ceptible genotypes, which would also tend to support the existence of genotype dependency.
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Consequently, the time evolution of the flock genotype frequencies could change the observed
mean incubation, and a longer study period might have given rise to a higher mean incubation
period.

Comparison with other outbreaks The detailed analysis of the Langlade outbreak has
provided evidence to support the hypothesis of increased scrapie transmission during the
lambing period. Further analyses of summary data from three additional Scottish outbreaks
[24] allowed us to identify patterns of incidence common to the four flocks, which also support
this conclusion: seasonality in scrapie incidence; an incidence peak occurring shortly before
the lambing peak; and a strong correspondence between clustering of the lambing period into
a short time period and clustering of scrapie deaths.

This study has highlighted two points of general importance when conducting studies of
this type of outbreak: first, the need to incorporate management and demographic data into

epidemiological models, without which transmission dynamics cannot be fully understood; and
second, the value of mathematical models as flexible tools for combining complex sets of data
inputs and exploring the consequences of alternative biological scenarios.
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APPENDIX

A Overview of the mathematical model

Note: In the equations below corresponding to a “simplified” version of the mathematical

model, the infection load θ is replaced by the infectiousness i, cg = c, and βg(t, θ
′, a) = βg(t, i

′).
The dynamics at time t of susceptible sheep Sg(t, a) of age a > 0 and genotype g is given

by equation (14), where µ(a) represents the non scrapie mortality rate (estimated from data),
and βg(t, i

′) the horizontal transmission rate corresponding to infected sheep Ig′(t, a
′, i′) of age

a′, infectiousness i′ and genotype g′. Equation (14′) describes the birth of susceptible lambs,
where Ggg′(t) represents the probability for a ewe of genotype g′ to get a lamb of genotype g,
b(t, a′) the birth rate for ewes of age a′, and γg(i

′) the proportion of infected lambs born from
infected ewes Ig′(t, a

′, i′).

∂Sg

∂t
+

∂Sg

∂a
(t, a) = −µ(a)Sg(t, a)

− Sg(t, a)
∑

g′

∫ A

0

∫ 1

0
βg(t, i

′)Ig′(t, a
′, i′)di′da′

(14)

Sg(t, 0) =
∑

g′

Ggg′(t)

∫ A

0

b(t, a′)Sg′(t, a
′)da′

+
∑

g′

Ggg′(t)

∫ A

0

b(t, a′)

∫ 1

0

(1− γg(i
′))Ig′(t, a

′, i′)di′da′
(14′)

If a′ is a mature age, b(t, a′) = b(t)s(t), where s(t) is a seasonal function (1 during lambing
seasons, 0 outside), and b(t) is a control term that determines the population size. Ggg′(t) de-
pends on the dam allele frequencies at time t. γg(i

′) = kvσgi
′, where σg represents the relative

susceptibility of genotype g (estimated from data) and kv the vertical transmission scaling
factor. Similarly βg(t, i

′) = khσgi
′[s(t)], s(t) being there only for the seasonal transmission

hypothesis.
The infected sheep Ig(t, a, i) are split according to their contamination route: Hg(t, a, i)

for the horizontal route and Vg(t, a, i) for the “vertical” one (in utero or perinatal). Their
dynamics are given by equations (15) and (16), where φ(i) represents the initial infectiousness
distribution (gamma distribution), and c the exponential rate of increase of the infectiousness
(di

dt = c i). Equation (16′) describes the birth of infected lambs, which by definition only occurs
by vertical transmission, hence (15′). Moreover, infected sheep have a positive infectiousness,
hence boundary conditions (15′′,16′′).

∂Hg

∂t
+

∂Hg

∂a
+

∂c iHg

∂i
(t, a, i) = −µ(a)Hg(t, a, i)

+ φ(i)Sg(t, a)
∑

g′

∫ A

0

∫ 1

0

βg(t, i
′)Ig′(t, a

′, i′)di′da′
(15)

Hg(t, 0, i) = 0 (15′)

Hg(t, a, 0) = 0 (15′′)

∂Vg

∂t
+

∂Vg

∂a
+

∂c iVg

∂i
(t, a, i) = −µ(a)Vg(t, a, i) (16)

Vg(t, 0, i) = φ(i)
∑

g′

Ggg′(t)

∫ A

0

∫ 1

0

b(t, a′)γg(i
′)Ig′(t, a

′, i′)di′da′ (16′)

Vg(t, a, 0) = 0 (16′′)
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B Possible extensions to the model

Birth rate Possible simplifications for the calculation of the birth rate b(t) = u(t) Pb(t),
where Pb(t) represents the breeding population size and u(t) a control term – cf. equa-
tions (7,7’,7”) page 8, are listed below.

• With b(t) chosen so as to compensate the mortality and attain the target population
size Pc at the end of the lambing period, birth equations (3′) and (5′) become:

Sg(t, 0) = u(t)

BS(t)
︷ ︸︸ ︷
∑

g′ Ggg′(t)
∫ a2

a1

(
Sg′(t, a

′) +
∫ 1
0 (1 − γg(θ

′))Ig′(t, a
′, θ′) dθ′

)
da′

Pb(t)
,

Vg(t, 0, θ) = u(t) φ(θ)

BI(t)
︷ ︸︸ ︷
∑

g′ Ggg′(t)
∫ a2

a1

∫ 1
0 γg(θ

′)Ig′(t, a
′, θ′) dθ′ da′

Pb(t)
.

We could fix BS(t) and BI(t) to their values at the beginning of the lambing period; the
first year it would be: BS(t) = BS(ts) and BI (t) = BI (ts), ∀t ∈ [ts, ts + T ].

• We could choose a control u(t) = K[Pc −P (t)] with K very big (so the mortality could
be neglected).

Infectiousness The infectiousness used in the transmission rates (10) and (11) is propor-
tional to the infection load θ′, which increases exponentially during the incubation period (rate
cg). This assumption is not easy to verify. We could instead use a non decreasing function
g(θ′) for the infectiousness. A possible scenario would be to assume that all infected animals
have the same infectiousness, i.e. g(θ′) = 1, ∀θ′.

Horizontal transmission To emphasize the seasonal transmission hypothesis – for which
horizontal transmission mostly occurs from ingestion of scrapie-infective placental material
– horizontal transmission could be chosen proportional to the sum of all infected breeding

animals instead of the total infected population (still weighted by their infectiousness). So
the horizontal transmission rate (10) would also depend on the age a′ of the infecting sheep:

βg(t, a
′, θ′, a) =

{

kh σg θ′ δ(t) [f(a)] if a1 � a′ � a2,

0 otherwise.

Seasonality Two seasonal functions could be introduced instead of s(t) defined in (7’): the
first one sl(t) = s(t) for the lambing period; and the second one sh(t) for the horizontal
transmission period, which could last longer than the lambing season, or be shifted... For
instance, instead of having no transmission outside the lambing period, it could be set at a
very low level ε for the seasonal model:

sh(t) =

{

1 if (t mod 1 yr) ∈ [ts, ts + T ] (lambing period),

ε otherwise.
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