
HAL Id: hal-02832103
https://hal.inrae.fr/hal-02832103

Submitted on 7 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proceedings of the learning language in logic ICML joint
workshop and the challenge task, extracting relations

from biomedical texts
James Cussens, Claire Nédellec

To cite this version:
James Cussens, Claire Nédellec. Proceedings of the learning language in logic ICML joint workshop
and the challenge task, extracting relations from biomedical texts. 4. Learning language in logic
workshop (LLL05), Jun 2005, York, United Kingdom. 75 p., 2005. �hal-02832103�

https://hal.inrae.fr/hal-02832103
https://hal.archives-ouvertes.fr

Foreword

This Learning Language in Logic workshop (LLL05) (http://www.cs.york.ac.
uk/aig/lll/lll05/) is the fourth in a series of LLL workshops. Previous work-
shops took place in Bled (LLL99), Lisbon (LLL00) and Strasbourg (LLL01).
This year LLL takes place as part of the 22nd International Conference on Ma-
chine Learning (ICML 2005) in Bonn, Germany. We would like to thank the
ICML organisers, particularly Hendrik Blockeel, for their help in publicising and
organising LLL05.

The purpose of the workshop is to provide a focus for work which applies
machine learning using logical representations to natural language. Much exist-
ing work in this area uses techniques from inductive logic programming (ILP),
and increasingly statistical relational learning. There is currently much interest
in applying logic-based machine learning to the problem of Information Ex-
traction from biomedical texts, so the major innovation this year was to have
an associated Genic Interaction Extraction Challenge (http://genome.jouy.
inra.fr/texte/LLLchallenge/) organised by the Mathématique, Informatique
et Génome (MIG) laboratory at the French National Institute for Agronomics
Research (INRA). The challenge organisers made available data consisting of
sentences describing interactions between genes and proteins, where proteins are
the agents of interaction and genes are the targets. The goal of the challenge was
to use this data to induce rules for extracting gene/protein interactions, and a
test set was provided by the organisers to evaluate performance on this task.

Significantly, the training data contained considerable linguistic annotation.
Basic annotation consisted of word segmentation plus the identification of agents,
targets and their interactions. Enriched annotation added lemmas (using a named-
entity dictionary) and syntactic dependencies, both manually-checked. Extract-
ing relational events (e.g. an interaction) from text requires this sort of linguis-
tically structured data. We would like to thank all those at MIG-INRA and
LIPN-Université Paris 13 who contributed to creating this data and running the
challenge competition. This work would not have been possible without fund-
ing from the following four projects: the French Caderige project, the French
ExtraPloDocs project, the FP6 Alvis project and the FP6 Pascal Network of
Excellence.

Six research groups, coming from Germany, the UK, the Netherlands, the
Czech Republic and the USA, took up the LLL genic IE challenge and the results
of their endeavours can be found in Part II of these proceedings. We would like
to thank the scientific committee and additional reviewers for the challenge task
who reviewed these papers to a very tight deadline. One of us (CN) has provided
an overview of the IE challenge, and the reader is directed to that paper (page
31) for further information.

Although relational IE is a very important application of the LLL approach
to learning from natural language it is, of course, not the only one. We are

therefore very pleased that Part I of these proceedings includes three papers
not connected to the challenge task. A notable feature of all of these papers
is the combination of a symbolic/logical approach to natural language learning
(the defining feature of LLL) with other methods: memory-based learning, finite
state automata and the EM algorithm, respectively. We would like to thank the
LLL05 PC for their help in reviewing these papers and for other valuable input
towards the organisation of this workshop.

These proceedings and the individual papers are also available via the LLL
bibliography available from the LLL home page http://www.cs.york.ac.uk/
aig/lll/. Please go to this page for further information on LLL research.

June 2005 James Cussens, University of York, UK
Claire Nédellec, MIG-INRA, France

Contributors to the Challenge task

Scientific committee

Érick Alphonse MIG-INRA, France
Philippe Bessières MIG-INRA, France
Christian Blaschke Alma Bioinformatica, Spain
Fabio Ciravegna University of Sheffield, UK
Nigel Collier National Institute of Informatics, Japan
Mark Craven University of Wisconsin, USA
James Cussens University of York, UK
Walter Daelemans University of Antwerp, Belgium
Luc Dehaspe PharmaDM, Belgium
Rob Gaizauskas University of Sheffield, UK
Eric Gaussier Xerox Research Center, France
Udo Hahn Jena University, Germany
Mélanie Hilario University of Geneva, Switzerland
Lynette Hirschman MITRE, USA
Adeline Nazarenko LIPN-Paris13, France
Jude Shavlik University of Wisconsin, USA
Junichi Tsujii University of Tokyo, Japan
Alfonso Valencia University of Madrid, Spain
Anne-Lise Veuthey SIB, Switzerland

Additional reviewers

Mark Goadrich University of Wisconsin, USA
Mark Greenwood University of Sheffield, UK
José Iria University of Sheffield, UK
Jee-Hyub Kim University of Geneva, Swtizerland

Organisation committee

Érick Alphonse MIG-INRA, France
Sophie Aubin LIPN-Paris13, France
Jérôme Azé MIG-INRA & LRI-Paris11, France
Gaël Déral MIG-INRA, France
Julien Gobeill MIG-INRA, France
Alain-Pierre Manine MIG-INRA, France
Thierry Poibeau LIPN-Paris13, France

Contribution to the data preparation

Biological annotation Philippe Bessières
XML editor Gilles Bisson
Data format Gaël Déral
Syntactic parsing Sophie Aubin, Érick Alphonse and Julien Gobeil
Named-entity recognition Gaëtan Lehmann, Gaël Déral and Alain-Pierre Manine

Funding for the challenge task

Research and software development

Caderige Project, Inter-EPST bioinformatics, 1999-2003
ExtraPloDocs, RNTL: 2002-2005
Alvis, FP6-IST-STREP: 2004-2007

Contribution to the data preparation

Pascal FP6-IST-NoE: 2004-2007

LLL05 Programme Committee

Zoltán Alexin University of Szeged, Hungary
Érick Alphonse INRA, France
Mary Elaine Califf Illinois State University, USA
Vincent Claveau Université de Montréal, Canada
James Cussens University of York, UK
Walter Daelemans University of Antwerp, Belgium
Sašo Džeroski Jožef Stefan Institute, Slovenia
Tomaž Erjavec Jožef Stefan Institute, Slovenia
Dimitar Kazakov University of York, UK
Suresh Manandhar University of York, UK
Claire Nédellec INRA, France
Luboš Popeĺınský Masaryk University, Czech Republic
Stephen Pulman University of Oxford, UK
Dan Roth University of Illinois at Urbana-Champaign, USA
Pascale Sébillot IRISA, France
Jude Shavlik University of Wisconsin-Madison, USA

Table of Contents

I General LLL papers

Rule Meta-learning for Trigram-Based Sequence Processing 3
Sander Canisius, Antal van den Bosch, Walter Daelemans

Using ILP to learn a domain theory in the form of a FSA 11
Maria Liakata, Stephen Pulman

A Generic Approach to EM Learning for Symbolic-Statistical Models 21
Taisuke Sato

II Genic Interaction Extraction Challenge Papers

Learning Language in Logic – Genic Interaction Extraction Challenge 31
Claire Nédellec

LLL’05 Challenge: Genic Interaction Extraction—Identification of Lan-
guage Patterns Based on Alignment and Finite State Automata 38

Jörg Hakenberg, Conrad Plake, Ulf Leser, Harald Kirsch, Dietrich Rebholz-
Schuhmann

Automatically Acquiring a Linguistically Motivated Genic Interaction Ex-
traction System . 46

Mark A. Greenwood, Mark Stevenson, Yikun Guo, Henk Harkema, An-
gus Roberts

Learning Biological Interactions from Medline Abstracts 53
Sophia Katrenko, M. Scott Marshall, Marco Roos, Pieter Adriaans

Learning genic interactions without expert domain knowledge: Comparison
of different ILP algorithms . 59

Luboš Popeĺınský, Jan Blaťák

Learning to Extract Genic Interactions Using Gleaner 62
Mark Goadrich, Louis Oliphant, Jude Shavlik

Genic Interaction Extraction with Semantic and Syntactic Chains 69
Sebastian Riedel, Ewan Klein

Author Index . 75

Part I

General LLL papers

1

2

Rule Meta-learning for Trigram-Based Sequence Processing

Sander Canisius S.V.M.Canisius@uvt.nl

ILK / Computational Linguistics and AI, Tilburg University, The Netherlands

Antal van den Bosch Antal.vdnBosch@uvt.nl

ILK / Computational Linguistics and AI, Tilburg University, The Netherlands

Walter Daelemans walter.daelemans@ua.ac.be

CNTS, Department of Linguistics, University of Antwerp, Belgium

Abstract

Predicting overlapping trigrams of class la-
bels is a recently-proposed method to im-
prove performance on sequence labelling
tasks. In this method, sequence elements
are effectively classified three times, there-
fore some procedure is needed to post-process
those overlapping classifications into one out-
put sequence. In this paper, we present a
rule-based procedure learned automatically
from training data. In combination with
a memory-based leaner predicting class tri-
grams, the performance of this meta-learned
overlapping trigram post-processor matches
that of a handcrafted post-processing rule
used in the original study on class tri-
grams. Moreover, on two domain-specific en-
tity chunking tasks, the class trigram method
with automatically learned post-processing
rules compares favourably with recent proba-
bilistic sequence labelling techniques, such as
maximum-entropy markov models and con-
ditional random fields.

1. Introduction

Many tasks in natural language processing involve the
complex mapping of sequences to other sequences.
One typical machine-learning approach to such se-
quence labelling tasks is to rephrase the sequence-to-
sequence mapping task (where a sequence can have a
variable length) as a decomposition into a sequence of
local classification steps. In each step, one fixed-length

Appearing in Proceedings of the 4 th Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

feature vector is mapped to an isolated token in the
output sequence. After all local classifications have
been made, a simple concatenation of the predicted
output tokens yields the complete output sequence.

The standard representational approach to decom-
pose sequence processes into local-classification cases,
is windowing. Within a window, fixed-length subse-
quences of adjacent input symbols, representing a cer-
tain contextual scope, are mapped to one output sym-
bol, typically associated with one of the input symbols,
for example the middle one. The fact that the classi-
fier is only trained to associate subsequences of input
symbols to single output symbols as accurately as pos-
sible is a problematic restriction: it may easily cause
the classifier to produce invalid or impossible output
sequences, since it is incapable of taking into account
any decisions it has made earlier, or even decisions it
might have to make further on in the input sequence.

Techniques attempting to circumvent this restriction
can be categorised mainly into two general classes.
One of those improves upon naive methods by opti-
mising towards the most likely sequence of class labels,
rather than the sequence of individually most likely la-
bels. In order to find this most likely sequence in tasks
where the class labels of sequence elements are strongly
interrelated, it may be necessary to match sequence el-
ements with class labels that are deemed sub-optimal
by the underlying classifier, which only bases its de-
cisions on local information. This class of techniques
includes recently proposed methods such as maximum-
entropy markov models (McCallum et al., 2000) and
conditional random fields (Lafferty et al., 2001).

The other class is formed by techniques that rely more
on the quality of the predictions made by the under-
lying classifier; they do not consider label sequences
other than those derived from the class labels sug-

3

Rule Meta-learning for Trigram-Based Sequence Processing

gested by the classifier to be the most-likely ones.
Representatives of this class that have been used for
sequence labelling tasks in the past are a feedback-
loop method as used for example by Daelemans et al.
(1996) with memory-based learning, and by Ratna-
parkhi (1996) with maximum-entropy modelling, in
which previous decisions are encoded as features in the
current input of the classifier, and stacking (Wolpert,
1992), a term referring to meta-learning systems that
learn to correct errors made by lower-level classifiers.

Predicting overlapping trigrams of class labels, a new
method for performing sequence labelling proposed by
Van den Bosch and Daelemans (2005), can be seen as
a member of the latter class. That is, the technique
can be applied to any classifier able to predict a most-
likely class label for a given test instance; there is no
requirement that the classifier also models the likeli-
hood of other, sub-optimal classes as is required for the
methods in the first class. However, with the trigram
class method, the final label sequence is not simply
obtained by concatenating the classifications for the
individual sequence elements. With the trigram class
method each sequence element is effectively classified
three times; for this reason, some post-processing is
required to determine the final label to be assigned to
each sequence element.

Van den Bosch and Daelemans (2005) use a sim-
ple voting technique with a tie-breaking rule based
on classifier-dependent confidence values for this pur-
pose, but emphasise that this is just one possible,
and rather simple technique to combine overlapping
trigram classes. Other post-proecssing methods may
prove to be more appropriate, for example by result-
ing in better performance scores, or by allowing the
full potential of the n-gram class method (with n > 3)
to be reached. This paper presents one such alter-
native, based on rule induction where features corre-
spond to various logical assertions about the identity
of the overlapping trigrams, or equalities between the
three overlapping predictions.

The learned post-processing rules are tested in a pair
of benchmark experiments, where a memory-based
learner, which was the better performing classifier out
of three different classifiers tested by Van den Bosch
and Daelemans (2005), is combined with the class tri-
gram method to perform two domain-specific entity
chunking task. On these tasks, we evaluate the effect
of using rule induction for combining overlapping tri-
grams and show that the class trigram method with a
post-processing method based on rule induction is able
to improve upon the baseline performance, with mar-
gins comparable to those obtained with a handcrafted

combination procedure.

To measure the relative performance of the memory-
based learning/class trigram combination, we also per-
form a series of experiments where three state-of-the-
art probabilistic sequence labelling techniques – con-
ditional markov models, maximum-entropy markov
models, and conditional random fields – are applied to
the same benchmark tasks. On one of the two tasks,
the memory-based learner with trigram classes, out-
performs all three probabilistic learners; on the other
task, conditional random fields prove to be superior,
with the memory-based learner ending second.

The structure of the paper is as follows. First, we in-
troduce the two chunking sequence segmentation tasks
studied in this paper, in Section 2. Section 3 intro-
duces two approaches for automatically learning class
trigram combination rules, and reports on experiments
that evaluate the performance of the resulting combi-
nation procedures. Next, the class trigram method
is empirically compared with three recent probabilis-
tic sequence labelling methods in Section 4. Finally,
Section 5 sums up and discusses the main empirical
results.

2. Data and Methodology

The two data sets that have been used for this study
are examples of sentence-level entity chunking tasks:
concept extraction from general medical encyclopedic
texts (henceforth med), and labelling of DNA, RNA,
protein, cellular, and chemical terms in MEDLINE ab-
stracts (genia). Med is a data set extracted from a
semantic annotation of parts of two Dutch-language
medical encyclopedias. On the chunk-level of this an-
notation, there are labels for various medical concepts,
such as disease names, body parts, and treatments,
forming a set of twelve concept types in total. Chunk
sizes range from one to a few tokens. Using a 90%–
10% split for producing training and test sets, there
are 428,502 training examples and 47,430 test exam-
ples.

Bij [infantiel botulisme]disease kunnen in extreme
gevallen [ademhalingsproblemen]symptom en [alge-
hele lusteloosheid]symptom optreden.

The Genia corpus (Tateisi et al., 2002) is a collection
of annotated abstracts taken from the National Li-
brary of Medicine’s MEDLINE database. Apart from
part-of-speech tagging information, the corpus anno-
tates a subset of the substances and the biological lo-
cations involved in reactions of proteins. Using a 90%–
10% split for producing training and test sets, there are

4

Rule Meta-learning for Trigram-Based Sequence Processing

458,593 training examples and 50,916 test examples.

Most hybrids express both [KBF1]protein and [NF-
kappa B]protein in their nuclei, but one hybrid ex-
presses only [KBF1]protein.

Apart from having a similar size, both data sets are
alike in the sense that most words are outside chunks;
many sentences may even contain no chunks at all.
Thus, the class distributions of both tasks are highly
skewed. In this respect the tasks differ from, for ex-
ample, syntactic tasks such as part-of-speech tagging
or base-phrase chunking, where almost all tokens are
assigned a relevant class. However, for all tasks men-
tioned, whenever chunks are present in a sentence,
there is likely to be interaction between them, where
the presence of one chunk of a certain type may be a
strong indication of the presence of another chunk of
the same or a different type in the same sentence.

2.1. Experimental Setup

Van den Bosch and Daelemans (2005) tested their
class trigram method with three different classifiers
as base classifier; of those three classifiers, memory-
based learning performed best; hence, the experiments
in Section 3, where the class trigram method is evalu-
ated, are performed using the memory-based learning
or k-nearest neighbour algorithm (Cover & Hart, 1967)
as implemented in the TiMBL software package (ver-
sion 5.1) (Daelemans et al., 2004). The combination
rules for merging the overlapping class trigrams pro-
duced by the base classifier are induced using ripper
(Cohen, 1995).

The memory-based learning algorithm has algorithmic
parameters that bias its performance; for example, the
number of nearest neighbours, the distance metric, etc.
The optimal values for these parameters may differ de-
pending on the task to be learned. To obtain maxi-
mum performance, we optimised the parameter set-
tings on each task using wrapped progressive sampling
(wps) (Van den Bosch, 2004), a heuristic automatic
procedure that, on the basis of validation experiments
internal to the training material, searches among al-
gorithmic parameter combinations for a combination
likely to yield optimal generalisation performance on
unseen data. We used wrapped progressive sampling
in all experiments.

The experiments described in Section 4 are per-
formed using three different probabilistic sequence
learning techniques. Conditional markov models and
maximum-entropy markov models have been imple-
mented on top of the maximum-entropy toolkit (ver-

sion 20041229) by Zhang Le1. For conditional random
fields, we used the implementation of MALLET (Mc-
Callum, 2002).

Instances for all experiments are generated for each
token of a sentence, with features for seven-word win-
dows of words and their (predicted) part-of-speech
tags. The class labels assigned to the instances form
an IOB encoding of the chunks in the sentence, as
proposed by Ramshaw and Marcus (1995). In this en-
coding the class label for a token specifies whether the
token is inside (I), outside (O), or at the beginning of a
chunk (B). An additional type label appended to this
symbol denotes the type of the chunk. The instances
are used in exactly this form in all experiments for all
algorithms; no feature selection or construction is per-
formed to optimise the instances for a specific task or
classifier. Keeping the feature vectors unchanged over
all experiments and classifiers is arguably the most ob-
jective setup for comparing the results.

Generalisation performance is measured by the F-score
(β = 1) on correctly identified and labelled entity
chunks in test data. Experimental results are pre-
sented in terms of a mean score, and an approximate
90%-confidence interval; both of those are estimated
with bootstrap resampling (Noreen, 1989). Confidence
intervals are assumed to be centred around the mean,
where the width of the halves at both sides of the
mean is taken to be the maximum of the true widths
obtained in the resampling process.

3. Predicting Class Trigrams

a cb d fe g

A B C D E F G

input sequence

output sequence

a cb_ _ b dc_ a

, , ...
window 1 window 2

A_ B B CA

Figure 1. Windowing process with trigrams of class sym-
bols. Sequences of input symbols and output symbols are
converted into windows of fixed-width input symbols each
associated with, in this example, trigrams of output sym-
bols.

1http://homepages.inf.ed.ac.uk/s0450736/
maxent toolkit.html

5

Rule Meta-learning for Trigram-Based Sequence Processing

As Van den Bosch and Daelemans (2005) argue, there
is no intrinsic bound to what is packed into a class la-
bel associated to a windowed example. For example,
complex class labels can span over trigrams of singu-
lar class labels. Figure 1 illustrates the procedure by
which windows are created with class trigrams. Each
windowed instance maps to a class label that incorpo-
rates three atomic class labels, namely the focus class
label that was the original unigram label, plus its im-
mediate left and right neighbouring class labels.

While creating instances this way is trivial, it is not
entirely trivial how the output of overlapping class
trigrams recombines into a normal string of class se-
quences. When the example illustrated in Figure 1 is
followed, each single class label in the output sequence
is effectively predicted three times; first, as the right
label of a trigram, next as the middle label, and finally
as the left label. The redundancy caused by predict-
ing each class label three times may be exploited to do
better than the classifier that only predicts each class
label once. What is needed then, is a combination
procedure that intelligently determines the final class
label for each token, given a number of overlapping
predictions.

Van den Bosch and Daelemans (2005) propose a simple
procedure based on the observation that, in the case of
overlapping class label trigrams, it is possible to vote
over them. The voting scheme proposed by Van den
Bosch and Daelemans (2005) returns the class label
which receives the majority of votes (in this case, either
two or three), or when all tree votes disagree (i.e. when
majority voting ties), returns the class label of which
the classifier is most confident. Classifier confidence,
needed for tie-breaking, is a classifier-specific metric
expressing the classifier’s confidence in the correctness
of the predicted class; for the memory-based learner it
may be heuristically estimated by, for example, taking
the distance of the nearest neighbour, which is the
approach adopted by (Van den Bosch & Daelemans,
2005).

Clearly this scheme is one out of many possible
schemes: other post-processing rules may be used, as
well as other values of n (and having multiple classifiers
with different n, so that some back-off procedure could
be followed). Another interesting possibility, and the
approach taken in the current study, is to apply meta-
learning to the overlapping outputs of the first-stage
classifier, so that a data-driven post-processing proce-
dure is learned automatically from examples extracted
from a first-stage classifier producing overlapping class
trigrams.

In the current study, we developed two meta-learning

combination procedures based on rule induction, in
which the instances for the meta-learner describe the
overlapping class trigrams in some form, and the
classes to be predicted correspond to the combined un-
igram class label. The first method is a rather straight-
forward approach in which instances consist of features
for the three overlapping class trigrams; the other is
a more sophisticated procedure, where features cor-
respond to logical assertions about matches between
components of the overlapping trigrams. The exact de-
tails of both approaches are described in the remainder
of this section, where in addition, their performance is
evaluated on the two benchmark tasks med, and ge-
nia.

Meta-learning based on class trigram features

A straightforward design for a meta-learner for com-
bining multiple overlapping classifications into a single
class label is a classifier trained on instances that sim-
ply encode the overlapping classifications as features,
and the class labels for these meta-learning instances
correspond to the combined classes to be predicted.

To generate training data for the rule inducer, an in-
ternal cross-validation experiment has been performed
on the training data, resulting in a realistic set of ex-
amples of first-stage class trigram outputs. On the
training set thus obtained, a rule inducer has been
trained, leading to a rule set that predicts a single un-
igram class label given the three overlapping class tri-
grams predicted by the first-stage mbl classifier. The
performance of this rule set on both the med, and ge-
nia entity chunking tasks is presented in Table 1 under
the “Learned 1” column, where it is compared with the
performance of a unigram-class producing mbl classi-
fier, and with the performance of the handcrafted post-
processing procedure of Van den Bosch and Daelemans
(2005).

Compared with the baseline performance, the class tri-
gram method with this learned combination procedure
attains a substantial performance increase, thereby
both confirming the advantage of predicting class tri-
grams for sequence labelling tasks, and showing the
possibility of using a rule inducer to automatically pro-
duce combination rules that successfully exploit the
redundancy present in the overlapping class trigrams.
However, the learned combination rules do not perform
better than the handcrafted procedure, which outper-
forms the learned rules by approximately one point on
both tasks.

6

Rule Meta-learning for Trigram-Based Sequence Processing

Table 1. Comparison of generalisation performances of the baseline mbl classifier, and three trigram class approaches
using different combination procedures. The best performance per task is printed in bold.

Trigram post-processing
Task Baseline Handcrafted Learned 1 Learned 2

med 64.7 ±0.95 67.5 ±1.09 66.7 ±0.88 67.7 ±1.07
genia 55.7 ±1.14 60.1 ±1.01 58.9 ±1.11 60.4 ±1.12

Meta-learning based on class overlap features

A huge disadvantage of the previous approach is the
fact that the class trigrams encoded as features in the
instances can only be treated as atomic symbols by the
rule inducer; there is no way for a rule to refer to the
left component of a trigram, let alone to draw paral-
lels between a component of one trigram and that of
another. To circumvent this limitation, we designed
a more fine-grained description of the overlapping tri-
grams based on logical assertions about the compo-
nents of the overlapping trigrams, and about matches
between two trigrams regarding the class label of the
token in focus. For example, the following overlapping
trigrams

t−1 = (O, O, A)
t0 = (A, B, A)
t+1 = (A, O, C)

would be encoded as follows.

¬match on focuspos(t−1, t0),
match on focuspos(t−1, t+1),
¬match on focuspos(t0, t+1),
¬all agree on focuspos,

focussym(t−1) = A,
focussym(t0) = B,
focussym(t+1 = A)

Here, the focussym function returns the component
label of the argument trigram describing the token cur-
rently in focus; that is, for t−1, it returns the right
symbol, for t0, the middle, and for t+1, the left. The
match on focuspos relation can then be defined as

match on focuspos(x, y) ⇐⇒
focussym(x) = focussym(y)

By using this representation language for the overlap-
ping class trigrams, the rule inducer is guided to focus
on the information about the focus class present in
the trigrams. Again, training material for this exper-
iment has been generated by performing an internal
cross-validation on the training set.

As can be seen in Table 1 in the column marked

“Learned 2”, this instance description turns out to
be a better choice than our previous attempt, al-
lowing the rule inducer to produce combination rules
that outperform those produced by the method de-
scribed previously. It outperforms both the base-
line approach, and the previous meta-learned post-
processing method. Compared with the handcrafted
method, the meta-learned post-processing procedure
appears to perform slightly better, although this dif-
ference is nowhere near significance.

Analysis

The experiments described in this section show that
rule induction can be used to produce a set of post-
processing rules with which the class trigram method
can outperform the baseline classifier. However, the
fact that the best-performing learned combination pro-
cedure does not significantly outperform the hand-
crafted post-processing rule might seem surprising at
first. It should be noted though that the majority vot-
ing rule is rather high-level rule, not easily expressed
in the description language used in our experiments.
Suppose we would replace the confidence-based tie-
breaking rule in the handcrafted post-processing pro-
cedure by a rule that always selects the focus symbol
of the middle trigram. In that case, a logical formula-
tion of the majority voting procedure would probably
look like the following decision list.

∀X(
focussym(t−1) = focussym(t+1) = X ⇒ X,
focussym(t0) = X ⇒ X)

However, such use of variables is not possible in our
description language. The best rule induction can do
to match majority voting behaviour is to invent it sep-
arately for each class.

focussym(t−1) = focussum(t+1) = I–disease ⇒
I–disease,
focussum(t−1) = focussum(t+1) = B–disease ⇒
B–disease,
. . .
focussym(t0) = I–disease ⇒ I–disease,
focussym(t0) = B–disease ⇒ B–disease,
. . .

7

Rule Meta-learning for Trigram-Based Sequence Processing

Table 2. Percentage of agreement between handcrafted
post-processing and the meta-learned post-processing pro-
cedure in case there is a majority vote among the three
overlapping class trigrams, and in case there is no such
majority.

Task Majority No majority

med 99.16 30.80
genia 97.89 29.46

Given that the performance of the best learned com-
bination procedure roughly equals that of the hand-
crafted post-processing rule, the interesting question
is whether rule induction did in fact reinvent major-
ity voting, or whether it produced an entirely different
rule set that coincidentally results in comparable per-
formance.

An inspection of the rules produced for med offers a
mixed view. For many classes, there are high-priority
rules that dictate always believing the middle trigram,
be it in various different formulations. For other
classes, the highest-priority rule does first check for
an overruling majority, before assigning the class sug-
gested by the middle position in the middle trigram.
In addition to these rules, which may be interpreted
as voting-like behaviour, there are also more original
rules that select the class suggested by, for example,
the right trigram in favour of the one predicted by the
middle trigram; or even rules that might be interpreted
as small error correction rules.

For a more definite answer to the question whether the
learned rules emulate a majority voting procedure, we
computed two overlap metrics between the output of
the handcrafted post-processing procedure and that of
the meta-learned post-processing procedure: the first
measures the percentage of agreement between the two
in case there is a majority vote among the three over-
lapping class trigrams; the other measures the percent-
age of agreement in case there is no majority. The two
metrics computed for both benchmark tasks are listed
in Table 2. As can be seen, if there is a majority vote
among the overlapping trigrams, there is almost ex-
act agreement between the two different combination
procedures. However, in the case of no majority, both
methods agree on only 30 percent of the classifications.

These findings lead to the conclusion that the learned
combination procedure does indeed implement major-
ity voting. However, it differs from the original hand-
crafted post-processing rule in the way it deals with
ties. This is hardly surprising since the information
used for tie-breaking in the original voting rule – clas-
sifier confidence – is not available to the rule inducer

generating the learned combination procedure.

4. Predicting Class Trigrams versus
Probabilistic Output Sequence
Optimisation

The class trigram method proposed by Van den Bosch
and Daelemans (2005), and evaluated in a slightly
modified form in the previous section, is one method
for basing decisions for an individual token on the
wider sequential context of this token. Both Van den
Bosch and Daelemans (2005) and the current study
show that predicting class trigrams is an effective
method to improve upon a baseline classifier that clas-
sifies each token with respect to only a small local con-
text. In order to evaluate the class trigram method
with respect to more competitive reference scores, we
also compared the method with another popular ap-
proach for improving sequence labelling: probabilis-
tic sequence labelling techniques. In this section,
three different methods based on this general approach
are applied to the sample tasks: conditional markov
models, maximum-entropy markov models, and con-
ditional random fields.

4.1. Conditional Markov Model

Conditional markov models (cmm), as used for ex-
ample by Ratnaparkhi (1996), supplement a stan-
dard maximum-entropy model with a feedback loop,
in which a prespecified number of previous decisions
of the classifier are fed back to the input as features
for the current test instance. However, as maximum-
entropy models do not simply predict a single most-
likely class label, but rather model the entire condi-
tional class probability distribution, classification of
a token does not yield one partial labelling, namely,
the partial labelling up to the current token followed
by the current classification, but as many partial la-
bellings as there are target labels, namely the partial
labelling until the current token followed by any of the
possible target labels.

As the use of a feedback loop makes the current clas-
sification depend on the results of previous classifica-
tions, each token in the sequence has to be classified
in the context of each possible partial labelling up to
that point. Clearly, this approach, if applied naively,
gives rise to an exponential increase in possible partial
labellings at each token. Therefore, cmms employ a
beam search to find the eventual best labelling. With
beam search, at each point in time, only a prespeci-
fied number of partial labellings – those having high-
est probability – are considered for expansion, all the

8

Rule Meta-learning for Trigram-Based Sequence Processing

Table 3. Comparison of generalisation performances of the mbl classifier predicting class trigrams, and each of the prob-
abilistic methods. The best performances per task are printed in bold.

Task mbl cmm memm crf

med 67.7 ±1.07 59.7 ±1.07 60.3 ±1.13 63.4 ±0.95
genia 60.4 ±1.12 59.9 ±1.04 56.1 ±1.11 62.8 ±1.08

other candidates are discarded.

When tested on the two sample tasks, cmm obtains
the scores listed in the third column of Table 3. In
comparison with the trigram-predicting mbl classifier,
it performs considerably worse on med, but similarly
on genia.

4.2. Maximum-entropy Markov Model

A more recent probabilistic sequence labelling method
is the maximum-entropy markov model (memm), pro-
posed by McCallum et al. (2000). Derived from hid-
den markov models, memms are modelled after a prob-
abilistic state machine, in which, in the simplest case,
a state corresponds to the output label of the previous
token, and for each state, a separate conditional prob-
ability distribution determines the next state, that is,
the output label for the current token, given the fea-
ture vector of this token. A slight modification of
the Viterbi algorithm is used to determine the opti-
mal path through the state machine given the input
sequence.

The fourth column of Table 3 shows the performance of
memm applied to the med and genia tasks. On both
tasks, memm is outperformed by the mbl classifier.
For med, memm’s score is quite similar to that of cmm,
but on genia, memm is outperformed by cmm as well.

4.3. Conditional Random Fields

Conditional random fields (crf) (Lafferty et al., 2001)
have been designed to resolve some of the shortcom-
ings of memms. The main difference lies in the number
of probabilistic models used for estimating the condi-
tional probability of a sequence labelling: memms use
a separate probabilistic model for each state, whereas
crfs have a single model for estimating the likelihood
of an entire label sequence. The use of a single proba-
bilistic model leads to a more realistic distribution of
the probability mass among the alternative paths. As
a result, crfs tend to be less biased towards states
with few successor states than cmms and memms.

On both sample tasks, crf attains the highest scores of
all three probabilistic methods tested; the last column
in Table 3 shows the scores. Compared with mbl, crf

performs considerably worse on med, but this order is
reversed on genia, where crf attains the best score.

5. Conclusion

Classifiers trained on entity chunking tasks that make
isolated, near-sighted decisions on output symbols and
that do not optimise the resulting output sequences af-
terwards or internally through a feedback loop, tend to
produce weaker models for sequence processing tasks
than classifiers that do. The two entity chunking tasks
investigated in this paper are challenging tasks; not
only because they demand the classifier to be able to
segment and label variable-width chunks while obeying
the syntax of the chunk analysis, but also because pos-
itive examples of labelled chunks are scattered sparsely
in the data.

Following Van den Bosch and Daelemans (2005), this
paper used a method based on predicting overlapping
class trigrams to boost the performance of an mbl clas-
sifier on the two entity chunking tasks. Unlike the
original work on class trigrams, however, the current
study replaced the handcrafted post-processing rules
by post-processing procedures learned automatically
from labelled example data.

In a series of experiments, the two automatically
learned post-processing procedures have been com-
pared with a baseline unigram class predicting classi-
fier, and with a class trigram predicting classifier using
the original handcrafted post-processing rule. A meta-
learner that simply tries to map the three overlapping
class trigrams to a single class unigram was able to
improve upon the baseline performance, but in com-
parison with the handcrafted post-processing rule, its
performance was considerably worse.

The other meta-learned post-processing procedure
used a description language that was more fine-
grained, allowing the rules to refer to component sym-
bols of the trigrams, as well as matches between them.
With this representation language, a performance is
attained that matches that of the handcrafted post-
processing rule. Further analysis of the learned combi-
nation rules points out that they implement a voting
procedure in quite the same way as the handcrafted

9

Rule Meta-learning for Trigram-Based Sequence Processing

post-processing rule does. However, both methods do
differ in the way ties are dealt with. The handcrafted
rule bases its decision on classifier confidence, whereas
the learned procedure contains separate tie-breaking
rules for each different class. Overall, the results show
that predicting class trigrams is a useful method to
improve upon a baseline classifier predicting unigram
classes, and that majority voting is sound method for
combining the overlapping class trigrams produced by
the base classifier.

In order to evaluate the class trigram method with
more competitive reference scores, a number of prob-
abilistic sequence labelling methods have been evalu-
ated on the same entity chunking tasks. On the two
benchmark sets, the class trigram method compares
rather favourably with the probabilistic methods: on
med, it outperforms all three probabilistic methods by
large margin; on genia, conditional random fields are
the best performing method, mbl with class trigrams
ending second, with a performance that is roughly sim-
ilar to that of the conditional markov model.

These findings suggest that not only is the class tri-
gram method able to improve upon a baseline clas-
sifier predicting only unigram classes, an optimised
mbl classifier predicting class trigrams followed by a
learned combination procedure also performs rather
similarly to state-of-the-art probabilistic sequence la-
belling techniques.

Acknowledgements

The work of the first author is funded by the Nether-
lands Organisation for Scientific Research (NWO) as
part of the NWO IMIX Programme.

References

Cohen, W. (1995). Fast effective rule induction. Pro-
ceedings 12th International Conference on Machine
Learning (pp. 115–123). Morgan Kaufmann.

Cover, T. M., & Hart, P. E. (1967). Nearest neigh-
bor pattern classification. Institute of Electrical and
Electronics Engineers Transactions on Information
Theory, 13, 21–27.

Daelemans, W., Zavrel, J., Berck, P., & Gillis, S.
(1996). mbt: A memory-based part of speech tag-
ger generator. Proceedings of Fourth Workshop on
Very Large Corpora (pp. 14–27).

Daelemans, W., Zavrel, J., Van der Sloot, K., & Van
den Bosch, A. (2004). TiMBL: Tilburg memory
based learner, version 5.1.0, reference guide (Tech-

nical Report ILK 04-02). ILK Research Group,
Tilburg University.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. Proceedings
of the 18th International Conference on Machine
Learning. Williamstown, MA.

McCallum, A., Freitag, D., & Pereira, F. (2000).
Maximum entropy Markov models for information
extraction and segmentation. Proceedings of the
17th International Conference on Machine Learn-
ing. Stanford, CA.

McCallum, A. K. (2002). Mallet: A machine learning
for language toolkit. http://mallet.cs.umass.edu.

Noreen, E. (1989). Computer-intensive methods for
testing hypotheses: an introduction. John Wiley and
sons.

Ramshaw, L., & Marcus, M. (1995). Text chunking
using transformation-based learning. Proceedings
of the 3rd ACL/SIGDAT Workshop on Very Large
Corpora, Cambridge, Massachusetts, USA (pp. 82–
94).

Ratnaparkhi, A. (1996). A maximum entropy part-
of-speech tagger. Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
May 17-18, 1996, University of Pennsylvania.

Tateisi, Y., Mima, H., Tomoko, O., & Tsujii, J. (2002).
Genia corpus: an annotated research abstract cor-
pus in molecular biology domain. Human Language
Technology Conference (HLT 2002) (pp. 73–77).

Van den Bosch, A. (2004). Wrapped progressive sam-
pling search for optimizing learning algorithm pa-
rameters. Proceedings of the 16th Belgian-Dutch
Conference on Artificial Intelligence (pp. 219–226).
Groningen, The Netherlands.

Van den Bosch, A., & Daelemans, W. (2005). Im-
proving sequence segmentation learning by predict-
ing trigrams. Proceedings of the Ninth Conference
on Computational Natural Language Learning. To
appear.

Wolpert, D. H. (1992). Stacked Generalization. Neural
Networks, 5, 241–259.

10

Using ILP to learn a domain theory in the form of a FSA

Maria LIAKATA and Stephen PULMAN
Centre for Linguistics and Philology

Walton Street
University of Oxford

U.K.,
maria.liakata@clg.ox.ac.uk, stephen.pulman@clg.ox.ac.uk

June 13, 2005

Abstract
This paper describes a method for induc-
ing a domain theory from a corpus of
parsed sentences by means of ILP tech-
niques. A ‘domain theory’ in the current
context stands for a collection of facts and
generalisations or rules which describe en-
tities and relations between entities within
a domain of interest. As language users,
we implicitly draw on such theories in vari-
ous disambiguation tasks, such as anaphora
resolution and prepositional phrase attach-
ment, or to draw inferences. Formal en-
codings of domain theories can be used for
this purpose in natural language processing
but they may also be objects of interest in
their own right, that is, as the output of a
knowledge discovery process. The patterns
learnt are represented as FSAs, providing a
graphical representation and a more com-
pact format than the original symbolic rules.
The approach is generizable to different do-
mains provided it is possible to get logical
forms for the text in the domain.

1. Introduction

It is an old observation that in order to choose the
correct reading of an ambiguous sentence, we need
a great deal of knowledge about the world. Moreover,

Appearing in Proceedings of the 4 th Learning Language in Logic
Workshop (LLL05), Bonn, Germany, 2005. Copyright 2005 by the
author(s)/owner(s).

world knowledge is crucial to all types of linguistic
disambiguation and reasoning, as reflected in work
such as [Hobbs et al.1993], where hand-coded prag-
matic inference rules are used for linguistic interpre-
tation in naval operation and terrorist reports. Rather
than constructing such rules manually, which is time
consuming and difficult to replicate, the current pa-
per proposes a method for learning automatically from
text a set of domain rules describing associations be-
tween two or more verbs and their respective argu-
ments. Note that this is a different goal from merely
obtaining selectional preferences for verbs as we are
primarily interested in detecting more long range de-
pendencies between verbs.

2. Some background

[Pulman2000] describes a method for obtaining a the-
ory for prepositional phrase disambiguation. This
approach inverts the observation that disambiguation
decisions depend on knowledge of the world and
showed that it is possible to learn a simple domain the-
ory from a disambiguated corpus by capitalising on
the information tacitly contained in the disambigua-
tion decisions. Ambiguous sentences from a subset
of the ATIS (air travel information service) corpus
[Doddington and Godfrey1990] were annotated so as
to indicate the preferred reading, e.g.

[do,they,[serve,a,meal],on,
[the,flight,from,san_francisco,to,atlanta]]

The ‘good’ and the ‘bad’ parses were used to produce
simplified first order logical forms representing the
semantic content of the various readings of the sen-

1

11

tences. The ‘good’ readings were used as positive ev-
idence, and the ‘bad’ readings (or more accurately, the
bad parts of some of the readings) were used as nega-
tive evidence. Next the Inductive Logic Programming
algorithm, Progol [Muggleton1995], was used to learn
a theory of prepositional relations in this domain: i.e.
what kinds of entities can be in these relations, and
which cannot.

Among others generalisations like the following
were obtained (all variables are implicitly universally
quantified):

fare(A) ∧ airline(B) → on(A, B)
meal(A)∧ flight(B) → on(A, B)

This domain theory was then used successfully in dis-
ambiguating a small held-out section of the corpus, by
checking for consistency between logical forms and
domain theories.

While the numbers of sentences involved in that ex-
periment were too small for the results to be sta-
tistically meaningful, the experiment proved that the
method works in principle. Moreover, the results of
the theory induction process are perfectly comprehen-
sible - the outcome is a theory with some logical struc-
ture, rather than a black box.

3. Current Approach

The current paper seeks to extend this approach and
at the same time derive less specialised rules that can
be useful in a variety of tasks ranging from differ-
ent types of linguistic disambiguation to reasoning
(e.g. in question-answering). The method requires a
fully parsed corpus with corresponding logical forms.
We have experimented with larger datasets, using the
Penn Tree Bank [Marcus et al.1994] since the syntac-
tic annotations for sentences given there are intended
to be complete enough for semantic interpretation, in
principle, at least.

In practice, [Liakata and Pulman2002] report, it is by
no means easy to do this. It is possible to recover
partial logical forms from a large proportion of the
treebank, but these are not complete or accurate
enough to simply replicate the ATIS experiment. In
the work reported here, we selected about 40 texts
containing the verb ‘resign’, all reporting, among

other things, ‘company succession’ events, a scenario
familiar from the Message Understanding Conference
(MUC) task [Grishman and Sundheim1995]. The
texts amounted to almost 4000 words in all. Then
we corrected and completed some automatically
produced logical forms by hand to get a fairly full
representation of the meanings of these texts (as far
as is possible in first order logic). We also resolved
by hand some of the simpler forms of anaphoric
reference to individuals to simulate a fuller discourse
processing of the texts.

To give an example, a sequence of sentences like:

J.P. Bolduc, vice chairman of W.R. Grace & Co.
(...) was elected a director. He succeeds Terrence D.
Daniels,... who resigned.

was represented by the following sequence of literals:

verb(e1,elect).
funct_of(’J.P._Bolduc’,x1).
...
subj(e1,unspecified).
obj(e1,x1).
description(e1,x1,director,de1).
verb(e5,succeed).
subj(e5,x1).
funct_of(’Terrence_D._Daniels’,x6).
obj(e5,x6).
verb(e4,resign).
subj(e4,x6).

The representation is a little opaque, for implementa-
tion reasons relating to the input settings of the learn-
ing mechanism. The above example can be para-
phrased as follows: there is an event, e1, of elect-
ing, the subject of which is unspecified, and the object
of which is x1. x1 is characterised as ‘J P Bolduc’,
and e1 assigns the description de1 of ‘director’ to x1.
There is an event e5 of succeeding, and x1 is the sub-
ject of that event. The object of e5 is x6, which is
characterised as Terrence D Daniels. There is an event
e4 of resigning and the subject of that event is x6.

The reason for all this logical circumlocution is that
we are trying to learn a theory of the ‘verb’ predicate,
in particular we are interested in relations between dif-
ferent verbs as well as associations between verbs and
their argument since these may well be indicative of
causal or other regularities that should be captured in

12

the theory of the company succession domain. If the
individual verbs were represented as predicates rather
than arguments of a ‘verb’ predicate we would not be
able to generalise over them: we are restricted to first
order logic, and this would require higher order vari-
ables.

We also need to add some background knowledge. We
assume a fairly simple flat ontology. It is also pos-
sible to work with hierarchical ontologies, for exam-
ple WordNet. Indeed, in a version of our experiment
we obtained all hypernym chains for verbs and con-
figured the learning algorithm to add a verb concept
to each iteration, from most general to specific, until
the pattern would fail to exceed a certain threshold.
However, this approach led to overly general, uninfor-
mative patterns. For the purpose of this experiment, it
was not deemed necessary to repeat the same process
with verb arguments.

Entities were assigned to classes semi-automatically,
using clustering techniques described in
[Liakata2004] followed by manual adjustment.
The latter involved merging the 32 classes resulting
from the automatic clustering into 11 principal
categories, namely the following:

company, financial instrument, financial transaction,
location, money, number, person, company position,
product, time, and unit (of organisation).

As with the ‘verb’ predicate, the representation has
these categories as an argument of a ‘class’ predicate
to enable generalisation:

class(person,x1).
class(company,x3).
etc.

Ideally, to narrow down the hypothesis space for ILP,
we need some negative evidence. In the Penn Tree
Bank, though, only the good parse is represented.
There are several possible ways of obtaining negative
data: one could use a parser trained on the Tree Bank
to reparse sentences and recover all the parses. How-
ever, there still remains the problem of recovering log-
ical forms from ‘bad’ parses. An alternative would
be to use a kind of ‘closed world’ assumption: take
the set of predicates and arguments in the good log-
ical forms, and assume that any combination not ob-

served is actually impossible. One could generate ar-
tificial negative evidence this way but one risks over-
generating and rejecting otherwise plausible combina-
tions.

Alternatively, one can try learning from positive only
data. The ILP systems Progol [Muggleton1995] and
Aleph [Srinivasan1999] are able to learn from posi-
tive only data, with the appropriate settings. Likewise,
so-called ‘descriptive’ ILP systems like WARMR
[Dehaspe1998] do not always need negative data: they
are in effect data mining engines for first order logic,
learning generalisations and correlations in some set
of data.

4. Learning rules for company succession
events

We found that the most successful method, given
the absence of negative data, was to use WARMR
to learn association rules from the positive data.
WARMR is very closely related to the levelwise
[Mannila and Toivonen1997] and the APRIORI algo-
rithms [Agrawal et al.1996]. The latter assume a lat-
tice of data, denoting relations between binary val-
ued attributes and the algorithm performs a general-
to-specific, breadth-first search, looking at one level of
the data lattice at a time. The patterns are specialised
at each level, by the addition of an extra attribute-
value pair. The method iterates between candidate
generation and candidate evaluation. The algorithm
implemented in WARMR is a version of the levelwise
algorithm where binary attributes have been replaced
by predicate calculus literals.

The input to WARMR consists of the evidence (sen-
tences) represented in terms of models, where each
model can span over several sentences, thus increas-
ing the possibilities of associations between verbs,
which constitute our main point of interest. The lan-
guage bias is made available as a set of type and
mode declarations, called rmodes. The rmodes define
a set of literal lists, which are interpreted by the sys-
tem. WARMR rmodes are interpreted as queries and
checked against the evidence at each iteration of the
algorithm.

Examples of rmodes are:

%1

13

rmode(3:verb(-Sub,\Event,#1)).

%2
rmode((attr(#1,+Event,\ID), class(#1,ID))).

The first rmode declaration says that a likely pattern is
expected to contain up to three verbs. The ‘\ Event’
variable means that the verb introduced should corre-
spond to a new event variable whose value is different
from others of the same type. The ‘#1’ symbol is a
way of denoting that the corresponding slot is a con-
stant, generated from the data. The second rmode says
that a likely pattern should include an attribute along
with its class information.

As with all types of association rule learning,
WARMR produces a huge number of rules, of vary-
ing degrees of coverage. We spent some time writing
filters to narrow down the output to something use-
ful. Such filters consist of constraints ruling out pat-
terns that are definitely not useful, for example pat-
terns containing a verb but no arguments or attributes.
An example of such a restriction is provided below:

pattern_constraint(Patt):-
member(verb(_,E,_A,_,_),Patt),
(member(attr(_,E,Attr),Patt)
->
\+constraint_on_attr(Patt,Attr)).

If pattern constraint/1 succeeds for a pattern Patt,
then Patt is discarded. Basically, this says that a rule
isn’t useful unless it contains a verb and one of its at-
tributes that satisfies a certain constraint. A constraint
might be of the following form:

constraint_on_attr(Patt, Attr) :-
member(class(_,Attr), Patt).

The above states that there should be a classification
of the attribute Attr present in the rule. A useful
pattern Patt will satisfy such constraints.

Some of the filtered output, represented in a more
readable form compatible with the examples above
are as follows (note that the first argument of the
verb/2 predicate refers to an event):

Companies report financial transactions:

subj(B,C) ∧ obj(B,D)∧
class(fin tran,D) ∧ class(company,C) →

verb(B, report)

Companies acquire companies:
subj(B,C) ∧ obj(B,D) ∧ class(company,D) ∧
class(company,C) → verb(B, acquire)

Companies are based in locations:

obj(A,C) ∧ class(company,C) ∧ in(A,D) ∧
class(location,D) → verb(A, base)

If person C succeeds person E, then someone has
elected person C:

obj(A,C) ∧ class(person,C)∧
verb(D, succeed)∧subj(D,C) ∧obj(D,E)∧
class(person,E) → verb(A, elect)

If someone elects person C, and person D resigns,
then C succeeds D:

subj(G,C) ∧ verb(A, elect) ∧ obj(A,C) ∧
class(person,C) ∧ verb(E, resign)∧
subj(E,D) ∧ class(person,D) →
verb(G, succeed)

While there are many other rules learned that are less
informative than this, the samples given here are true
generalisations about the type of events described in
these texts: unremarkable, perhaps, but characteristic
of the domain. It is noteworthy that some of them
at least are very reminiscent of the kind of templates
constructed for Information Extraction in this domain,
suggesting a possible further use for the methods of
theory induction described here.

5. Representing the Output

Each of the numerous patterns resulting from
WARMR consists of a list of frequently associated
predicates, found in the flat quasi-logical forms of the
input sentences. An example of such a pattern is pro-
vided by the following:

freq(6,[verb(A,B,elect,p,d),
verb(C,D,succeed,p,d),
attr(subj,B,unspecified),
attr(obj,D,E),class(cperson,E),
attr(subj,D,F),class(cperson,F),

14

attr(obj,B,F)],
0.1463).

The first argument of the predicate freq/3 shows the
level of the algorithm at which the pattern/query was
acquired [Dehaspe1998]. The fact that the pattern was
acquired at the sixth level means it was created during
the sixth iteration of the algorithm trying to satisfy the
constraints input as settings to the system. This pat-
tern satisfied four constraints, two of them twice1. The
second argument of freq/3 is the query itself and the
third is its frequency. What is meant by frequency of
the query in this instance is the number of times it
succeeds (i.e. the number of training examples it sub-
sumes), divided by the number of training examples.
To illustrate the meaning of such a pattern one needs
to reconstruct the predicate-argument structures while
maintaining the flat format. Thus, the above pattern is
converted to the following:

list(529,0.1463,[elect(A,B,C),
cperson(C),
succeed(D,C,E),
cperson(E)]).

It is now easier to understand the pattern as :‘A person
C who is elected succeeds a person E’. However, it
is still not straightforward how one can evaluate the
usefulness of such patterns or indeed how one can
incorporate the information they carry into a system
for disambiguation or reasoning. This problem is fur-
ther aggravated by the large number of patterns pro-
duced. Even after employing filters to discard pat-
terns of little use, for example ones containing a verb
but no classification of its arguments, over 26,000 of
them were obtained. Experimenting with a more re-
strictive language bias is an option but our experi-
ence was that there is a significant trade off between
complex rmodes and algorithm efficiency. We found
that it was better to relax the language settings and
allow WARMR to perform more iterations, while at
the same time requiring more extensive filtering of the
output.

The large size of the output is mainly due to the fact
that many patterns are overly general: the training set
consists of only 372 verb predicates and a total of 436
clauses. Such overgeneration is a well known problem

1There are eight literals in the pattern, even though it was ob-
tained in round 6. This is because the rmode satisfied at rounds 4
and 5 adds two literals simultaneously.

of data mining algorithms and requires sound criteria
for filtering and evaluation. Most of the patterns gen-
erated are in fact variants of a much smaller group of
patterns. The question then arises of how it is pos-
sible to merge them so as to obtain a small number
of core patterns, representative of the knowledge ob-
tained from the training set. Representing the patterns
in a more compact format also facilitates evaluation
either by a human expert or through incorporation into
a pre-existing system to measure improvement in per-
formance.

6. FSA conversion

Given the large amount of shared information in these
outputs, we decided to try to represent it as a set
of Finite State Automata, where each transition cor-
responds to a literal in the original clauses2 Since
all the literals in the raw output are simply con-
joined, the interpretation of a transition is simply
that if one literal is true, the next one is also likely
to be true. Our aim was to be able to use stan-
dard FSA minimisation and determination algorithms
[Aho et al.1986],[Aho et al.1974] to reduce the large
set of overlapping clauses to something manageable
and visualisable, and to be able to use the frequency
information given byWARMR as the basis for the cal-
culation of weights or probabilities on transitions.

To convert our patterns into FSAs (and in partic-
ular recognizers), we used the package FSA Utili-
ties (version FSA6.2.6.5)[van Noord2002], which in-
cludes modules for compiling regular expressions
into automata (recognizers and transducers) by imple-
menting different versions of minimisation and deter-
minisation algorithms. The package also allows oper-
ations for manipulating automata and regular expres-
sions such as composition, complementation etc. As
the FSA Utilities modules apply to automata or their
equivalent regular expressions, the task required con-
verting the patterns into regular expressions. To do
this we treat each literal as a symbol. This means
each verb and attribute predicate with its respective

2One possibility would have been to employ Galois lattices to
merge together patterns subsuming each other. In that case sin-
gle predicates or tuples would be used as descriptors-attributes
of the patterns-objects. However, weighted FSAs present a more
straightforward way of designating the dependencies between pat-
terns and preserve the ordering of literals in the pattern.

15

arguments is taken to denote a single symbol. The lit-
erals are implicitly conjoined and thus ordering does
not matter. Thus we chose to impose an ordering
on patterns, whereby the main verb appears first, fol-
lowed by predicates referring to its arguments. Any
other verbs come next, followed by predicates de-
scribing their arguments. This ordering has the advan-
tage over alphanumeric ordering that it allows filter-
ing out alphabetic variants of patterns where the pred-
icates referring to the arguments of a verb precede the
verb and the variables are thus given different names
which results in different literals. This ordering on
patterns is useful as it allows common prefixes to be
merged during minimisation. Since variable names
play an important role in providing co-indexation be-
tween the argument of a verb and a property of that ar-
gument, designated by another predicate, terms such
as ‘elect(A,B,C)’ and ‘elect(D,E,F)’ are consid-
ered to be different symbols. Thus a pattern like:

list(768,0.07,[elect(A,B,C),cperson(C),
chairman(C,D),old(C,E,F),
of(D,G),ccompany(G)]).

was converted to the regular expression:

macro(x768,[’elect(A,B,C)’,
’cperson(C)’,
’chairman(C,D)’,
’old(C,E,F)’,
’of(D,G)’,
’ccompany(G)’]).

The first argument of the macro/2 predicate
is the name of the regular expression whereas
the second argument states that the regu-
lar expression is a sequence of the symbols
’elect(A,B,C)’,’cperson(C)’,’chairman(C,D)’ and
so on. Finally, the entire WARMR output can be
compiled into an FSA as the regular expression which
is the union of all expressions named via an xnumber
identifier. This is equivalent to saying that a pattern
can be any of the xnumber patterns defined.
We took all the patterns containing ’elect’ as the main
verb and transformed them to regular expressions,
all of which started with ’elect(A,B,C)’. We then
applied determinisation and minimisation to the
union of these regular expressions. The result was
an automaton of 350 states and 839 transitions,
compared to an initial 2907 patterns.
However, an automaton this size is still very hard

to visualize. To circumvent this problem we made
use of the properties of automata and decomposed
the regular expressions into subexpressions that can
then be conjoined to form the bigger picture. Patterns
containing two and three verbs were written in
separate files and each entry in the files was split into
two or three different segments, so that each segment
contained only one verb and predicates referring to
its arguments. Therefore, an expression such as:

macro(x774,[elect(A,B,C),cperson(C),
resign(D,E,F),cperson(E),
succeed(G,C,E)]).

was transformed into:

macro(x774a,[’elect(A,B,C)’,
’cperson(C)’]).

macro(x774b,[’resign(D,E,F)’,
’cperson(E)’]).

macro(x774c,[’succeed(G,C,E)’]).

One can then define the automaton xpression1, con-
sisting of the union of all first segment expres-
sions, such as x774a, the automaton resign2, con-
isting of all expressions where resign is the sec-
ond verb and succeed3. The previous can be com-
bined to form the automata [xpression1, resign2] or
[xpression1, resign2, succeed3] and so on. The au-
tomaton [xpression1, resign2] which represents 292
patterns, has 32 states and 105 transitions and is much
more manageable.

7. Adding weights

The FSA rules derived from the WARMR patterns
would be of more interest if weights were assigned
to each transition, indicating the likelihood of any
specific path/pattern occurring. For this we needed
to obtain weights, equivalent to probabilities for each
literal/predicate-argument term. Such information
was not readily available to us. The only statistics
we have correspond to the frequency of each entire
pattern, which is defined as:

Freq = number of times the pattern matched the training data
number of examples in the training set

We took this frequency measure as the probability
of patterns consisting of single predicates (e.g.
’elect(A,B,C)’, which is equivalent to ’B elects C’)

16

whereas the probabilities of all other pattern con-
stituents have to be conditioned on the probabilities
of terms preceding them. Thus, the probability of
’cperson(C)’, given ’elect(A,B,C)’ is defined by the
following:

P (′cperson(C)′|′elect(A, B, C)′) =
P (′elect(A,B,C)′ ,′cperson(C)′)

P (′elect(A,B,C′)

where P (′elect(A,B,C)′,′ cperson(C))′

is the frequency of the pattern
[′elect(A,B,C)′,′ cperson(C)′] and
P (′elect(A,B,C)′) is defined as:

P (′elect(A,B, C)′) =
P

X P (′elect(A,B, C)′, X)

That is, the probability of P (′elect(A,B,C)′) is the
sum of all the probabilities of the patterns that contain
’elect(A,B,C)’ followed by another predicate.

In principle the frequency ratios described above
are probabilities but in practice, because of the
size of the dataset, they may not approximate real
probabilities. Either way they are still valid quantities
for comparing the likelihood of different paths in the
FSA.
Having computed the conditional probabili-
ties/weights for all patterns and constituents, we
normalized the distribution by dividing each prob-
ability in a distribution by the total sum of the
probabilities. This was necessary in order to make up
for discarded alphabetic variants of patterns. We then
verified that the probabilities summed up to 1. To
visualise some of the FSAs (weighted recognizers)
we rounded the weights to the second decimal digits
and performed determinization and minimization as
before. Rules obtained can be found in Figures 1 and
2 (see figures on last page):

The automaton of Figure 1 incorporates the following
rules:

1. ‘If a person C is elected, another person E has
resigned and C succeeds E’

2. ‘If a person C is elected director then another per-
son F has resigned and C succeeds F’

3. ‘If a person C is elected and another person E
pursues (other interests) C succeeds E’

The automaton of Figure 2 provides for rules such as:
‘If a person is elected chairman of a company E then
C succeeds another person G’.

At each stage, thanks to the weights, it is possible to
see which permutation of the pattern is more likely.

8. Related Work

Rules such as the above express causality and inter-
dependence between semantic predicates, which can
be used to infer information for various linguistic ap-
plications. The idea of deriving inference rules from
text has been pursued in [Lin and Pantel2001] as well,
but that approach differs significantly from the cur-
rent one in that it is aimed mainly at discovering para-
phrases. In their approach text is parsed into paths,
where each path corresponds to predicate argument
relations and rules are derived by computing similar-
ity between paths. A rule in this case constitutes an
association between similar paths. This is quite dif-
ferent to the work currently presented, which provides
more long range causality relations between different
predicates, which may not even occur in adjacent sen-
tences in the original texts. Other approaches such as
[Collin et al.2002] also aim to learn paraphrases for
improving a Question-Answering system. Our work
is perhaps more closely related to the production of
causal networks as in [Subramani and Cooper1999],
where the goal is to learn interdependency relations
of medical conditions and diseases. In their work
the dependencies only involve key words, but we be-
lieve that our techniques could be applied to similar
biomedical domains to discover causal theories with
richer inferential structure.

9. Conclusions & Future Work

We have shown that it is possible to induce logically
structured inference rules from parsed text. We have
also shown that by using FSA techniques it is possible
to construct a weighted automaton for the representa-
tion of rules/patterns generated via a knowledge min-
ing process. This enables merging together permuta-
tions of the same pattern and facilitates human evalua-
tion of the pattern. Furthermore, the fact that we have

17

learned what is in effect a simple probabilistic graphi-
cal model means that we can now produce representa-
tions of this knowledge suitable for more robust in-
ference methods of the type that we can deploy to
aid reasoning and disambiguation tasks. The current
approach is also interesting as a means of obtaining
new knowledge, through previously undetected asso-
ciations (e.g. if applied to medical texts). Patterns ac-
quired would then serve the purpose of bringing new
insight to the knowledge expertise in question.

10. Acknowledgements

We would particularly like to thank Ashwin Srini-
vasan (IBM, New Delhi), Steve Moyle (Oxford), and
James Cussens (York) for their help with Aleph and
Jan Struyf, Hendrik Blockeel and Jan Ramon (K.U.
Leuven), for their generous help with WARMR.

References
[Agrawal et al.1996] R. Agrawal, H. Mannil,
R. Srikant, H. Toivonen, and A.I. Verkamo.
1996. Fast discovery of association rules. In
P. Smyth U.M. Fayyad, G. Piatetsky-Shapiro and
R. Uthurusamy, editors, Adevances in Knowledge
Discovery and Data Mining, pages 307–328.
AAAI Press, Menlo Park, CA.

[Aho et al.1974] A.H. Aho, J.E. Hopcroft, and J.D.
Ullman. 1974. The Design and Analysis of
Computer Algorithms. Addison-Wesley Publishing
Company.

[Aho et al.1986] A.H. Aho, R. Sethi, and J.D. Ull-
man. 1986. Compilers - Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, Mas-
sachusetts, USA.

[Collin et al.2002] O. Collin, F. Duclaye, and
F. Yvon. 2002. Learning Paraphrases
to Improve a Question-Answering System.
staff.science.uva.nl/ mdr/NLP4QA/10duclaye-et-
al.pdf.

[Dehaspe1998] Luc Dehaspe. 1998. Frequent Pat-
tern Discovery in First-Order Logic. Ph.D. thesis,
Katholieke Universiteit Leuven.

[Doddington and Godfrey1990] G. Doddington and
C.H.J. Godfrey. 1990. The ATIS Spoken Language

Systems Pilot Corpus. In Speech and Natural Lan-
guage Workshop, Hidden Valley, Pennsylvania.

[Grishman and Sundheim1995] R. Grishman
and B. Sundheim. 1995. “Message Under-
standing Conference-6: A Brief History”.
www.cs.nyu.edu/cs/projects/proteus/muc/muc6-
history-coling.ps.

[Hobbs et al.1993] J. Hobbs, M. Stickel, D. Appelt,
and P. Martion. 1993. Interpretation as abduction.
Artificial Intelligence, 63:69–142.

[Liakata and Pulman2002] M. Liakata and S. Pul-
man. 2002. From Trees to Predicate-Argument
Structures. In International Conference for Com-
putational Linguistics (COLING), pages 563–569,
Taipei, Taiwan.

[Liakata2004] M. Liakata. 2004. Inducing domain
theories. D.Phil. thesis.

[Lin and Pantel2001] D. Lin and P. Pantel. 2001.
Dirt-Discovery of Inference Rules from Text. In
In ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pages 323–328.

[Mannila and Toivonen1997] H. Mannila and
H. Toivonen. 1997. Levelwise Search and Borders
of Theories in Knowledge Discovery. Data Mining
Knowledge Discovery, 1(3):241–258.

[Marcus et al.1994] M. Marcus, G. Kim,
M. Marcinkiewicz, R. MacIntyre, A. Bies,
M. Ferguson, K. Katz, and B. Schasberger. 1994.
The Penn Treebank: Annotating predicate ar-
gument structure. In ARPA Human Language
Technology Workshop.

[Muggleton1995] Stephen Muggleton. 1995. Inverse
Entailment and Progol. New Generation Comput-
ing, special issue on Inductive Logic Programming,
13(3-4):245–286.

[Pulman2000] Stephen Pulman. 2000. Statistical and
Logical Reasoning in Disambiguation. Philosoph-
ical Transactions of the Royal Society, 358 number
1769:1267–1279.

[Srinivasan1999] Ashwin Srinivasan.
1999. “the Aleph Manual”.
www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.

18

[Subramani and Cooper1999] M. Subra-
mani and G.F. Cooper. 1999. Causal
Discovery from Medical Textual Data.
http://www.amia.org/pubs/symposia/D200558.PDF.

[van Noord2002] Gertjan van Noord. 2002. FSA6
Reference Manual. http://odur.let.rug.nl/ vanno-
ord/Fsa/.

19

Figure 1. The more likely path in this FSA segment is given by the choice of resign(D,E, F) : 0.15, followed by cperson(E) : 0.64
and finally succeed(G, C, E) : 0.26. This can be interpreted as follows: ‘If a person C is elected, another person E has resigned and C
succeeds E’

Figure 2. Here the more likely path is provided by the sequence:
cperson(C) : 0.32, director(C,D) : 0.08, of(D, E) : 0.13, company(E) : 1, succeed(F, C, G) : 0.25, cperson(F) : 1. This can
be read as: ‘If a person C is elected director of a company E then C succeeds another person G’.

Notice the above illustrate only parts of the FSAs, which justifies why the probabilites of arcs leaving a node don’t add up to
1

20

21

22

23

B

A

G

L1
L2

L

goal category

completed
subtree

RHS2

24

2

4

s5 2

1

3 21
s

s

s

s

231

21

21

s

s

s

s

θ 1

θ 2

θ 3

θ2

21

21 1 23

21

s

s

s

s

s

s

θ3

θ1

25

26

A a A a a B

a a Aa a a a a

1θ 2θ

3θ

4θ

27

28

Part II

Genic Interaction
Extraction Challenge

Papers

29

30

Learning Language in Logic - Genic Interaction Extraction Challenge

C. Nédellec CLAIRE.NEDELLEC@JOUY.INRA.FR

Laboratoire Mathématique, Informatique et Génome (MIG), INRA,

Domaine de Vilvert, 78352 F- Jouy-en-Josas cedex.

Abstract

We describe here the context of the LLL
challenge of Genic Interaction extraction,
the background of its organization and the
data sets. We discuss then the results of

the participating systems.

1. Introduction

The Learning Language in Logic (LLL05)
challenge is part of the 2005 LLL workshop. The
LLL05 challenge task is to learn rules to extract
protein/gene interactions in the form of relations
from biology abstracts from the Medline
bibliography database. The goal of the challenge is
to test the ability of the participating ML systems to
learn rules for identifying the gene/proteins that
interact and their roles, agent or target. The training
data contains the following information:

• The Agent and Target of the genic interactions.

• A dictionary of named entities (including
typographic variants and synonyms)

• Linguistic information: word segmentation,
lemmatization and syntactic dependencies.

The participants have tested their Information
Extraction (IE) rules on a separate test set in a
limited amount of time. The challenge organizers
have provided the facilities for computing the
scores of the results. Six different teams have
participated and reported their results in the papers
in this volume. This paper aims at summarizing the
motivation for the challenge, the presentation of the
training and test data and comparing the participant
results.

2. Motivation

2.1 Biological motivation

Developments in biology and biomedicine are
reported in large bibliographical databases either
focused on a specific species (e.g. Flybase,
specialized on Drosophila Melanogaster) or not

(e.g. Medline). These types of information sources
are crucial for biologists, but there is a lack of tools
to explore them and extract relevant information.

While recent named entity recognition tools have
gained a certain success on these domains, event-
based Information Extraction (IE) is still
challenging. Biologists can search bibliographic
databases via the Internet, using keyword queries
that retrieve a large set of relevant papers. To
extract the requisite knowledge from the retrieved
papers, they must identify the relevant paragraphs
or sentences. Such manual processing is time
consuming and repetitive, because of the
bibliography size, the relevant data sparseness, and
because the database is continually updated.
For example, from the Medline database, the
focused query "Bacillus subtilis and transcription",
which returned 2,209 abstracts in 2002 retrieves
more than 2,693 today. We chose this example
because Bacillus subtilis is a model bacterium and
because transcription is both a central phenomenon
in functional genomics involved in gene interaction
and a popular IE problem.

Example:

GerE stimulates cotD transcription and inhibits
cotA transcription in vitro by sigma K RNA
polymerase, as expected from in vivo studies, and,
unexpectedly, profoundly inhibits in vitro
transcription of the gene (sigK) that encode
sigma K.

In this example, there are 6 genes and proteins
mentioned and among the 30 potential ordered
couples, 5 couples actually interact: (GerE, cotD),
(GerE, cotA), (sigma K, cotA), (GerE, SigK) and
(sigK, sigma K). The precision of the baseline
method that extracts gene/protein cocitations is then
20 % for 100 % recall. In gene interactions, the
agent is distinguished from the target of the
interaction. Such interactions are central in
functional genomics because they form regulation
networks that are very useful for determining the
function of the genes. The description of such gene
interactions is not available in structured databases
but only in scientific papers. Figure 1 gives an
example of such a regulation network.

31

1. SpoIIID is needed to produce sigma K

2. SpoIIID is capable of altering

the specificity of RNAP-sigma K

3. Production of sigma K leads to

a decrease in the level of spoIIID

4. GerE profoundly inhibits in vitro

transcription of sigK encoding sigma K

5. GerE stimulates cotD transcription

6. … and inhibits cotA transcription.

7. sigma K has been found that causes

weak transcription of spoIVCB

8. … and strong transcription of cotD.

spoIIID spore coat prts

sigma K

gerE
spoIVCB

cotA

cotD
++

1
2

3

4

6

5

8

7

positive interact.

negative interact.

Figure 1. Example of a regulation network

The arrows in Figure 1. represent the interactions
between proteins and genes of Bacillus subtilis
involved into the sporulation process. The
numbered textual annotations around represent the
fragments of MedLine abstracts the interactions
have been extracted from.

2.2 Learning Language in Logic motivation

Applying IE to genomics and more generally to
biology is not an easy task because IE systems
require deep analysis methods to extract the
relevant pieces of information. As shown in the
example, retrieving that GerE is the agent of the
inhibition of the transcription of the gene sigK
requires at least coordination processing and
syntactic dependency analysis (e.g. GerE is the
subject of inhibits and cotA transcription is the
object of inhibits). Such a relational representation
of the text motivates relational learning to be
applied to automatically acquire the information
extraction rules.

For instance:
genic_interaction(X,Z):-

is-a(X,protein), subject(X,Y), verb(Y), is-
a(Y,interaction_action), Obj(Z,Y), is-a(Z,gene-
expression).

Interpretation of the rule
If the subject X of an interaction action verb Y, is
a protein name, and the object Z is a gene name or
a gene expression, then, X is the agent and Z is the
target of the interaction.

2.3 Expected impact on Machine Learning

research and field of interest

Information Extraction has been a ML application
area since the beginning of the nineties. However,
most of the work focuses on the named-entity
recognition problem with mainly statistics-based
methods applied on shallow text representations.
There were few attempts to develop ML methods
for extracting relations from text although the
development of relational methods and inductive
learning yield excellent results in other application

areas. The main reason for the lack of relational
learning development in IE is due to the lack of
dataset in IE that ML researchers could use without
any investment in natural language processing
(NLP). Indeed, relational event extraction requires
that the text is deeply processed by syntactic
parsing including syntactic dependencies. Most of
the ML research groups do not have the NLP
competencies and tools for performing this
processing in specific domains with a good quality
level. As a consequence, the training data set has
been prepared so that ML researchers only could
perform basic format change to be able to apply
their methods.

The LLL challenge data set meets this requirement.
Its use does not need any investment in biology
neither in NLP. All the needed information is
provided at a good quality level. The syntactic
dependencies, which are critical here, have been
automatically produced by LinkParser (Sleator and
Temperley, 1993) and manually crosschecked by
specialists of syntactic analysis of MIG and LIPN
laboratories.

The expected impact on ML is a growing interest
for IE and more generally for semantic knowledge
learning from textual data. It is a great opportunity
for ILP to evaluate, compare, adapt and develop
methods on a large application domain that is
critical from both a research and economic point of
view. For instance, automatically producing meta
data for the semantic Web from textual Web pages
is strongly related to this ML and IE domain.

Moreover, the biologist expectations are very high
and the particular task proposed here is not artificial
but is critical in functional genomics. Even a partial
automatization of the information extraction would
be a considerable progress. We also expect a high
impact of the availability of this data on the
development of ML in bioinformatics for the access
to textual content.

32

3. Description of the data

The challenge focuses on information extraction of
gene interactions in Bacillus subtilis. Extracting
gene interaction is the most popular event
extraction task in biology. Bacillus subtilis (Bs) is a
model bacterium and many papers have been
published on direct gene interactions involved in
sporulation, as opposed to what happens for
eukaryotes. The gene interactions are generally
mentioned in the abstract and the full text of the
paper is not needed here. The relevant abstracts
have been selected by querying MedLine on
Bacillus subtilis transcription and sporulation. The
relevant information is mostly local to single
sentences (Ding et al., 2002). The main exception
comes from coreferences. For instance, the
gene/protein name is mentioned in a sentence and
referred to in the form of a pronoun or an
hyperonym in the next sentence. We do not
consider this case here. The abstracts have been
segmented into sentences. Sentences have been
automatically filtered by the STFilter system in
order to retain those that contain at least two
gene/protein names and are most probable to denote
interactions (Nedellec et al., 2000). MIG-INRA
expert biologists have annotated with the XML
editor CADIXE

1
 hundreds of the interactions and

the experimental conditions. For this challenge, a
simple subset of them is provided as training and
test data. The protein/gene names that can play the
roles of agent and target of the gene interaction in
the data sets are also recorded in a named-entity
dictionary in the form of lists of canonical forms
and variants. There could be more than one
interaction per sentence and a given protein / gene
may be involved in several interactions in different
roles, agent or target.

3.1 Biological typology

The data has been selected on the following basis,
the gene interaction is expressed,

• By an explicit action such as, GerE stimulates
cotD transcription

• Or by a binding of the protein on the
promoter of the target gene, Therefore, ftsY is
solely expressed during sporulation from a
sigma(K)- and GerE-controlled promoter that
is located immediately upstream of ftsY inside
the smc gene.

• Or by membership to a regulon family, yvyD
gene product, being a member of the sigmaB
regulon [..]

1 It has been developed by the National inter-EPST

Caderige project and mainly involves LEIBNIZ-IMAG,

MIG-INRA, LIPN-CNRS and ENSAR-INRA. It is

available on demand.

The sentences relying on other biological models
have not been considered. For instance, a very
frequent case involves gene mutants where the role
of the genes in the interactions can be derived from
the comparison with the normal experimental
conditions. Other biological models are less
represented. Then, the three selected categories are
well representative of the interaction distribution
excluding the mutant category.

3.2 Linguistic typology

The data set is decomposed into two subsets of
increasing difficulties. The first subset does not
include coreferences neither ellipsis, as opposed to
the second subset. The coreferences selected are
kept very simple. Most of them are just appositions.

For example,
Transcription of the cotD gene is activated by a
protein called GerE, [..]

GerE binds to a site on one of this promoter,
cotX [..]

Notice that when the absence of interaction
between two genes is explicitly stated, it is
represented as interaction information.

For example,
There likely exists another comK-independent
mechanism of hag transcription.

3.3 Linguistic information

These two subsets are available with two kinds of
linguistic information,

1. The Basic data set includes sentences,
word segmentation and biological target
information: agents, targets and genic
interactions

2. The Enriched data set includes also
lemmas and syntactic dependencies
manually checked.

The corpora and the information extraction task are
the same in both cases. The two sets differ only by
the nature of the linguistic information available.
The participants to the challenge were free to use or
not this linguistic information or to apply their own
linguistic tools. When publishing their results, the
participants had to be clear about the kind of
information that has been used for training the
learning methods.

3.4 Data representation

The data representation is detailed on the Web site:
http://genome.jouy.inra.fr/texte/LLLchallenge/ The
training data includes the target information to be
extracted, the agent and target of the interaction.

33

Example from the Basic data set:

ID 11011148-1

sentence ykuD was transcribed by

SigK RNA polymerase from T4 of

sporulation.

words word(0,'ykuD',0,3)

 word(1,'was',5,7)

 word(2,'transcribed',9,19)

 word(3,'by',21,22)

 word(4,'SigK',24,27)

 word(5,'RNA',29,31)

 word(6,'polymerase',33,42)

 word(7,'from',44,47)

 word(8,'T4',49,50)

 word(9,'of',52,53)

 word(10,'sporulation',55,65)

agents agent(4)

targets target(0)

genic_interactions

 genic_interaction(4,0)

There is one genic interaction involving one agent
and target here. The arguments of the agent, target
and genic-interaction literals refer to the unique
identifier of the word.

Example from the enriched data set:

ID 10747015-5

sentence Localization of SpoIIE

was shown to be dependent on the

essential cell division protein FtsZ.

words word(0,'Localization',0,11)

 word(1,'of',13,14)

word(2,'SpoIIE',16,21)

lemmas lemma(0,'localization')

 lemma(1,'of') lemma(2,'SpoIIE')

syntactic_relations

 relation('comp_of:N-N',0,2)

 relation('mod_att:NADJ',13,10)

 relation('mod_pred:N-ADJ',0,7)

 relation('mod_att:N-N',14,13)

agents agent(14)

targets target(2)

genic_interactions

 genic_interaction(14,2)

The lemma of named-entities is the canonical form
as defined in the associated named-entity
dictionary. For instance, the canonical form of kinD
is ykvD according to the dictionary. The syntactic
relations are defined in the Syntactic Analysis
Guidelines document. For instance,
relation('comp_of:N-N',0,2) means that
word 0 and 2, namely, 'Localization' and 'SpoIIE'
are two nouns and SpoIIE is a modifier of
Localization which is the head of the relation
introduced by the preposition 'of'.

Participants were free to use all external
information that they find useful, annotated
Medline abstracts included. However, for this latter
resource, they had to select abstracts later than year
2000 in order to avoid overlapping with the test
data.

3.5 Training data set

The training set without coreferences includes 57
sentences describing 106 positive examples of genic
interactions:

• 70 examples of action

• 30 examples of binding and promoter

• 6 examples of regulon

The training set with coreferences includes 23
sentences describing 165 positive examples of
interactions with coreferences

• 42 examples of action

• 10 examples of binding and promoter

• 7 examples of regulon

There are then 271 training examples in 80
sentences. The training data does not explicitly
describe negative examples. A straightforward way
for generating negative examples is to use the
Closed-World Assumption: if no interaction is
specified between two given biological objects A
and B, then they do not interact and form a negative
example. This way, they could be easily derived
from the training data and the dictionary as near-
miss examples.

3.6 Test set

The test data are examples from sentences
following the same biological typology as the
training data. The distribution of the positive
examples among the biological categories (action,
binding, promoter and regulon) and with / without
coreferences is the same as in the training data. The
test set also includes negative examples, namely
sentences without any genic interaction. This set
follows the same distribution as in the initial corpus
selected by MedLine query and containing at least
two gene names, i.e. 50 % of the sentences are
negative. The test set includes 87 sentences
describing 106 positive examples of genic
interactions:

• 55 examples of action

• 23 examples of binding and promoter

• 5 examples of regulon

There is no sentence in the test data with no clear
separation between the agent and the target (e.g.,
"gene products x and y are known to interact").

The distinction between the sentences, with and
without coreferences is not done in the test set and

34

is not known by the participants because the test
data set also contains sentences without any
interaction. Marking "coreferences" sentences in
the test set would bias the test task by giving hints
for identifying the sentences without any
interaction. However, the distinction is taken into
account by the score computation.

4. Information extraction task

Given the description of the test examples and the
named-entity dictionary, the task consists in
automatically extracting the agent and the target of
all genic interactions.

In order to avoid ambiguous interpretations, the
agents and targets have to be identified by the
canonical forms of their names as they are defined
in the dictionary and by lemmas in the enriched
version of the data. Thus there are two ways of
retrieving the canonical name, given the actual
name.

The agent and target roles should not be exchanged.
If the sentence mentions different occurrences of an
interaction between a given agent and target, then
the answer should include all of them. For instance,
in A low level of GerE activated transcription of
cotD by sigmaK RNA polymerase in vitro, but a
higher level of GerE repressed cotD transcription.
There are two interactions to extract between GerE
and cotD.

5. Computation of the score

The evaluation is based on the usual counting of
false positive and false negative examples and on
recall and precision. Partially correct answers will
be considered as wrong answers. By partially
correct answer we mean answers where the roles
are exchanged, or only one of the two arguments
(agent or target) of the genic interaction is correct.
The score computation has been measured by the
organizers on the results provided by the
participants by applying the score computation
program available to download as well as the check
format program. These official scores are compared
in section 6. The details on how scores are
computed can be found on line in the user's manual
of the score computation program.

The learning methods have been trained either on
the file without coreferences or with coreferences,
or on both of them (union). The participants have to
specify which data set they compete for, so that the
score computation program takes it into account for
computing the scores.

The organizers also provide Web facilities to the
participants for automatically uploading result files
and compute the scores on the test data after the
result submission deadline. These results have been
further improved by the participants after the
deadline. These "non official" results are not

considered here for comparison because of the risk
of over-fitting on the test data. However, they are
interpreted and analyzed in the participant papers in
this volume.

6. Result interpretation and comparison

Six research groups have participated in the
challenge by submitting the results of the test set.
The papers reporting their method and results are
included in this volume. This section compares the
official results among the participants.

6.1 Participating systems

Group 1 (KMB, Univ. Berlin and EBI) has applied
alignment and finite-state automata technology for
generating IE patterns from the LLL data set and an
additional corpus of 256 positive examples
manually annotated. The corpus has been enriched
by POS tags and a list of words denoting
interactions.

Group 2 (CS, Univ. Sheffield) method generates
candidate patterns from examples parsed by
MiniPar and semantically tagged by WordNet and
PASBio. The candidates are manually filtered and
then generalized with respect to a similarity
criterion with already learned patterns. The training
set has been augmented by weakly labeled training
examples (cocitations of genes and proteins from
positive examples, occurring in new sentences).

Group 3 (HCS Lab, Univ. Amsterdam) has applied
the rule induction method Ripper to lexical-
semantic-syntactic subtrees obtained by unification
of the enriched form of the training examples. The
semantics is given by an ad'hoc ontology designed
for the challenge purpose.

Group 4 (KDLab, Univ. Brno) has applied the ILP
method Aleph on the enriched data set without
coreferences. Two features have been added, POS
tags by the Brill tagger and WordNet hyperonyms.

Group 5 (Biostats and CS, Univ. Madison) has
applied the ILP method Aleph on the enriched data
set with and without coreferences wrapped into
Gleaner that selects the best point on recall-
precision curves. The data sets have been
preprocessed and enriched by 215 new predicates
including position, neighborhood, typographic,
syntactic, semantic (belonging to MesH) and
counting features.

Group 6 (ICCS, Univ. Edinburgh) has applied ILP
and Markov Logic methods on the data parsed by
the CCG and CCG2sem parsers that build syntactic
and semantic paths. The best results are obtained
without such preprocessing.

6.2 Results

Most of the results were obtained from the test set
without coreferences (Table 1). The ML method of

35

Group 1. and 6. have achieved the best F-measures
with balanced recall and precision around 50 %,
which is high compared to other challenges on
event or relation extraction such as the Succession
Management MUC competition. Both systems are
based on the representation of the examples as
sequences. It would be interesting to study the role
of the semantic tagging of word denoting
interaction as done by Group 1. The other methods
achieved a high recall but a poor precision. The
reasons for such an overgeneralization could be
explained by the fact that the training data did not
include sentences without any interaction, as
opposed to test data. The systems trained without
such sentences or on weakly labeled additional data
could have been thus handicapped. The results
obtained with and without linguistic information
cannot be easily compared here, since only Group
5. has provided results on both data sets. The role
played by the syntactic dependencies cannot then
be analyzed.

Table 1. Results on the test set without coreferences

Gr. # Basic test set Enriched test set

 prec. rec. F prec. rec. F

1. 50,0 53,8 51,8

2. 10,6 98,1 19,1

4. 37,9 55,5 45,1

5. 25,0 81,4 38,2 20,5 90,7 33,4

6. 60,9 46,2 52,6

Table 2. Results on the test set with coreferences

Gr. # Basic test set Enriched test set

 prec. rec. F prec. rec. F

5. 14,0 82,7 24,0 14,0 93,1 24,4

Table 3. Results on the test set with and without

coreferences

Gr. # Enriched test set

 prec. rec. F

3. 51,8 16,8 25,4

6. 55,6 53,0 54,3

Table 2 presents the results as obtained on the test
data with coreferences while Table 3 presents the
results as obtained on the union of the test data
with, and without coreferences. As shown by Table
2, the F-measure of Group 5 on the basic and
linguistically enriched data set is not significantly
different, as it is the case in Table 1. In all cases,
the precision is poor, the recall high and the recall
improved by the linguistic information.

Only the two groups 3. and 6. have provided results
on the union of both test sets with and without
coreferences. In both cases, the linguistic
information has been exploited. Surprisingly,

despite the difficulty of dealing with coreferences,
the scores obtained on the set without coreferences
(Table 1.) are similar: 52,6 against 54,3. Note that
most of the coreferences in the test set were
denoted by simple appositions and represented by
explicit syntactic dependencies.

7. Conclusion

The high scores (more than 50 %) yields by the best
system as well as by further experiments done by
the other participants are very encouraging. As
described in section 3., the data have been carefully
selected in order to keep the underlying biological
models simple. The parsing results as computed by
LinkParser have been corrected by hand. The next
challenges now consist in extending the data sets so
that it becomes more representative of the real data
as it can be found in MedLine abstracts and leave
the syntactic parsing partially incorrect as it is when
produced by automatic methods. The influence of
the domain knowledge such as for instance,
semantic classes of actions and their role in
interactions has not been fully explored here but
only through ad'hoc lists or patterns. It would
certainly worthwhile to explore this direction.

Acknowledgements

MIG-INRA laboratory and LIPN-RCLN group
have been deeply involved in the data preparation,
biological annotation and syntactic dependency
checking. The research and software development
have been funded by the Caderige Project, Inter-
EPST bioinformatics (1999-2003), ExtraPloDocs,
RNTL (2000-2005) and Alvis, FP6-IST-STREP
(2004-2007). The data preparation has been
partially founded by Pascal FP6-IST-NoE (2004-
2007).

References

Alphonse E., Aubin S., Bessières P., Bisson G.,
Hamon T., Lagarrigue S., Nazarenko A, Manine
A.-P., Nédellec C., Ould Abdel Vetah M.,
Poibeau T. and Weissenbacher D. (2004). Event-
Based Information Extraction for the biomedical
domain: the Caderige project. Proceedings of the
Workshop BioNLP (Biology and Natural
language Processing), Conférence Computational
Linguistics (Coling 2004).

Ciravegna F. (2000). Learning to Tag for
Information Extraction from Text. Proceedings of
the ECAI-2000 Workshop on Machine Learning
for Information Extraction, F. Ciravegna et al.
(eds), Berlin.

Cohen A. M, Hersh W. R. (2005). A survey of
current work in biomedical text mining. Brief
Bioinform. Mar;6(1):57-71..

36

Collier N., Ruch P. and Nazarenko A. (2004).
Proceedings of the Joint Coling workshop on
Natural Language Processing in Biomedicine and
its Applications.

Daraselia N., Yuryev A., Egorov S., Novichkova
S., Nikitin A., Mazo I. (2004). Extracting human
protein interactions from MEDLINE using a full-
sentence parser. Bioinformatics. 22;20(5):604-11.

Ding J., Berleant D., Nettleton D., Wurtele E.
(2002). Mining MEDLINE: abstracts, sentences,
or phrases? Pac Symp Biocomputing pp. 326-37.

Ding J., Berleant D., Xu J., and Fulmer A. W.
(2003). Extracting Biochemical Interactions from
MEDLINE Using a Link Grammar Parser. In 15th
IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’03).

Freitag D. (1998). Toward General-Purpose
Learning for Information Extraction. Proceedings
of COLING-ACL-98.

Grover C., Lapata M., and Lascarides A. (2004). A
Comparison of Parsing Technologies for the
Biomedical Domain. Journal of Natural
Language Engineering.

Hishiki T., Collier N., Nobata C., Ohta T., Ogata
N., Sekimizu T., Steiner R., Park H. S., Tsujii J.
(1998). Developping NLP tools for Genome
Informatics: An Information Extraction
Perspective. Genome Informatics. Universal
Academy Press Inc., Tokyo, Japan.

Huang M., Zhu X., Hao Y., Payan D. G., Qu K.,
Li M. (2004). Discovering patterns to extract
protein-protein interactions from full texts.
Bioinformatics. 12;20(18):3604-12.

Leroy G., Chen H., Martinez J. D. (2003). A
shallow parser based on closed-class words to
capture relations in biomedical text. J Biomed
Inform. Jun;36(3):145-58.

McDonald D. M., Chen H., Su H., Marshall B. B.
(2004). Extracting gene pathway relations using a
hybrid grammar: the Arizona Relation Parser.,
Bioinformatics. 12;20(18):3370-8..

Nédellec C. (2004). Machine Learning for
Information Extraction in Genomics - State of the
Art and Perspectives, Text Mining and its
Applications: Results of the NEMIS Launch
Conference Series: Studies in Fuzziness and Soft
Computing, Sirmakessis, Spiros (Ed.), Springer
Verlag.

Nédellec C., Ould Abdel Vetah M. and Bessières P.

(2001). Sentence Filtering for Information

Extraction in Genomics: A Classification

Problem. In Proceedings of the International

Conference on Practical Knowledge Discovery in

Databases (PKDD’2001), pp. 326–338. Springer

Verlag, LNAI 2167, Freiburg.

Ng S., Wong M. (2004). Toward routine automatic
pathway discovery from on-line scientific text
abstracts. Genome Informatics. 10:104-112.

Ono T., Hishigaki H., Tanigami A., Takagi T.
(2001). Automated extraction of information on
protein-protein interactions from the biological
literature. Bioinformatics. 17(2): 155-161.

Park J. C., Kim H. S., Kim J. J. (2001).
Bidirectional incremental parsing for automatic
pathway identification with combinatory
categorial grammar. In proceedings of PSB'2001.

Pyysalo S., Ginter F., Pahikkala T., Boberg J.,
Järvinen J., Salakoski T. and Koivula J. (2004).
Analysis of Link grammar on Biomedical
Dependency Corpus Targeted at Protein-Protein
Interactions. Proceedings of the Workshop
BioNLP (Biology and Natural language
Processing), Conférence Computational
Linguistics (Coling 2004).

Rindflesch T. C., Tanabe L., Weinstein J. N.,
Hunter L. (2000). EDGAR: Extraction of Drugs,
Genes and Relations from the Biomedical
Literature. Proceedings of PSB'2000, vol 5:514-
525.

Roux C., Proux D., Rechenmann F., Julliard L.
(2000). An Ontology Enrichment Method for a
Pragmatic Information Extraction System
gathering Data on Genetic Interactions.
Proceedings of the ECAI'2000 Ontology Learning
Workshop, S. Staab et al. (eds.).

Sasaki Y., Matsuo Y. (2000). Learning Semantic-
Level Information Extraction Rules by Type-
Oriented ILP. Proceedings of COLING-2000,
Kay M. (ed), Saarbrücken.

Sleator D. and Temperley D. (1993). Parsing
English with a Link Grammar. In Third
International Workshop on Parsing Technologies.
Tilburg. Netherlands.

Soderland S. (1999). Learning Information
Extraction Rules for Semi-Structured and Free
Text. Machine Learning Journal, vol 34.

Temkin J. M., Gilder M. R. (2003). Extraction of
protein interaction information from unstructured
text using a context-free grammar.
Bioinformatics. Nov 1;19(16):2046-53.

Thomas J., Milward D., Ouzounis C., Pulman S.,
Carroll M. (2000). Automatic extraction of
protein interactions from scientific abstracts.
PSB'2000, pp 541-52.

Valencia A. and Blaschke C., (2004). Proceedings
of the workshop A critical assessment of text
mining methods in molecular biology, Spain.

Yakushiji A., Tateisi Y., Miyao Y., Tsujii J.-I.,
(2001). Extraction from biomedical papers using
a full parser. Proceedings of PSB'2001.

37

LLL’05 Challenge: Genic Interaction Extraction -
Identification of Language Patterns

Based on Alignment and Finite State Automata

Jörg Hakenberg hakenberg@informatik.hu-berlin.de

Conrad Plake plake@informatik.hu-berlin.de

Ulf Leser leser@informatik.hu-berlin.de

Knowledge Management in Bioinformatics, Humboldt-Universität zu Berlin, Germany

Harald Kirsch kirsch@ebi.ac.uk

Dietrich Rebholz-Schuhmann rebholz@ebi.ac.uk

Rebholz-Group, European Bioinformatics Institute, Hinxton, United Kingdom

Abstract

We present a system for the identification of
syntax patterns describing interactions be-
tween genes and proteins in scientific text.
The system uses sequence alignments applied
to sentences annotated with interactions and
syntactical information (part-of-speech), as
well as finite state automata optimized with
a genetic algorithm. Both methods iden-
tified syntactical patterns that are general-
izations of textual representations of agent-
target relations. We match the generated
patterns against arbitrary text to extract in-
teractions and their respective partners. Our
best system uses finite state automata opti-
mized with a genetic algorithm, and scored
an F1-measure of 51.8% on the LLL’05 eval-
uation set.

1. Introduction

The task for the Learning Language in Logic (LLL’05)
challenge was to build systems that extract inter-
actions between genes and/or proteins from biologi-
cal literature. From sentences annotated with agent-
target relations and other linguistic information, rules
or models had to be learned and were evaluated after-
wards (Genic Interaction Extraction Challenge, 2005).
For this benchmark, not only the interacting partners
had to be extracted, but also the agent-target depen-

Appearing in Proceedings of the 4 th Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

dencies had to be resolved correctly.

The task of relation mining in the biomedical domain
has been studied widely over the last years. Current
research covers protein-protein interactions (Huang
et al., 2004; Daraselia et al., 2004), subcellular loca-
tions (Stapley et al., 2002), disease-treatment-relations
(Rosario & Hearst, 2004), and certain other types.
Early systems relied on simple co-occurrence analy-
ses, and such techniques still provide very good re-
call performance for obvious reasons. Including syn-
tactical information for shallow parsing leads to bet-
ter results in the identification of co-occurring terms
in conjunction with a verbal phrase (Chen & Sharp,
2004), i.e., yields more precise predictions. Currently,
systems based on sequence modeling, and pattern- or
rule-based extraction provide the best results for de-
tecting protein-protein interactions (Xiao et al., 2005;
Huang et al., 2004; Saric et al., 2005).

The relation extraction system we used for the LLL’05
challenge consisted of two major components. The
first extracted syntax patterns typical for textual
descriptions of interactions from labeled examples.
These patterns reside on part-of-speech information
and markup of genes and selected nouns and verbs.
We followed two strategies to learn such patterns from
a given training sample. One was to apply a pat-
tern generating algorithm comparable to the one de-
scribed in Huang et al. (2004) to annotated examples.
Subsequent pairwise alignment of sentences ultimately
yielded patterns with as much support in the training
data as possible. The other strategy was to generate
finite state automata representing patterns, and to op-
timize these automata on the training sample using a
genetic algorithm to achieve optimal results.

38

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

After patterns had been extracted, the second compo-
nent matched these against arbitrary text to detect in-
teractions.Matching was either based on aligning new
sentences with patterns, or on mapping new sentences
into FSAs, respectively.

All patterns we extracted from the given examples re-
sembled sentences often used for describing interac-
tions. Typical examples often found in the literature
are, for instance,

ykuD is transcribed by SigK RNA polymerase (1)
yfhS is transcribed by E sigma E (2)

ComK regulates the expression of degR (3)
GerE inhibits the transcription of sigK (4)

It can easily be seen that (1) & (2), and (3) & (4)
share a similar syntax, respectively. Replacing words
with their respective part-of-speech tags, phrases (1)
and (2) could be subsumed with the pattern

gene verb:p3s verb:pp preposition protein

This pattern describes every (partial) sentence that
contains a gene, followed by a verb (present, third per-
son singular), another verb (past participle), a prepo-
sition, and finally a protein1. The second verb could
be narrowed down even further, by either accepting
only verbs seen in the training data, or by compil-
ing a list of possible verbs used for describing inter-
actions. We followed the second idea, and had lists
for verbs and nouns, which we refer to as interaction
verbs and - nouns or simply types in the following (see
Section 2.4.1 and supplementary information).

In this paper, we shall give an overview of all methods
and algorithms used, present the preprocessing of the
data set, and conclude with a discussion of our results
and findings.

2. Methods and Algorithms

There were two possibilities to extract and represent
patterns from a set of labeled examples. The first gen-
erated a set of patterns using pairwise alignments of
sentences from the training sample. These alignments
were transformed into a pattern. The second method
was learning finite state automata from the training
sample.

For both approaches, we represented each sentence as
a sequence of POS tags instead of tokens. Addition-
ally, we did not take the full sentences, but only the
immediate phrases relevant to the description of the
interaction. This included a certain boundary around

1In the following, we do not distinguish between genes
and proteins.

Table 1. POS tags and costs for matches/mismatches.
Costs shown: Gap - aligning POS tag with gap; Match -
exact match; Group - match within group (same first let-
ter); Other - mismatch.

POS Tag Gap Match Group Other
PTN -10 +4 -3
IVERB -10 +3 -3
INOUN -8 +3 -3
NN/NNP -8 +2 +1 -1
NNS/NNPS -7 +2 +1 -1
VB/VBP/VBZ/
VBD/VBN/VBG -7 +2 +1 -1
IN, CC, TO -6 +2 -1
’(’, ’)’, ’,’ -6 +2 -1
RB, RBR, RBS -1 +2 +1 -1
JJ, JJR, JJS -1 +2 +1 -1
DT, WDT -1 +2 -1

the phrases (we experimented with up to three words
to the left and right).

2.1. Pairwise Alignment to Generate Patterns

2.1.1. Alignments

Quite a few methods are available to measure the sim-
ilarity of two (or multiple) sentences. Our method
was sequence alignment, which calculates a consen-
sus sequence in addition to the similarity score. This
consensus sequence represented all parts (POS tags
and their positions) the aligned sequences had in com-
mon, and could be used directly to form a pattern.
Figure 1 shows an example for two aligned sentences.
For the alignment and scoring of sentence pairs, we
implemented the local and end-space free alignments
(Smith & Waterman, 1981; Needleman & Wunsch,
1970). With local alignment, the aligned sentences
could be quite dissimilar overall, but had to contain
regions that were highly similar (e.g., a verb phrase or
main clause). All other parts could have completely
different syntax and semantics. Using the end-space
free variation of global alignment, gaps at the begin-
ning or end of a sentence had costs of zero, regardless
of length. For calculating the costs for matches, mis-
matches, and gaps in the alignment, we used a substi-
tution matrix covering the whole alphabet (19 part-of-
speech tags). These costs were derived from previous
experiments, and are are shown in Table 1. We found
that while the exact values were less influential, the
overall tendency of rewards and penalties for different
sorts of replacements was important. A substitution
matrix for an extended alphabet (full Penn Treebank
tag-set) can be found in the supplementary informa-
tion.

39

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

the oxidized cytochrome c binds phosvitin and -> DT JJ PTN IVERB -- PTN CC
the profilin binds to G-actin , -> DT -- PTN IVERB IN PTN ,

consensus sequence of both (partial) sentences - DT PTN IVERB PTN

Figure 1. Example for an alignment and consensus sequence of two POS tags sequences. Sentences are represented using
POS tags. CC, conjunction; DT, determiner; IN: preposition; JJ: adjective; PTN, protein/gene; IVERB: verb describing
an interaction.

2.1.2. Patterns

Each pattern consisted of two types of information:
the pattern itself, i.e the sequence of POS tags, and
the positions of agent, target, and interaction type in
this pattern. A simple example for a pattern would be

pattern = PTN IVERB PTN
relation = {(a=1, t=3, i=2)},

matching sentences with the basic structure “pro-
tein interaction-verb protein”, for instance, “ComK
regulates degR”. The agent-target dependency is given
via the tuple (a,t,i), where the first two digits refer to
the positions of agent and target, and the third digit
to the position of the interaction type, respectively.
Please note that we did not distinguish between genes
and proteins, but mapped both entities to the same
tag, ‘PTN’.

An example is shown in Figure 2. Each pattern p con-
sisted of a POS sequence s, and a (set of) relations,
K. Each element of K depicted a single interaction,
and the triple (a, t, i) referred to the positions of agent,
target, and interaction type within the sequence, re-
spectively. Note that for the positions, we took into
account only proteins and interaction nouns or verbs.
(1, 3, 2) thus stood for a relation between the agent
protein at position 1 and the target protein at posi-
tion 3, described by the verb at position 2.

2.1.3. Generating Patterns with Alignments

The pattern generating algorithm iterated over all sen-
tence pairs and calculated the best alignment for each
pair (see Section 2.1.1). Each respective consensus se-
quence from the optimal alignment of these two sen-
tences formed a pattern. We counted the occurrences
of all such patterns to calculate the support for each
pattern in the training data. The maximum number of
patterns for n sentences is n(n−1)/2, but in practice not
all were generated, since a set of different alignments
can lead to the same consensus sequence. On the other
hand, in case there were multiple optimal alignments,
all alignments were taken to form (different and/or
identical) patterns. The algorithm in Figure 3 shows
the pattern generating algorithm as pseudo-code.

Figure 2. Text t aligned with pattern p. Consensus se-
quence is tc, forming two interactions: agent1 with target3
via type2, and agent1 with target4 via verb type2, respec-
tively.

Our pattern generating algorithm iteratively searched
for the most similar sentences, and tried to subsume
these with a more general expression, if necessary. As
we took alignments for this step, we used the respec-
tive consensus sequences for the generalized sequences.
This general expression, which we call pattern, was
then added to a set. This set functioned as a model to
explain the training data. Only patterns with at least
two proteins and one interactor (specific verb or noun)
were included in the final set. From the final set, all
patterns below a minimum support (i.e. the number
of aligned sentence pairs producing this pattern) were
removed.

2.1.4. Applying Patterns to Arbitrary Text

We studied different methods to apply the generated
patterns to arbitrary text: alignments, finite state au-
tomata, hidden Markov modeling, and hand-crafted
rules (Plake et al., 2005a; Plake et al., 2005b). For
the LLL’05 challenge, we used local and end-space-free
alignment.

The alignment worked just like described in Section
2.1.1. Figure 2 shows an example for a pattern, its
information, its alignment with a text and the result-
ing interactions. The positions for agent, target, and
interaction type (the latter was not necessary for the

40

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

Input: set of annotated sequences, S;
threshold d

for all si, sj ∈ S, i #= j do
ci,j = consensus(si, sj)
K = (posa, posb, posi) = positions of
partners a, b, and interactor i in ci,j

p = (ci,j , K)
if p /∈ P then

add p to P ; occp = 1
else

occp++
end if

end for
remove all p ∈ P with occp < d

Output: set of patterns, P

Figure 3. Pseudocode of the pattern generating algorithm.

LLL’05) in the new sentence were deduced from the in-
formation stored with each pattern. This was needed
to solve the dependency between two proteins and for
cases with multiple proteins in one sentence.

2.2. Learning Patterns with Finite State
Automata

For the second approach to generate and represent pat-
terns describing protein-protein interactions, we used
Mealy finite state automata (FSAs). In these au-
tomata, each position in a sentence (i.e. part-of-speech
tag) was represented by a transition from one state
to another. Transitions thus modeled the sequence of
POS tags in a sentence. The FSA has a dedicated
start state, depicting the position before the first tag
in a phrase. We stored each transition possible from
each state to another in a matrix. For each state in the
FSA, such a matrix contained all transitions possible
to a new state using the next POS tag in the sequence.
Figure 4 shows an example, where columns represent
the alphabet (=POS tags), and rows the states, respec-
tively. Each cell denoted whether a transition from the
current using a particular POS tag was possible or not,
and to which new state this transition would lead.

It was possible to further generalize FSAs. By intro-
ducing word gaps of variable length between states
(i.e. between positions in a sentence), the FSA con-
tained not only sentences fitting phrases exactly, but
allowed for insertions (for example, short subordinate
clauses or expressions in brackets). See Figure 5 for
examples. Intuitively, a more “strict” FSA (no word
gaps) would yield more precise results, while a “loose”
FSA (word gaps of infinite length) would gain a higher
recall, by fitting more sentences.

Figure 4. Mealy-FSA and its transition matrix; s: number
of states, Σ: alphabet of POS tags. For example, from
state 1 a transition is possible either to state 2 using ’PTN’,
or back to state 1 using any other, non-listed POS tag.

We encoded the transition matrix described above in
a single array. The value in each cell was transformed
into a binary representation, depicting the index of
a new state, when the transition using a particular
POS tag was possible, or zero otherwise. In addition,
we added a bit to this cell value. Whenever this bit
was set to one, the transition led not only to a next
state, but in addition, this state was an end-state. Ta-
ble 2 shows an example for the binary representation
of state 3 from Figure 4. In addition, the positions
for agent(s), target(s), and interaction type(s) in the
sentences had to be encoded. Taken together, this led
to a binary representation of FSAs, which we refer to
as a genome. In such a genome, all positions for the
states, and all positions for transitions and end-states
were fixed. Translations from a matrix to a genome
and back thus were unambiguous.

The task now was to find one or more good FSAs en-
coded by such genomes. We first started with a set
of random genomes, representing a population, where
each individual encoded an FSA with six states2. Ini-
tially, most of the individual members of a population
would encode a valid, but certainly a “bad performing”
matrix. We optimized this population on the training
sample using a genetic algorithm, see (Plake et al.,
2005b). For this approach, we could use either preci-

2The number of states was evaluated in further experi-
ments; data not shown.

41

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

Figure 5. FSAs with word gaps. (A) shows the original
transitions between two states, with a protein tag in the
middle. In (B), the FSA was extended with an additional
transition from the left state, using any POS tag, to the
same state. This transition could be used multiple times.
(C) shows an extension for a maximum of two, instead of
multiple, optional POS tags.

Table 2. Binary representation of state 3 from the matrix
in Figure 4. The table shows all possible transitions, and
to which new state each transition leads. Using ‘PTN’, the
transition from 3 to 4 would lead to an end-state.

POS new end- possible transition
tag state state?
DT 000 0 “no transition possible”
IN 011 0 “possible to state 3”

PTN 100 1 “to state 4 ⇒ end-state”
INT 000 0 “no transition possible”
POS 000 0 “no transition possible”

sion, recall, or f-measure as a fitness function to mea-
sure the performance of every individual FSA in the
population. Choosing the best 25% of a population
to form the basis for a new generation, we filled the
missing 75% using recombinations, cross-overs, and
mutations of this parents. Ultimately, this led to an
FSA (the “best” genome in the population) covering at
least some positive examples3 from the training sam-
ple. As soon as no further improvements could be
achieved, we removed all training sentences covered
by this FSA. On the remaining sample, we started
over with a completely new random population. We
followed this separate-and-conquer strategy, until no
positive sentences were left in the training sample, or
a certain number of FSAs was found.

2.2.1. Applying Finite State Automata

In order to match interactions and to learn patterns
based on FSAs, we had to foresee in our patterns that
they match variability in the text. This meant that
starting at the first tag in each phrase, a sequence
of states including repetition of transitions had to be
foreseen in our FSAs, ultimately leading to an end-
state with the last tag. To parse complete sentences,

3A positive example contains at least one interaction.

we tested all sub-phrases starting at the first word,
the second word, the third word, and so on. If the
language of an FSA covered a phrase, then index posi-
tions similar to the ones described in 2.1.1 defined the
interaction’s partners and type.

2.3. Data Sets

For generating patterns, we used two corpora in
two separate runs. All contained sentences found
in MedLine citations, together with markup for all
gene/protein names, all interactions and their respec-
tive types (i.e. agent-target relations). The first cor-
pus was the training data set provided with the LLL’05
challenge, consisting of 55 sentences with 103 genic
interactions. No negative examples were included in
this corpus. The other corpus had annotated protein-
protein interactions, and consisted of 1000 sentences
with 256 interactions in 174 sentences. This second
corpus was derived from the BioCreAtIvE task 1A
data set (Hirschman et al., 2005), in which gene and
protein names were marked. Further annotations for
protein-protein interactions based on this markup were
added manually.

For the evaluation of strategies and methods, we gen-
erated patterns from the 1000 sentences, and applied
them to the 55 sentences, on which we could measure
the performance. The final test set consisted of 86 sen-
tences containing genic interactions, and was provided
with the LLL’05 challenge.

We tested different combinations of data sets for train-
ing and testing, and different methods for applying
patterns to the respective test set. For the final solu-
tion, we learned patterns from our own corpus of 1000
sentences and combined them with patterns learned
from the 55 training sentences.

2.4. Preprocessing

In order to apply our system to the training and test
data, we had to perform several pre-processing steps.
First of all, we transformed the data into XML for-
mat, including a proper tokenization. The indices of
words in the word-list provided differed slightly from
the corresponding token’s index. Our tokenization in-
cluded punctuation marks, brackets, and hyphens. We
split expressions like ’sigma(K)-dependent’ into three
tokens, ’sigma(K) - dependent’.

2.4.1. Named Entity Recognition

A full list of all gene and protein names and synonyms
or spelling variants appearing in the corpus was pro-
vided with the data. Named entity recognition could

42

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

Table 3. Slight modifications of the dictionaries and data sets.

- removed blanks E sigma 27 (29, 43); E sigma A (D,E,F,G,H); sigma 29 (32, 70)
- removed symbols sigma-43; Spo0A-P, Spo0A˜P; SpoIIAA-P; alpha-amylase; PBP4*; PhoP˜P
- removed symbols & blanks pro-sigma E (K)
- added to dictionary lacZ (ID 8169223-5,10767540-2); orf10 (10481082-2)
- altered in dictionary sigma 27 = sigK according to 2492118-2
- added ’.’ at end of sentence ID 10400595-1

thus be reduced to an exact matching of sentences
against the dictionary. However, we introduced some
minor modifications to cope with blanks, symbols, and
overlapping gene names (’sigma E’ versus ’E sigma
E’ and ’pro-sigma E’). We normally tackle the NER
task using machine learning approaches based on sup-
port vector machines (Hakenberg et al., 2005). We did
not distinguish between genes and proteins, neither in
NER nor in patterns. In the literature, names refer-
ring to genes or proteins often are quite similar or even
used as synonyms, and the exact meaning most times
is hard to resolve.

Our pattern composition is based on part-of-speech
tags annotated for each token. For POS-tagging,
we used the TnT-Tagger, trained on the Wall-Street-
Journal corpus (Brants, 2000), generating tags from
the Penn Treebank tag-set (Santorini, 1990). In addi-
tion, we needed markup for tokens describing interac-
tions, referred to as either interaction nouns or verbs
(such as ’activation’, or ’inhibits’). We performed this
step by combining POS-tag and word stem (Porter,
1980) to find an entry in fixed term-lists for nouns and
verbs. The tokens in these lists were selected by expe-
rience gathered in previous studies, and additionally
included suggestions from Temkin and Gilder (2003)
as well (see supplementary information). We restricted
the tags used in this approach to the ones shown in Ta-
ble 1.

2.4.2. Dictionary and Canonical Forms

For the LLL data sets, we transformed every pro-
tein/gene name to its respective canonical form, as
provided with the data. We subsequently matched ev-
ery spelling variant of protein/gene names occurring in
the corpus to its corresponding canonical form, start-
ing with the longest synonyms to avoid errors in over-
lapping names. In addition, we altered some entries in
the dictionary to deal with these problems. In general,
in the refined dictionary, canonical forms did not have
blanks or symbols (see Table 3). We added two names
(lacZ and orf10), because they occurred in the corpus,
but not in the dictionary.

Table 4. Patterns extracted from our corpus; table shows
only patterns with a support of ≥30. Dependencies refer
to different possibilities for agent/target relations; A: first
protein in the sentences, B: second, C:third.

Pattern Support Dependencies
PTN IVERB PTN 1405 A→B, B→A, A↔B

PTN IVERB DT PTN 258 A→B, A↔B
PTN IVERB IN PTN 173 A→B, B→A
PTN INOUN PTN 138 A→B, B→A

PTN INOUN IN PTN 116 A→B, B→A
PTN IVERB IN DT PTN 46 A→B

PTN RB IVERB PTN 45 A→B, A↔B
INOUN IN PTN IN PTN 35 A→B, B→A
PTN IVERB NN PTN 35 A→B
PTN IVERB PTN PTN 30 A→B, A→C

Table 5. Performance on different types of interactions; all
without linguistic information, without co-refs. Numbers
in brackets give the total number of existing interactions
(FN), and predicted interactions (FP), respectively.

action bind regulon nothing all
TP 19 7 2 0 28
FN 17 (36) 5 (12) 2 (4) 0 (0) 24 (52)
FP 10 (29) 4 (11) 1 (3) 13 (13) 28 (56)

3. Results and Discussion

From our corpus of 1000 sentences, we were able to ex-
tract 148 patterns (see Table 4). The pattern with the
highest support was “PTN IVERB PTN” – 1405 dif-
ferent alignments produced this sequence. The second
best pattern, “PTN IVERB DT PTN” had a support
of 258 only. These numbers included multiple optimal
alignments for pairing two sentences. Table 4 shows
the ten patterns with the highest support in the train-
ing data.

We decided to send the prediction (supposedly) having
the highest F1-measure. This solution scored an F1 of
51.8% (precision of 50.0% at 53.8% recall; see Tables 5
and 6).

For the challenge, we did not use the co-references
and linguistic information as provided with the cor-
pus. Error analysis (for predictions on the training
data) revealed that our system often predicted the in-

43

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

Table 6. Results from the evaluation for different
methods and corpora. Upper corpus for train-
ing, lower for test; C1000 : corpus of 1000 sentences;
C55: genic interaction data; C86: basic test data.

Method Corpus Pre Rec F1
Alignment C1000 57.1 7.8 13.7

C55

Alignment C55 63.6 8.1 14.4
C86

Mealy C1000 64.3 17.5 27.5
(2 FSAs) C55

Mealy C1000 42.9 9.2 15.2
(2 FSAs) C86

Mealy C55 28.1 31.4 29.6
(4 FSAs) C86

Mealy C1000+55 50.0 53.8 51.8
(5 FSAs) C86

teracting partners correctly, but erred on the direc-
tion of the interaction, i.e. it interchanges agent and
target. Using linguistic information, it might be pos-
sible to resolve some of these dependencies. Syntac-
tic relations could help to generate more specific pat-
terns containing whole phrases instead of single tags
(“expression of rsfA”). For this specific phrases, cer-
tain positions could even be restricted to particular
tokens, instead of general POS tags. Combinations
of verbs and prepositions, for instance, contain lin-
guistic information clearly stating the exact role of a
gene/protein appearing before or after this verb phrase
(“was phosphorylated by”). Grouping particular in-
teraction types together (e.g., “phosphorylation” and
“methylation” refer to the creation of bonds, while “re-
duction” and “repression” imply an inactivation) and
restricting patterns to these particular types might fur-
ther help to exploit nomenclature usages.

We saw that the performance of our approach is clearly
dependent on the size of the training set. Our system
was able to detect only interactions for which it en-
countered a quite similar example in the training data.
Using only 55 sentences for generating patterns proved
insufficient, as many relations in the test set did not
resemble any of these.

Our training corpus of 1000 sentences contained 256
different protein-protein interactions, but these were
in general quite dissimilar from the genic interactions
in the LLL data. This difference clearly had an impact
on the performance. For instance, our examples did
not include any descriptions of regulon family mem-
berships at all. Most of our examples describe ac-
tions and bindings, and our system performed better
in these categories (see Table 5).

Statistical analyses of the corpora revealed that the

pattern protein-interactor-protein (PIP) was used in
78.1% of all cases, and IPP accounted for 18%, leaving
3.9% for PPI. In 58% of the relations, the agent was
mentioned before the target.

The results of the system presented here were not
overly satisfying. On our own corpus, alignments
scored a precision of 91% or a recall of 65%, and Mealy-
FSAs yielded 79% precision or 88% recall. These re-
sults could be confirmed on the IEPA corpus (Ding
et al., 2002), which contains protein-protein interac-
tions as well.

Supplementary Information

For supplementary information, please visit
http://www.informatik.hu-berlin.de/~hakenber/
publ/suppl/.

Abbreviations

FSA, finite state automaton; NER, named entity
recognition; PGA, pattern generating algorithm; POS,
part-of-speech (tag).

Acknowledgments

This work is supported by the German Federal Min-
istry of Education and Research (BMBF) under grant
contract 0312705B. The Knowledge Management in
Bioinformatics Group is a member of the Berlin Cen-
ter for Genome Based Bioinformatics (BCB). Funding
for the Rebholz group is provided by the Network of
Excellence “Semantic Interoperability and Data Min-
ing in Biomedicine” (NoE 507505). JH is additionally
supported by the German Foreign Exchange Service
(DAAD), reference number D/05/26768.

References

Brants, T. (2000). TnT - a statistical part-of-speech
tagger. Proc 6th Applied NLP Conference. Seattle,
USA.

Chen, H., & Sharp, B. M. (2004). Content-rich bio-
logical network constructed by mining PubMed ab-
stracts. BMC Bioinformatics, 5, 147.

Daraselia, N., Yuryev, A., Egorov, S., Novichkova,
S., Nikitin, A., & Mazo, I. (2004). Extracting hu-
man protein interactions from medline using a full-
sentence parser. Bioinformatics, 20, 604–611.

Ding, J., Berleant, D., Nettleton, D., & Wurtele, E.
(2002). Mining MEDLINE: Abstracts, Sentences,
or Phrases? Pacific Symposium on Biocomputing
(pp. 326–337). Kaua’i, Hawaii, USA.

44

LLL’05: Identification of Language Patterns Based on Alignment and Finite State Automata

Genic Interaction Extraction Challenge (2005).
Learning Language in Logic Workshop (LLL).
http://genome.jouy.inra.fr/texte/LLLchallenge/.

Hakenberg, J., Bickel, S., Plake, C., Brefeld, U.,
Zahn, H., Faulstich, L., Leser, U., & Scheffer, T.
(2005). Systematic Feature Evaluation for Gene
Name Recognition. BMC Bioinformatics, 6, S9.

Hirschman, L., Yeh, A., Blaschke, C., & Valencia, A.
(2005). Overview of BioCreAtIvE: critical assess-
ment of information extraction for biology. BMC
Bioinformatics, 6, 1.

Huang, M., Zhu, X., Hao, Y., Payan, D. G., Qu, K.,
& Li, M. (2004). Discovering patterns to extract
protein-protein interactions from full texts. Bioin-
formatics, 20, 3604–3612.

Needleman, S., & Wunsch, C. (1970). A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. J. Mol.
Biol., 48, 443–53.

Plake, C., Hakenberg, J., & Leser, U. (2005a). Learn-
ing Patterns for Information Extraction from Free
Text. Proc Workshop des Arbeitskreises Knowledge
Discovery. Karlruhe, Germany.

Plake, C., Hakenberg, J., & Leser, U. (2005b). Op-
timizing Syntax Patterns for Discovering Protein-
Protein Interactions. Proc ACM Symposium for Ap-
plied Computing, Bioinformatics track. Santa Fe,
USA.

Porter, M. (1980). An algorithm for suffix stripping.
Program, 130–137.

Rosario, B., & Hearst, M. (2004). Classifying seman-
tic relations in bioscience texts. Proceedings of the
42nd Annual Meeting of the Association for Com-
putational Linguistics, ACL. Barcelona, Spain.

Santorini, B. (1990). Part-of-speech tagging guidelines
for the Penn Treebank Project (Technical Report).
MS-CIS-90-47, University of Pennsylvania.

Saric, J., Jensen, L., Ouzounova, R., Rojas, I., & Bork,
P. (2005). Large-scale Extraction of Protein/Gene
Relations for Model Organisms. Proc Symp on Se-
mantic Mining in Biomedicine (p. 50). Hinxton,
UK.

Smith, T., & Waterman, M. (1981). Identification of
common molecular subsequences. J. Mol. Biol., 147,
195–197.

Stapley, B., Kelley, L., & Sternberg, M. (2002). Pre-
dicting the sub-cellular location of proteins from
text using support vector machines. Proceedings of
the Pacific Symposium on Biocomputing (pp. 374–
385).

Temkin, J. M., & Gilder, M. R. (2003). Extraction of
protein interaction information from unstructured
text using a context-free grammar. Bioinformatics,
19, 2046–2053.

Xiao, J., Su, J., Zhou, G., & Tan, C. (2005).
Protein-Protein Interaction Extraction: A Super-
vised Learning Approach. Proc Symp on Semantic
Mining in Biomedicine (pp. 51–59). Hinxton, UK.

45

Automatically Acquiring a Linguistically Motivated

Genic Interaction Extraction System

Mark A. Greenwood m.greenwood@dcs.shef.ac.uk
Mark Stevenson m.stevenson@dcs.shef.ac.uk
Yikun Guo g.yikun@dcs.shef.ac.uk
Henk Harkema h.harkema@dcs.shef.ac.uk
Angus Roberts a.roberts@dcs.shef.ac.uk

Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK

Abstract

This paper describes an Information Extrac-
tion (IE) system to identify genic interactions
in text. The approach relies on the automatic
acquisition of patterns which can be used to
identify these interactions. Performance is
evaluated on the Learning Language in Logic
(LLL-05) workshop challenge task.

1. Extraction Patterns

The approach presented here uses extraction patterns
based on paths in dependency trees (Lin, 1999). De-
pendency trees represent sentences using dependency
relationships linking each word in the sentence with
the words which modify it. For example in the noun
phrase brown dog the two words are linked by an ad-
jective relationship with the noun dog being modified
by the adjective brown. Each word may have several
modifiers but each word may modify at most one other
word.

In these experiments the extraction patterns consist
of linked chains, an extension of the chain model pro-
posed by Sudo et al. (2003) which represents patterns
as any chain-shaped path in a dependency tree starting
from a verb node. Our model extends this to patterns
produced by joining pairs of chains which share a com-
mon verb root but no direct descendants. For example
the fragment “...agent represses the transcription of
target...” can be represented by the dependency
tree in Figure 1. From such a tree we extract all the
chains and linked chains that contain at least one se-
mantic category giving the 4 patterns (2 chains and 2

Appearing in Proceedings of the 4 th Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

linked chains) shown in Table 1.

Figure 1. An example dependency tree.

The nodes in the dependency trees from which our
patterns are derived can be either a lexical item or
a semantic category such as gene, protein, agent,
target, etc. Lexical items are represented in lower
case and semantic categories are capitalised, e.g. in
verb[v/transcribe](subj[n/GENE]+obj[n/PROTEIN])1 ,
transcribe is a lexical item while GENE and PROTEIN

are semantic categories which could match any lexical
item of that type. These patterns can be used to
extract interactions from parsed text by matching
against dependency trees.

2. Extraction Pattern Learning

Our approach learns patterns automatically by identi-
fying those with similar meanings to a set of seed pat-
terns known to be relevant. The motivation behind
this approach is that language is often used to express
the same information in alternative ways. For example
“agent represses the transcription of target”, “the
transcription of target is repressed by agent”, and
“target (repressed by agent)” describe the same in-
teraction. Our approach aims to identify various ways
interactions can be expressed by identifying patterns

1In this pattern representation + signifies that two nodes
are siblings and a nodes descendants are grouped within (
and) directly after the node.

46

Automatically Acquiring a Linguistically Motivated Genic IE System

verb[v/repress](subj[n/AGENT])
verb[v/repress](obj[n/transcription](of[n/TARGET]))
verb[v/repress](obj[n/transcription]+subj[n/AGENT])
verb[v/repress](obj[n/transcription](of[n/TARGET])+subj[n/AGENT])

Table 1. The patterns extracted from the dependency tree in Figure 1.

which paraphrase one another. A similar method is
outlined in more detail in Stevenson and Greenwood
(2005).

Extraction patterns are learned using a weakly super-
vised bootstrapping method, similar to that presented
by Yangarber (2003), which acquires patterns from a
corpus based upon their similarity to patterns which
are known to be useful. The general process of the
learning algorithm is as follows:

1. For a given IE scenario we assume the existence
of a set of documents against which the system
can be trained. The documents are unannotated
and may be either relevant (contain the descrip-
tion of an event relevant to the scenario) or irrele-
vant although the algorithm has no access to this
information.

2. This corpus is pre-processed to generate the set
of all patterns which could be used to represent
sentences contained in the corpus, call this set S.
The aim of the learning process is to identify the
subset of S representing patterns which are rele-
vant to the IE scenario.

3. The user provides a small set of seed patterns,
Sseed, which are relevant to the scenario. These
patterns are used to form the set of currently
accepted patterns, Sacc, so Sacc ← Sseed. The
remaining patterns are treated as candidates for
inclusion in the accepted set, these form the set
Scand(= S − Sacc).

4. A function, f , is used to assign a score to each pat-
tern in Scand based on those which are currently in
Sacc. This function assigns a real number to can-
didate patterns so ∀ c ε Scand, f(c, Sacc) $→ R.
A set of high scoring patterns (based on absolute
scores or ranks after the set of patterns has been
ordered by scores) are chosen as being suitable for
inclusion in the set of accepted patterns. These
form the set Slearn.

5. The patterns in Slearn are added to Sacc and re-
moved from Scand, so Sacc ← Sacc ∪ Slearn and
Scand ← Sacc − Slearn.

6. If a suitable set of patterns has been learned then
stop, otherwise return to step 4.

The most important stage in this process is step
4; the task of identifying the most suitable pat-
tern from the set of candidates. We do this by
finding patterns that are similar to those already
known to be useful. Similarity is measured using
a vector space model inspired by that commonly
used in Information Retrieval (Salton & McGill,
1983). Each pattern is represented as a set of pat-
tern element-filler pairs. For instance, the pattern
verb[v/transcribe](subj[n/GENE]+obj[n/PROTEIN])

contains the pairs verb transcribe, subj GENE and
obj PROTEIN. The set of element-filler pairs in a corpus
can be used to form the basis for a vector space in
which each pattern can be represented as a binary
vector (where the value 1 for a particular element
denotes the pattern contains the pair and 0 that it
does not). The similarity of two pattern vectors can
be compared using Equation 1.

similarity("a,"b) =
"aW "bT

|"a||"b|
(1)

Here "a and "b are pattern vectors, "bT the transpose of
"b, and W a matrix listing the semantic similarity be-
tween each of the possible pattern element-filler pairs
which is crucial for this measure. Assume that the
set of patterns, P , consists of n element-filler pairs
denoted by p1, p2, ...pn. Each row and column of W
represents one of these pairs. So, for any i such that
1 ≤ i ≤ n, row i and column i are both labelled with
pair pi. wij is the element of W in row i and column j
and is the similarity between pi and pj . Pairs with dif-
ferent pattern elements (i.e. grammatical roles) have
a similarity score of 0. The remaining elements of W
represent the similarity between the filler of pairs of
the same element type. Similarity is determined us-
ing a metric defined by Banerjee and Pedersen (2002)
which uses the WordNet lexical database (Fellbaum,
1998)2. This metric measures the relatedness of a pair
of words by examining the number of words that are
common in their definitions.

Figure 2 shows an example using three potential ex-
traction patterns:

2This measure was chosen since it allows relatedness
scores to be computed for a wider range of grammatical
categories than alternative measures.

47

Automatically Acquiring a Linguistically Motivated Genic IE System

Extraction Patterns
a. verb[v/block](subj[n/protein])
b. verb[v/repress](subj[n/enzyme])
c. verb[v/promote](subj[n/protein])

Matrix Labels
1. subj protein 4. verb repress
2. subj enzyme 5. verb promote
3. verb block

Similarity Matrix Similarity Values
1 0.95 0 0 0

0.95 1 0 0 0
0 0 1 0.9 0.1
0 0 0.9 1 0.1
0 0 0.1 0.1 1

sim(!a, !b) = 0.925
sim(!a, !c) = 0.55
sim(!b, !c) = 0.525

Figure 2. Similarity scores and matrix for an example vec-
tor space using three patterns.

verb[v/block](subj[n/protein])

verb[v/repress](subj[n/enzyme])

verb[v/promote](subj[n/protein])

This example shows how these patterns can be repre-
sented as vectors and gives a sample semantic similar-
ity matrix. It can be seen that the first pair of patterns
are the most similar using the proposed measure de-
spite the fact they have no lexical items in common.

The measure shown in Equation 1 is similar to the co-
sine metric, commonly used to determine the similarity
of documents in the vector space model approach to
Information Retrieval. However, the cosine metric will
not perform well for our application since it does not
take into account the similarity between elements of a
vector and would assign equal similarity to each pair
of patterns in this example3.

The second part of a pattern element-filler pair can be
a semantic category, such as GENE. The identifiers used
to denote these categories do not appear in WordNet
and so it is not possible to directly compare their sim-
ilarity with other lexical items. To avoid this problem
such tokens are manually mapped onto the most ap-
propriate node in the WordNet hierarchy which is then
used in similarity calculations.

An associated problem is that WordNet is a domain
independent resource and may list several inappropri-

3The cosine metric for a pair of vectors is given by the
calculation a.b

|a||b| . Substituting the matrix multiplication in
the numerator of Equation 1 for the dot product of vectors
!a and !b would give the cosine metric. Note that taking
the dot product of a pair of vectors is equivalent to multi-

plying by the identity matrix, i.e. !a.!b = !aI !bT . Under our
interpretation of the similarity matrix, W , this equates to
saying that all pattern element-filler pairs are identical to
each other and not similar to anything else.

ate meanings for domain specific words. For exam-
ple WordNet lists five senses of the word transcribe,
only one of which is related to the biomedical domain.
To alleviate this problem domain specific restrictions
are applied to WordNet. In these experiments only
specific senses of 58 words are used with the alterna-
tive senses for each word being ignored by the system.
These 58 words include the 30 verbs detailed in the
PASBio project4 (Wattarujeekrit et al., 2004) and 28
words determined by manual analysis of MedLine ab-
stracts. For example, transcribe contains five senses in
WordNet but our system considers only the final one;
convert the genetic information in (a strand of DNA)
into a strand of RNA, especially messenger RNA.

We experimented with several techniques for ranking
candidate patterns to decide which patterns to learn
at each iteration of our algorithm and found the best
results were obtained when each candidate pattern was
compared against the centroid vector of the currently
accepted patterns. At each iteration we accept the four
highest scoring patterns whose score is within 0.95 of
the best pattern being accepted. For further details
of the same approach using predicate-argument struc-
tures to perform sentence filtering, see Stevenson and
Greenwood (2005).

3. Pattern Acquisition

Two training corpora were used for the experiments
reported in this paper:

Basic The basic data set, without coreference, as pro-
vided by the LLL-05 challenge organizers.

Expanded The basic data set expanded with 78 au-
tomatically acquired weakly labelled (Craven &
Kumlien, 1999) MedLine sentences. This extra
training data was obtained by extracting, from
MedLine abstracts5 containing the phrase Bacil-
lus subtilis, those sentences which contain two
dictionary entries (or their synonyms) which are
known to form an interaction in the basic training
data.

The training corpora are pre-processed to produce one
sentence per known interaction, replacing the agent
and target by representative tags, AGENT and TARGET,
and all other dictionary elements by the tag OTHER.
The resulting sentences are then parsed using mini-

4http://research.nii.ac.jp/∼collier/projects/

PASBio/
5Only abstracts which appeared after the year 2000

were used in order to comply with the LLL challenge guide-
lines.

48

Automatically Acquiring a Linguistically Motivated Genic IE System

par (Lin, 1999) to produce dependency trees from
which the candidate extraction patterns (in the form
of chains and linked chains) are extracted.

The learning algorithm was used to learn two sets of
extraction patterns using the pair of corpora and the
seed patterns in Table 2 which where chosen follow-
ing a manual inspection of the training data. Due to
the small amount of training data the learning algo-
rithm was allowed to run until it was unable to learn
any more patterns. When trained using the basic cor-
pora the algorithm ran for 74 iterations and acquired
127 patterns. When trained using expanded corpora
the algorithm ran for 130 iterations and acquired 236
patterns.

Not all the extraction patterns acquired in this way en-
code a complete interaction, i.e. they do not contain
both AGENT and TARGET slots. To generate full inter-
actions those agents and targets which are extracted
are joined together using the following heuristics:

• Each AGENT extracted is paired with all the
TARGET instances extracted from the same sen-
tence (vice-versa for TARGETS).

• Each AGENT/TARGET discovered by a pattern is
paired with the closest (distance measured in
words) dictionary element.

For example imagine a sentence in which all the
agents and targets discovered by extraction pat-
terns are tagged as AGENT or TARGET, all other dic-
tionary elements are replaced by OTHER: TARGET1

blocks AGENT and OTHER which inhibits TARGET2.
From this sentence the following interactions would
be extracted AGENT→TARGET1, AGENT→TARGET2 and
AGENT→OTHER, i.e. the AGENT would be paired with
all TARGET instances as well as the closest dictionary
element.

4. A Baseline System

A baseline system was developed for comparison with
our main approach. This baseline system assumes that
interactions exist between all possible pairs of named
entities in any given sentence (participants were pro-
vided with an exhaustive named entity dictionary).
For instance, given a sentence containing three named
entities labelled A, B and C, six interactions AB, AC,
BA, BC, CA and CB are generated. This baseline
will identify many interactions although the precision
is likely to be low as many incorrect interactions will
also be generated.

5. Evaluation

The official evaluation results, for both the baseline
system and the systems trained using the two corpora
detailed in Section 3, can be seen in Table 3.

We may expect the baseline system to achieve 100%
recall by proposing a link between each pair of enti-
ties in each sentence. However certain constructions
describe two relations between a pair of entities. For
example “...A activates or represses B...” describes
both repression and activation relationships between
A and B while the baseline would propose just one.

In comparison with the baseline system our machine
learning approach to pattern acquisition performed
poorly due to low recall, although with a precision
score over twice that of the baseline. The performance
can probably be attributed to the small amount of
available training data. It is clear that adding just
a small amount of additional training data (78 sen-
tences from MedLine) had a positive effect increasing
the overall F-measure from 14.8% to 17.5%. The same
effect can be seen if we consider the performance of
the systems over the three interaction types; action,
bind and regulon. The system trained using just the
basic data finds 6 correct interactions 5 of which are
actions and 1 a binding interaction (see Table 4 for
a full breakdown of the results for all three submis-
sions). The system fails to find any regulon family
interactions. This is understandable given the train-
ing data which contains different percentages of each
of the three interaction types. For instance only three
sentences containing a regulon family interaction are
provided illustrating just six interactions. Given our
method of pattern acquisition this means that even if
all the relevant patterns from these three sentences are
learnt they would only apply to very similar sentences
when used for extraction as they will not have been
able to generalise far enough away from the specific
instances present in the three example sentences.

5.1. Additional Evaluation

We carried out additional evaluations after the official
results for the challenge task had been released.

A more detailed evaluation of the learning algorithm
considers the performance of the patterns acquired at
each separate iteration as opposed to the results in the
previous section which evaluate all the acquired pat-
terns as a single set. Figure 3 shows the F-measure
score of the system trained using the expanded cor-
pus (see Section 3) at each iteration of the learning
algorithm.

This evaluation highlights a number of interesting

49

Automatically Acquiring a Linguistically Motivated Genic IE System

verb[v/transcribe](by[n/AGENT]+obj[n/TARGET])
verb[v/be](of[n/AGENT]+s[n/expression](of[n/TARGET]))
verb[v/inhibit](obj[n/activity](nn[n/TARGET])+subj[n/AGENT])
verb[v/bind](mod[r/specifically](to[n/TARGET])+subj[n/AGENT])
verb[v/block](obj[n/capacity](of[n/TARGET])+subj[n/AGENT])
verb[v/regulate](obj[n/expression](nn[n/TARGET])+subj[n/AGENT])
verb[v/require](obj[n/AGENT]+subj[n/gene](nn[n/TARGET]))
verb[v/repress](obj[n/transcription](of[n/TARGET])+subj[n/AGENT])

Table 2. Seed patterns used for pattern acquisition.

System P R F
Baseline 10.6% (53/500) 98.1% (53/54) 19.1%
LLL-05 Basic 22.2% (6/27) 11.1% (6/54) 14.8%
LLL-05 Expanded 21.6% (8/37) 14.8% (8/54) 17.5%

Table 3. Evaluation results of our three submissions.

All Interactions Action Bind Regulon No Interaction
System C M S C M S C M S C M S C M S
Baseline 53 1 447 35 1 95 14 0 46 4 0 6 0 0 300
LLL-05 Basic 6 48 21 5 31 7 1 13 2 0 4 0 0 0 12
LLL-05 Expanded 8 46 29 7 29 11 1 13 2 0 4 0 0 0 16

Table 4. Breakdown of the official evaluation results including results for individual interaction types (columns represent
Correct, Missing, and Spurious). Precision = C/(C+S), Recall = C/(C+M)

0 20 40 60 80 100 120
Iteration

0
2
4
6
8

10
12
14
16
18
20

%
 F

-m
ea

su
re

Figure 3. Increasing F-measure scores.

points. Firstly the seed patterns (Table 2) while be-
ing possibly representative of the training data do not
match any of the interactions in the test set (i.e. the
F-measure at iteration zero is 0% reflecting the fact
that no correct interactions were extracted by the seed
patterns). This is unfortunate as the learning algo-
rithm is designed to acquire patterns which are sim-
ilar in meaning to a set of known good patterns. In
this instance, however, the algorithm started by ac-
quiring patterns which are similar to the seeds but
which clearly do not represent the interactions in the
test set. However, this also means that those interac-
tions extracted by the completed system were done so
using only patterns acquired during training and not
hand-picked good quality seed patterns.

The per-iteration evaluation in Figure 3 also shows
that the learning algorithm is relatively stable even
when inappropriate patterns are acquired. At least one
pattern is acquired at each iteration and these results
show that even if patterns are not able to extract valid
interactions they rarely affect the performance of the
current set of acquired patterns. The notable excep-
tion to this is at iteration 51 when a pattern is acquired
which drops the F-measure from 12.1% to 10.8%, al-
though further analysis shows that this was in fact a
problem with the extraction procedure and not the ac-
quired pattern. The algorithm acquired the pattern
verb[v/contain](obj[n/TARGET]+subj[n/AGENT]). Un-

50

Automatically Acquiring a Linguistically Motivated Genic IE System

fortunately while the TARGET usually matches against a
dictionary element the AGENT often matches other text.
This causes the nearest (in words) dictionary element
to be used as the AGENT which, in turn, can lead to
incorrect interactions being extracted from text.

This analysis of the system’s failings highlights a use-
ful feature of our approach. Many machine learning
algorithms produce classifiers which are statistical in
nature and do not consist of a set of rules but rather
a complex combination of probabilities. This makes it
difficult to analyse classification mistakes and does not
allow the ability to modify the classifier by removing
badly performing rules. In contrast to this our ap-
proach learns human readable extraction rules which
can be easily inspected, modified or removed to suit a
given scenario. This allows an expert to examine the
extraction rules while automating the time consuming
process of rule acquisition.

5.2. Sentence Filtering

Our approach to automatically acquiring IE patterns
has been shown to be suitable for determining the rel-
evance of sentences for an extraction task in the man-
agement succession domain (Stevenson & Greenwood,
2005). The sentence filtering task involves using the
set of acquired patterns to classify each sentence in a
corpus as either relevant (containing the description
of an interaction) or not. Sentence filtering is an im-
portant preliminary stage to full relation extraction.
Using the patterns acquired from the expanded corpus
(described in Section 3) we can also perform sentence
filtering of the LLL challenge test data6. The results
of this filtering, at different iterations of the algorithm,
can be seen in Figure 4.

These results show that set of acquired patterns
achieves an F-measure score of 47.5% resulting from
precision and recall scores of 57.6% and 40.4% respec-
tively. This compares to results reported by Nédellec
et al. (2001) who achieve an F-measure score of ap-
proximately 80% over similar data using a supervised
approach in which the learning algorithm was aware of
the classification of the training instances. It should
be noted that our approach was trained using only
a small amount of unlabelled training data (181 sen-
tences compared with approximately 900 sentences
used by Nédellec et al. (2001)) and the sentence filter-
ing results should be considered in this context.

6Thanks to Claire Nédellec for providing the
relevant/not-relevant labelling of the sentences required
for this evaluation.

0 20 40 60 80 100 120
Iteration

0
5

10
15
20
25
30
35
40
45
50

%
 F

-m
ea

su
re

Figure 4. BioMedical Sentence Filtering.

6. Failure Analysis

The experiments reported in this paper have shown
that our system is disappointing when used to perform
relation extraction. The main failure of the system to
extract meaningful relations can be traced back to the
lack of training data. When extra data obtained from
MedLine was also used to train the system there was
an improvement in performance, acquiring more data
may further improve performance. Another possible
solution to this problem would be to generalise the ac-
quired patterns in some form, perhaps by allowing any
synonym of a pattern element filler to match. These
could be extracted from WordNet.

One further source of failure was due to errors in
the dependency trees introduced by minipar. This
is probably because the parser was not trained on
biomedical texts and hence suffers from problems with
unknown words and grammatical constructions. The
approach here relies heavily on access to accurate de-
pendency tree representations of text.

7. Conclusions

In this paper we have presented a linguistically moti-
vated approach to extracting genic interactions from
biomedical text. Whilst the performance of the sys-
tem was disappointing achieving an F-measure score of
only 17.5% we believe that the approach is well moti-
vated but suffers from a lack of training data and pars-
ing problems. We showed that increasing the training
data using weakly labelled text did in fact increase the
performance of the system. The additional evaluation
of the extraction patterns showed that the approach is
also resilient to the algorithm learning inappropriate
extraction patterns.

51

Automatically Acquiring a Linguistically Motivated Genic IE System

Acknowledgements

This work was carried out as part of the RESuLT
project funded by the Engineering and Physical Sci-
ences Research Council (GR/T06391).

References

Banerjee, S., & Pedersen, T. (2002). An Adapted
Lesk Algorithm for Word Sense Disambiguation Us-
ing WordNet. Proceedings of the Fourth Interna-
tional Conference on Computational Linguistics and
Intelligent Text Processing (CICLING-02) (pp. 136–
145). Mexico City.

Craven, M., & Kumlien, J. (1999). Constructing Bio-
logical Knowledge Bases by Extracting Information
from Text Sources. Proceedings of the Seventh In-
ternational Conference on Intelligent Systems for
Molecular Biology (pp. 77–86). Heidelberg, Ger-
many: AAAI Press.

Fellbaum, C. (Ed.). (1998). Wordnet: An electronic
lexical database and some of its applications. Cam-
bridge, MA: MIT Press.

Lin, D. (1999). MINIPAR: a minimalist parser. Mary-
land Linguistics Colloquium. University of Mary-
land, College Park.

Nédellec, C., Vetah, M. O. A., & Bessières, P. (2001).
Sentence Filtering for Information Extraction in Ge-
nomics, a Classification Problem. Proceedings of
the Conference on Practical Knowledge Discovery in
Databases (PKDD’2001) (pp. 326–338). Freiburg,
Germany.

Salton, G., & McGill, M. (1983). Introduction to mod-
ern information retrieval. New York: McGraw-Hill.

Stevenson, M., & Greenwood, M. A. (2005). A Seman-
tic Approach to IE Pattern Induction. Proceedings
of the 43rd Annual Meeting of the Association for
Computational Linguistics.

Sudo, K., Sekine, S., & Grishman, R. (2003). An
Improved Extraction Pattern Representation Model
for Automatic IE Pattern Acquisition. Proceedings
of the 41st Annual Meeting of the Association for
Computational Linguistics (ACL-03) (pp. 224–231).

Wattarujeekrit, T., Shah, P., & Collier, N. (2004).
PASBio: Predicate-Argument Structures for Event
Extraction in Molecular Biology. BMC BioInfor-
matics, 5:155.

Yangarber, R. (2003). Counter-training in the discov-
ery of semantic patterns. Proceedings of the 41st

Annual Meeting of the Association for Computa-
tional Linguistics (ACL-03) (pp. 343–350). Sapporo,
Japan.

52

Learning Biological Interactions from Medline Abstracts

Sophia Katrenko katrenko@science.uva.nl

Human-Computer Studies Laboratory, University of Amsterdam, Kruislaan 419, 1098 VA, Amsterdam

M. Scott Marshall marshall@science.uva.nl

Integrative Bioinformatics Unit, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam

Marco Roos roos@science.uva.nl

Integrative Bioinformatics Unit, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam

Pieter Adriaans pietera@science.uva.nl

Human-Computer Studies Laboratory, University of Amsterdam, Kruislaan 419, 1098 VA, Amsterdam

Abstract

In this paper, we describe our approach to
the Genic Interaction Extraction Challenge.
Our solution combines several elements: 1)
a domain theory about the interaction be-
tween language, semantics and syntax, 2) a
biological ontology identifying amongst other
things biomolecular entities and directed in-
teraction verbs in the lexicon, 3) the notion
of lexical-semantic-syntactic unification, 4)
the notion of partial unification of lexical-
semantic-syntactic trees and 5) the appli-
cation of the standard RIPPER algorithm
to the results. Using this approach on the
very limited training and test data from the
Challenge we show results that are promis-
ing. Our method observes a clear separation
between domain-independent and domain-
specific components. It can therefore easily
be extended to other domains. We briefly de-
scribe the implementation of the techniques,
discuss the results and give suggestions for
improvements and further results in the con-
clusion.

1. Introduction

Extracting interactions from texts is an active field
of research in the biomedical domain (Krallinger, M.,
2005, for a recent review). Interactions between pro-
teins and genes are often considered essential in the

Appearing in Proceedings of the 4nd Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

description of biomolecular phenomena, and networks
of (protein) interactions are considered as an entré
for a Systems Biology approach (Uetz, P. 2005). In-
teraction networks extracted from literature (Chen,
H. 2004) complement interaction data obtained from
high-throughput laboratory experiments (Xenarios, I.,
2001). Our approach falls into a class that explores the
application of semantic models (Yandell, M. D. 2002;
Muller, H. M. 2004).

The paper is organized as follows. We first define the
task and data supplied. Then, we proceed with the
overview of the system which has been developed. The
paper concludes with results received on the Challenge
data and gives an outlook.

2. Challenge task

2.1. Biology

The Genic Interaction Extraction Challenge is aimed
at learning interactions between agents and targets
described by individual sentences that have been ex-
tracted from a Medline collection of abstracts. As is
typical in articles about biology, the abstracts describe
the results from various types of experiments and use
a mix of biological viewpoints and jargon. The sen-
tences have been extracted from different abstracts,
thus there is no relation among the sentences on the
discourse level.

For the purposes of the Challenge, a simplified notion
of ’interaction’ is used: an agent/target pair of (the
names of) genes and/or proteins. Gene names can
pertain to genetic entities such as the DNA code for a
given gene or to physical entities, in which case they

53

Learning Biological Interactions from Medline Abstracts

may indirectly refer to gene products, i.e. proteins.
However, it might happen that the same name for a
biomolecular entity can refer to both the gene and the
gene product and thereby perform the role of both
agent and target. On the other hand, it is also possible
to encounter more than one agent for a given target
and vice versa.

A typical sentence with explicit interaction stated is
the following:

Localization of SpoIIE was shown to be dependent on
the essential cell division protein FtsZ.

where SpoIIE is the target and FtsZ is the
agent and the interaction is represented as
genic interaction(FtsZ,SpoIIE). As one may no-
tice, this relation is not symmetric.

We created a simple ontology specifically for use in
this Challenge. The main purpose of the ontology was
as a proof of principle for the use of semantics during
text mining.

2.2. Data

There were 77 annotated training sentences provided
by the organizers of the Challenge. Because we feel
that syntactic information is vital, we only worked
with the enriched training sets. An example sentence
contains the following elements: a sentence-ID, the
sentence itself, a corresponding list of words, a list
of lemmas (stemmed versions of the words), a list of
syntactic relations, a list of agents, targets and in-
teractions. They can be grouped according to the
presence/absence of the co-references into 22 sentences
with co-references and 55 without them. The test set
contains 87 sentences in the same format but with-
out the agent-target information. In contrast to the
training set, it also contains negative examples.

3. System overview

Following (Russell & Norvig 2003), the general
knowledge-based inductive learning has to solve the
following constraint:

Background ∧ Hypothesis∧ Descriptions

|= Classifications

In our case, Background can be thought of as ontology
and the knowledge it encapsulates, Descriptions are
examples (and the data representation chosen). Hy-
pothesis is unknown and has to be consistent with the
background knowledge and observations.

The system we have designed includes several compo-
nents as described further. The main idea of the sys-

tem has been inspired by the domain theory described
in (Adriaans, 1992; Adriaans, 1991). This theory pro-
vides a framework for syntactic and semantic language
learning under the assumption of compositionality. It
allows the learning algorithm to deal with partial in-
formation on various levels of language description.

3.1. Data representation

In the context of the LLL-Challenge, learning is
achieved by operations on so-called lss-structures:

llss_structure := llss(WordId,Word,Lemma,
SemanticType,SyntacticType)

In the rest of this paper we will use pseudo-Prolog no-
tation to illustrate the basic concepts. A fundamental
operation on lss-structures is lss-unification:

lss_univ(llss(_,Word,Lemma,Sem,Syn),
llss(_,Word,Lemma,Sem,Syn),1):-
\+Word = unknown,!.

lss_univ(llss(_,_,Lemma,Sem,Syn),
llss(_,_,Lemma,Sem,Syn),0.75):-
\+Lemma = unknown,!.

lss_univ(llss(_,_,_,Sem,Syn),
llss(_,_,_,Sem,Syn),0.5):-
\+ Sem = unknown,!.

lss_univ(llss(_,_,_,_,Syn),
llss(_,_,_,_,Syn),0.25):-
\+ Syn = unknown,!.

lss_univ(llss(_,_,_,_,_),llss(_,_,_,_,_),0):-!.

The lemmas and the syntactic types are derived from
the annotation provided by the Challenge organizers.
The semantic information was obtained from a lim-
ited domain-specific ontology that was developed in
order to classify concepts encountered in the Chal-
lenge (OWL was imported to Prolog using a tool called
Thea). Essential concepts such as ”BioMolecularEn-
tity” and ”BiologicalProcess” were used as semantic
tags for words. Classification of text instances such
as those in a ”named-entity dictionary” (provided by
the organizers) was done by hand. A list of verbs was
also classified as ”DirectedActionVerb” and ”Interac-
tionVerb”. In an effort to model the homomorphism
between semantic and syntactic objects and thereby
expose the semantics of syntactic operations, we in-
cluded a small syntactic ontology in our system.

Lss-structures distinguish between levels of unifica-
tion. The unification level is 1 when the words and
all the other elements unify, 0.75 if the the words
do not unify but the rest of the terms do unify, etc.
The Prolog code above illustrates the idea. Along
the same lines one can define partial unification be-

54

Learning Biological Interactions from Medline Abstracts

Figure 1. A high-level view of the mini-ontology.

tween two sets of lss-structures. For two sets A and B,
lss_univ(A,B) is the maximal sum of lss-unifications
between elements of unique pairs from A×B, normal-
ized for the cardinality of the biggest set. The value is
1 if A and B are the same and [0,1) otherwise. Syntac-
tic dependency relations are represented in the form of
lss-links:

lss_link(llss(_,Word1,Lemma1,Sem1,Syn1),
SyntacticRelation,

llss(_,Word2,Lemma2,Sem2,Syn2))

The definitions for lss-unification can easily be ex-
tended to unification for lss-link sets that define partial
tree structures.

As input, the system receives sentences accompanied
by their syntactic analysis in the form of dependency
trees coded as lists of lss-links. The training examples
have additional agent-target information. For the test
examples this information has to be predicted. The
learning process performed on the training set contin-
ues along the following lines:

1. For each pair of valid agent-target interactions α
and β in a sentence t in the training set we create
a proto-rule Γ consisting of the lss-link set related
to t, together with the information about the in-
teraction between α and β.

2. For each proto rule Γ predicting interaction be-
tween α and β, and each combination of possible
targets and agents, γ and δ, in each sentence t
of the training set, a unification signature is cre-
ated. The unification signature is a list of uni-
fication values for specific parts of lss-link trees
related to the location of α, β, γ and δ in the two
trees. It also contains the score for the proto rule
Γ on t: valid if the interaction between γ and δ
is the same as the one between α and β, invalid
otherwise.

3. A rule induction program (RIPPER) is applied to
the unification signatures to identify useful com-
binations of proto rules. The resulting set of rules
is a set of classifiers that can be applied to the
test set.

A unification signature between two lss-link trees is a
sequence of real values which reflect weights for the
unification chosen by an expert. In case there is no
unification, the system outputs 0. Based on the unifi-
cation results, it is possible to apply different machine
learning methods, in our case it is a rule induction.

Taken into account that the training set has not ex-
plicitly included negative examples, we have followed
the closed world assumption. This way the cartesian
product of all agents and targets has been computed
over each sentence resulting in 873 combinations, 161
of which are positive examples. The proto-rules have
been composed based on these positive examples from
the training set. Cartesian product over potential
agents and targets for the test set resulted in 568 com-
binations.

Unification which has been employed in this approach
can be thought of in two dimensions. The first di-
mension presents unification to be carried out on a
word and is defined on three levels, in particular, on
the lexical, semantic and part of speech levels. While
computing the scores we have taken into account the
number of levels the unification proceeds on.

On the other hand, the unification can also take place
on each level of the syntactic tree. In this case, tree
levels are chosen by an expert.

Since it is nearly impossible to perform unification on
the complete trees, it has been decided to consider par-
tial trees. From this point of view, the most important
parts are roots, ancestors for agent and target, bottom
common ancestor for agent and target, and the parent
and children for both:

rule(ID:A:T:Value,DUA,DDA,DUT,DDT,AncA,AncT,
CAnc,BCanc,RootA,RSynA,RootT,RSynT)

55

Learning Biological Interactions from Medline Abstracts

Figure 2. Unification on syntactic trees.

where ID,A,T ,V alue are sentence identifier, agent,
target, and value (true if an interaction is present, false
otherwise). In case of the test example, V alue equals
unknown. DUA,DDA,AncA (DUT ,DDT ,AncT) are
a parent, children and all ancestors for a given agent
(target), whereas CAnc (BCanc) is a list of com-
mon ancestors (bottom common ancestor). The values
for RootA,RootT ,RSynA,RSynT reflect the unifica-
tion on the root level (the choice of two roots, for an
agent and a target has been made assuming the exis-
tence of partial syntactic analysis).

For instance, the unification depicted on Fig.2 succeeds
on the root level and on the parent level for an agent.
Note that it has not been shown how well it succeeds
on each of them.

3.2. Classification of interactions

After the unification has been carried out, it is nec-
essary to perform classification. Since we have used
weights while performing unification, the result is a
sequence of real numbers. Privided that each test ex-
ample has been unified on all proto-rules, it becomes
necessary to reduce the output to a single sequence
which has been done by averaging and normalizing.
Some of the sequences can be safely eliminated before
applying any classification method. They include such
unification results for a given test example which have
the same scores for each classification level consider-
ing two combinations, agent-target and target-agent.
Having the same scores for both directions presupposes
the potential agent and target to be siblings, which
would be unlikely if they were true agent and target.

In order to classify potential interactions into nega-
tive and positive interactions, the Weka (Witten &
Frank, 2000) implementation of the Ripper rule learner
was used. It allows us to construct propositional rules

Table 1. Classification results for Ripper classifier on train-
ing and test data sets.

Data set Precision Recall F-Measure

Training

Positive 71 55.3 62.2
Negative 90.5 94.9 92.7
Test
Positive 39.2 26.5 31.6

based on the result of unification. This learner has first
been tested on the training set making use of 10fold
cross validation. The results for both classes are pre-
sented in Table 1. After fixing a bug that was present
at the time of official testing we found that our results
improved from 51,8% (precision), 16,8% (recall) and
25,4% (F-score) (official score) to 39,2%, 26,5% and
31,6% respectively. Please note that the results for
the test data have been achieved testing our approach
using the full data set (i.e., including coreferences).
The precision and recall for the positive and negative
examples in the training set have been calculated by us
whereas the precision and recall for the test data (only
positive examples) have been obtained by using score
computation program provided by the organizers. The
way of computing scores for the training and test sets
slightly differs since for the test data the concept of
spurious combinations has been introduced. Spurious
combinations are only the elements of negative combi-
nations set and they weren’t explicitly marked in the
training set.

Using rule induction has several advantages, including
the ability to test which levels of unification are the
most important for recognizing agents and targets. For
example, it has turned out that it is not necessary to
use all ancestors for an agent and a target (adding this
information usually increases noise), it is sufficient to
consider bottom common ancestors. The recognized
interactions are of different types, as indicated in Table
2. One of the advantages of our approach lies in the
ability to find interactions in the sentences with co-
references. Learning such interactions is considerably
more difficult task in comparison to the interactions in
the sentences without co-reference or ellipsis.

The lss-unification proved to be useful when compar-
ing to the learning from examples without unification.
In this case, the F-score dropped to 42,1% on the train-
ing set (for the class of positive interactions). We have
also tested the usefulness of using ontology as a back-
ground knowledge. As it has turned out, it helped us

56

Learning Biological Interactions from Medline Abstracts

Table 2. Distribution of the interaction types .

Co-references Interaction types

Action Binding Regulon

Yes 8 2 1
No 5 5 1
Total 13 7 2

to overcome the data sparseness, allowing for the uni-
fication on the semantic level even though the actual
words or lemmas could be different.

There have been several other learners tested on the
Challenge data. In this case, we used the same rep-
resentation as for the proto-rules (e.g., information
about the parents, children, etc.). One of such ILP sys-
tems was Aleph (Muggleton, S. H., 1994). However, it
didn’t provide better results. While increasing preci-
sion, the recall dropped significantly since only few in-
teractions (around 10, depending on the settings) have
been found. Thus, it would be interesting to test other
representation including more information on the path
from the agent to the target.

4. Discussion

In this paper, we present an approach that incorpo-
rates not only the underlying syntactic structure of the
data but also accounts for its semantics. The use of
an ontology for semantic annotation enables us to dis-
close domain knowledge that might be useful for rule
induction as well as reason about the rules that have
been induced. It also gives us the opportunity to em-
ploy unification based on the structure of the ontology,
by setting restrictions on the level of unification using
the knowledge from the ontology (e.g., unification of
elements having the same parent in the hierarchy).

Our ontology was initially simple in order to test
ideas within the limited scope of the Challenge. How-
ever, a more refined model of the biological domain
would strengthen our approach. For instance, we could
take into account that not all interactions are of the
agent/target type, or that an interaction is sometimes
with some aspect of a gene rather than with the gene
itself (e.g. with ’localisation of gene X’). We could also
model different viewpoints used by biologists, such as
the physical (molecular) viewpoint and the genetic one
(Demerec, M. 1966). In general, our approach allows
one to study the effect of various ontology design de-
cisions.

There are several additional issues to be studied in

more detail in the future. First, we would like to aug-
ment the current manual semantic tagging with more
classification rules for domain-specific concepts, such
as interaction verbs and biological processes (e.g. post-
translational modification). The additional semantic
classification rules could then be applied during a sec-
ond pass of semantic tagging, in order to enrich the an-
notation that enables our rules to classify interaction.
Additionally, we would like to capture interaction that
is stated indirectly, a form of ’undisclosed knowledge’
(Swanson, D. R. 1986). There are two types of indirect
interaction that we would like to capture: transitive in-
teraction and collective interaction. Presumably, tran-
sitive interaction will be captured by forward chaining
on a knowledgebase of interactions. However, the indi-
rect and nondeterministic nature of such interactions
calls into question the exclusive use of first-order logic;
perhaps a probabilistic network model could be useful
for this purpose. Such a network model would fit into
our plans for a more sophisticated classification mech-
anism, where the results from several learners could be
used to determine confidence in interactions. The sec-
ond type of indirect interaction, collective interaction,
is interaction with an entire class of entities. For in-
stance, if we know that Protein A affects sporulation in
general and that Protein B and C are produced during
sporulation, we could conclude that Protein A affects
Protein B and C. A mechanism to represent collective
interaction could be combined with biological annota-
tion that has been mapped into our ontological terms
in order to effectively carry out the logic contained in
the above example. More specifically, we could add
a sporulation property to each protein whose func-
tional category annotation includes sporulation, where
sporulation is defined in our ontology.

Another interesting issue is related to interactions that
have qualifying phrases such as ”.. in the mother cell
during late stage sporulation”. In this case, the inter-
action is constrained to a certain location and during
a certain stage of development. The constraints in this
particular example call for a set of locations and de-
velopmental stages to be taken up in the ontology, as
well as a way to represent the qualifying information
in the semantic tagging system.

From a molecular biology point of view molecular in-
teractions form the basis of many phenomena and are
essential to their description. This makes interaction
extraction a good starting point in the larger endeavor
of knowledge capture from biological documents. Of
course, we would eventually like to use interactions
alongside other types of extracted knowledge to build
and extend knowledge models and ontologies. Sabou
et al (Sabou, M. 2005) provide an example of building

57

Learning Biological Interactions from Medline Abstracts

a specialized ontology from a small corpus of web ser-
vice descriptions. A similar approach could be poten-
tially useful in e-science, where there is often a general
shortage of resources for the annotation of experimen-
tal data.

Acknowledgment

This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl). This
project is supported by a BSIK grant from the Dutch
Ministry of Education, Culture and Science (OC&W)
and is part of the ICT innovation program of the Min-
istry of Economic Affairs (EZ).

References

Adriaans, P. W. (1992). Language Learning from a
Categorial Perspective. Doctoral dissertation, Proef-
schrift.

Adriaans, P. W. (1991). A Domain Theory for Catego-
rial Language Learning Algorithms. In Proceedings
of the Eighth Amsterdam Colloguium, Amsterdam,
The Netherlands. Editors Dekker, Paul and Stokhof,
Martin. Institute for Logic, Language and Compu-
tation, University of Amsterdam.

Chen, H., & B. M. Sharp. (2004). Content-rich bio-
logical network constructed by mining PubMed ab-
stracts. BMC Bioinformatics 5: 147.

Demerec, M., E. A. Adelberg, A. J. Clark, & P. E.
Hartman. (1996). A proposal for a uniform nomen-
clature in bacterial genetics. Genetics 54: 61-76.

Krallinger, M., R. A. Erhardt, & A. Valencia. (2005).
Text-mining approaches in molecular biology and
biomedicine. Drug Discov Today 10: 439-445.

Muggleton, S. H. & L. De Raedt. (1994). Inductive
Logic Programming: Theory and Methods. Logic
Programming Journal, 19-20: 629-679.

Muller, H. M., E. E. Kenny, & P. W. Sternberg. (2004).
Textpresso: an ontology-based information retrieval
and extraction system for biological literature. PLoS
Biol 2: e309.

Russell, S., & Norvig, P. (2003). Artificial Intelligence.
A Modern Approach. Second Edition. New Jersey:
Prentice Hall.

Sabou M., Wroe C., Goble C., & Mishne G. (2005).
Learning Domain Ontologies for Web Service De-
scriptions: an Experiment in Bioinformatics. In
Proceeedings of the 14th International World Wide

Web Conference (WWW2005), Chiba, Japan, 10-14
May, 2005.

Swanson, D. R. (1986). Fish oil, Raynaud’s syndrome,
and undiscovered public knowledge. Perspect Biol
Med 30: 7-18.

Uetz, P., and R. L. Finley, Jr. (2005). From pro-
tein networks to biological systems. FEBS Lett 579:
1821-1827.

Witten, I. H., & Frank, E. (2000). Data Mining: Prac-
tical machine learning tools with Java implementa-
tions. San Francisco: Morgan Kaufmann.

Xenarios, I., and D. Eisenberg. (2001). Protein inter-
action databases. Current Opinion in Biotechnology
12: 334-339.

Yandell, M. D., and W. H. Majoros. (2002). Genomics
and natural language processing. Nat Rev Genet 3:
601-610.

58

59

60

61

Learning to Extract Genic Interactions Using Gleaner

Mark Goadrich richm@cs.wisc.edu

Louis Oliphant oliphant@cs.wisc.edu

Jude Shavlik shavlik@cs.wisc.edu

Department of Biostatistics and Medical Informatics and Department of Computer Sciences, University of
Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706 USA

Abstract

We explore here the application of Gleaner,
an Inductive Logic Programming approach
to learning in highly-skewed domains, to the
Learning Language in Logic 2005 biomedical
information-extraction challenge task. We
create and describe a large number of back-
ground knowledge predicates suited for this
task. We find that Gleaner outperforms stan-
dard Aleph theories with respect to recall and
that additional linguistic background knowl-
edge improves recall.

1. Introduction

Information Extraction (IE) is the process of scan-
ning unstructured text for objects of interest and facts
about these objects. Recently, biomedical journal arti-
cles have been a major source of interest in the IE com-
munity for a number of reasons: the amount of data
available is enormous; the objects, proteins and genes,
do not have standard naming conventions; and there is
interest from biomedical practitioners to quickly find
relevant information (Blaschke et al., 2002, Shatkay &
Feldman, 2003, Eliassi-Rad & Shavlik, 2001, Ray &
Craven, 2001, Bunescu et al., 2004).

IE can be framed as a machine learning task: given
information in unstructured text documents, extract
the relevant objects and relationships between them.
We believe that Inductive Logic Programming (ILP)
is well-suited for IE in biomedical domains. ILP of-
fers the advantages of (1) a straight-forward way to
incorporate domain knowledge and expert advice and
(2) produces logical clauses suitable for analysis and
revision by humans to improve performance.

Appearing in Proceedings of the 4 th Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

In this article, we report both the data-preparation
techniques and the results of applying Gleaner (Goad-
rich et al., 2004) to the Learning Language in Logic
2005 biomedical information extraction task of learn-
ing genic interactions. Gleaner is a two-stage ILP algo-
rithm that (1) learns a broad spectrum of clauses and
(2) then combines them into a thresholded disjunctive
clause aimed at maximizing precision for a particular
choice of recall. We compare our results to standard
Aleph (Srinivasan, 2003) using recall and precision,
and discuss areas open to future research.

2. Data Preparation

Our dataset for this article is the Learning Language
in Logic challenge task1, where the goal is to learn
to recognize the interaction in English sentences be-
tween protein agents and their gene targets in Bacil-
lus subtilis. Sentences in the training set contained
either a direct reference between an agent and a tar-
get, such as “GerE stimulates cotD transcription,” or
an indirect reference, such as “GerE binds to a site
on one of these promoters, cotX [...],” where the rela-
tion between GerE and cotX is mediated by the phrase
“these promoters.” The organizers call these two sub-
tasks without co-reference and with co-reference and we
chose to learn on them separately, first learning only
relationships without co-reference, and second learn-
ing only relationships with co-reference.

The training data consist of 80 sentences found in the
Medline2 database, and contain 106 relations without
co-reference and 59 relations with co-reference. For
each subtask, we used the other trainset as our tune-
set to find an appropriate threshold for making testset
predictions. While they are slightly different tasks, we
found that the benefit of more examples outweighed
dividing the training sets into subfolds.

1http://genome.jouy.inra.fr/texte/LLLchallenge/
2http://www.ncbi.nlm.nih.gov/pubmed

62

Learning to Extract Genic Interactions Using Gleaner

2.1. Example Filtering

Positive examples for this dataset, consisting of
word/word pairings, have been labeled by the
challenge-task committee, while negative examples
were left up to the participants. We define negative
examples on a per-sentence basis by first finding all
words which participate in a positive relationship. The
pairings among these words which are not labeled as
positives are used as negatives for training and tun-
ing. This produced 414 without co-reference negative
examples and 261 with co-reference negative examples.

The testset was provided to us unlabeled, and con-
tained sentences for both the task with co-reference
and the task without co-reference. Unlike the train-
ing data, the testset also contained sentences which
did not contain any relations. For the testset, we cre-
ated examples from the pairing of all possible protein
and gene names found in a provided dictionary. This
produced 936 total testset examples. In subsequent
experiments, we reduced this to 618 examples by re-
moving testset examples where the agent and target of
the relation were identical (since this never happened
in the trainset). Ultimately there were 54 positive and
410 negative test examples for the without co-reference
task and 29 positive and 384 negative test examples for
the with co-reference task.

2.2. Background Knowledge

To prepare the data for learning via Inductive Logic
Programming, we constructed a variety of background
knowledge from sentence structure, statistical word
frequencies, lexical properties, and biomedical dictio-
naries, examples of which can be seen in Table 1.

Our first set of relations comes from the sentence struc-
ture. We use the Brill tagger (1995) retrained on the
GENIA dataset (Kim et al., 2003) to predict the part
of speech for each word. Then we employ a shallow
parser created by Burr Settles that uses Conditional
Random Fields (Lafferty et al., 2001) trained on a
standard corpus (Sang, 2001) to derive a flat parse
tree, such that there are no nested phrases, for all sen-
tences in our dataset. All phrases have the sentence
as the root, and therefore all words are only members
of one phrase. Figure 1 shows a sample sentence parse
divided into one level of phrases.

Each word, phrase, and sentence is given a unique
identifier based on its ordering within the given ab-
stract, such as ab11011148 sen1 ph2 w1. This al-
lows us to create relations between sentences, phrases
and words based not on the actual text of the doc-
ument but on its structure, such as sentence child,

Figure 1. Sample Sentence Parse (N=noun, V=verb,
P=preposition, NP=noun phrase, VP=verb phrase,
PP=prepositional phrase)

phrase previous and word next about the tree struc-
ture and sequence of words, and predicates like
nounPhrase, article, and verb to describe the part
of speech structure. To include the actual text of
the sentence in our background knowledge, the predi-
cate word ID to string maps these identifiers to the
words. In addition, the words of the sentence are
stemmed using the Porter stemmer (Porter, 1980), and
currently we only use the stemmed version of words.

General sentence-structure predicates like
word before and phrase after are added, al-
lowing navigation around the parse tree. Phrases are
also tagged as being the first or last phrase in the
sentence, likewise for words. The length of phrases is
calculated and explicitly turned into a predicate, as
well as the length (by words and phrases) of sentences.
Also, phrases are classified as short, medium or long.
An additional piece of useful information is the
predicate different phrases, which is true when its
two arguments are distinct phrases.

Another group of background relations comes from
looking at the frequency of words appearing in the
target phrases in the training set. We believe these
frequently occurring words could be indicators of some
underlying semantic class and will be helpful for iden-
tifying correct phrases in the testset. We created
Boolean predicates for several ratios - 2 times, 5 times
and 10 times the general word frequency across all sen-
tences in a given training set - using the following for-
mula to determine which words matched which ratios:

P (wi = word|wi ∈ Target Phrase)

P (wi = word|wi "∈ Target Phrase)

For example, the words “depend,” “bind,” and “pro-
tein” are at least 5 times more likely to appear in pro-
tein phrases than in phrases in general in the without
co-reference training set. These gradations are cal-
culated for both target arguments, protein and gene.
We automatically create semantic classes consisting of
these high frequency words. These semantic classes are
then used to mark up all occurrences of these words in
a given training and testing set.

A third source of background knowledge is de-

63

Learning to Extract Genic Interactions Using Gleaner

Table 1. Translation from Sample Sentence “ykuD was transcribed by SigK RNA polymerase from T4 of sporulation,” to
Prolog. This sentence is from the abstract whose PubMed ID is 11011148. Not all predicates created are listed.

Background Some of the Prolog Predicates Created
Knowledge

Sentence sentence(ab11011148 sen4).
Structure phrase(ab11011148 sen4 ph0).

phrase(ab11011148 sen4 ph1).
word(ab11011148 sen4 ph0 w0).
word(ab11011148 sen4 ph1 w1).
word(ab11011148 sen4 ph1 w2).
phrase child(ab11011148 sen4 ph0, ab11011148 sen4 ph0 w0).
word next(ab11011148 sen4 ph0 w0, ab11011148 sen4 ph0 w1).
word ID to string(ab11011148 sen4 ph1 w1, ‘ykuD’).
target arg2 before target arg1(ab11011148 sen4).

Part Of Speech np segment(ab11011148 sen4 ph0).
vp segment(ab11011148 sen4 ph1).
n(ab11011148 sen4 ph0 w0).
v(ab11011148 sen4 ph1 w1).
prep(ab11011148 sen4 ph1 w3).

Medical Ontologies phrase contains mesh term(ab11011148 sen4 ph3, ‘RNA’).

Lexical Properties phrase contains alphanumeric word(ab11011148 sen4 ph5).
phrase contains specific word(ab11011148 sen4 ph1, ‘transcribed’).
phrase contains originally leading cap(ab11011148 sen4 ph3).

Word Frequency phrase contains some arg 2x word(ab11011148 sen4 ph3).

rived from the lexical properties of each word.
Alphanumericwords contain both numbers and alpha-
betic characters, (such as “sigma 32” and “Spo0A˜P”)
whereas alphabetic words have only alphabetic char-
acters. Other lexical and morphological features in-
clude singleChar (“a”), hyphenated (“membrane-
bound”) and capitalized (“RNA”). Also, words are
classified as novelWord (“sporulation”) if they do not
appear in the standard /usr/dict/words dictionary
in UNIX. Lexical predicates are then augmented to
make them more applicable to the phrase level and
therefore more general. These predicates are also cre-
ated for pairs and triplets of words, so we can assert
that a phrase has the word “bind” tagged as a verb all
in one step when we search the hypothesis space.

For our fourth source, we incorporate semantic knowl-
edge about biology and medicine into our back-
ground relations by using the Medical Subject Head-
ings (MeSH)3. As we did for the sentence struc-
ture, we have simplified this hierarchy to only be
one level. Phrases are labeled with the predicate
phrase contains mesh term if any of the words in the
given phrase match any words in MeSH.

3http://www.nlm.nih.gov/mesh/meshhome.html

Additionally, predicates are added to de-
note the ordering between the phrases.
Target arg1 before target arg2 asserts that
the protein phrase occurs before the gene phrase,
similarly for target arg2 before target arg1. Also
created are identical target args (which is true
when the protein and gene phrases are the same
phrase, such as the phrase “sigmaB dependent katX
expression”) and adjacent target args (which says
the adjacent phrases contains both the gene and
protein), as well as the count of phrases before and
after the target arguments. Overall, we defined 215
predicates for use in describing the training examples.

2.3. Enriched Data

Background knowledge was also provided by the chal-
lenge task organizers. They processed the corpus with
Link Parser (Temperly et al., 1999), a tool for auto-
matically constructing a syntactic parse tree, and re-
fined the output to create two type of additional infor-
mation. First, each word was assigned its root word,
called a lemma. For instance, the word “are” would
have the lemma “be.” The second type of informa-
tion was the syntactic relations between words. This
included appositive, complement, modifier, negation,

64

Learning to Extract Genic Interactions Using Gleaner

Table 2. Pseudo-code for Gleaner Algorithm

Initialize Bins:
Create B recall bins, bin 1

B
, bin 2

B
, ..., bin1,

to uniformly divide the recall range [0,1]

Populate Bins:
For i = 1 to K until N clauses are generated

Pick seed example to find bottom clause
Use Rapid Random Restart to find clauses
After each generation of a new clause c

Find the recall binr for c on the trainset
If the precision × recall of c is best yet

Replace c in binr,i

Determine Bin Threshold:
For each binj

Find highest precision theory m and Lm ∈ [1, K]
on trainset such that

recall of “At least L of K clauses match
examples” ≈ recall for binj

Evaluate On Testset:
Find precision and recall of testset using each
bin’s “at least L of K” decision process

object and subject relations about the sentence gram-
mar, as well as predicted parts of speech for each word
in a relationship, for a total of 27 possible relations.
For example, in the sentence “ykuD was transcribed by
SigK RNA polymerase from T4 of sporulation,” Link
Parser reports that the noun ‘yukD’ is the subject of
the verb ‘transcribed’, ‘polymerase’ and ‘T4’ are com-
plements of ‘transcribed’, and ‘RNA’ and ‘SigK’ are
modifiers of ‘polymerase’.

We chose to ignore the lemma information, since we
previously incorporated the stem of each word, and
only focused on the 27 syntactic information predi-
cates. We compare the inclusion versus exclusion of
this enriched background information in our results.

3. Gleaner

Gleaner (Goadrich et al., 2004) is a randomized search
method which collects good clauses from a broad spec-
trum of points along the recall dimension in recall-
precision curves and employs an “at least N of these
M clauses” thresholding method to combine sets of se-
lected clauses. Pseudo-code for our algorithm appears
in Table 2.

Gleaner uses Aleph (Srinivasan, 2003) as its underlying
engine for generating clauses. As input, Aleph takes

Figure 2. A sample run of Gleaner for one seed and 20 bins,
showing each considered clause as a small circle, and the
chosen clause per bin as a large circle. This is repeated
for 100 seeds to gather 2,000 clauses (assuming a clause is
found that falls into each bin for each seed).

background information in the form of either inten-
sional or extensional predicates, a list of modes declar-
ing how these predicates can be chained together, and
a designation of one predicate as the “head” predicate
to be learned. At a high-level overview, Aleph sequen-
tially generates clauses for the positive examples by
picking a random example to be a seed. This exam-
ple is then saturated to create the bottom clause, i.e.
every relation in the background knowledge that can
be connected by relations to this example in a fixed
number of steps. The bottom clause determines the
possible search space for clauses. Aleph heuristically
searches through the space of possible clauses until the
“best” clause is found or time runs out. When enough
clauses are learned to cover (almost) all of the positive
training examples, the learned clauses are combined
to form a theory. In our experiments, we will compare
Gleaner to standard Aleph theories.

After initialization, the first stage of Gleaner learns a
wide spectrum of clauses, as illustrated in Figure 2.
We search for clauses using 100 random seed examples
to encourage diversity. In our experiments, the recall
dimension is uniformly divided into 20 equal sized bins,
[0, 0.05], [0.05, 0.10], . . . , [0.95, 1.00]. For each seed, we
consider up to 25,000 possible clauses using Rapid
Random Restart (Železný et al., 2003). As these
clauses are generated, we compute the recall of each
clause and determine into which bin the clause falls.
Each bin keeps track of the best clause appearing in its
bin for the current seed. We use the heuristic function
precision × recall to determine the best clause. At the
end of this search process, there will be 20 clauses col-
lected for each seed and 100 seed examples for a total
of 2,000 clauses (assuming a clause is found that falls

65

Learning to Extract Genic Interactions Using Gleaner

into each bin for each seed).

The second stage (modified slighly from (Goadrich
et al., 2004)) takes place once all our clauses have been
gathered using random search. Gleaner combines the
clauses in each bin to create one large thresholded dis-
junctive clause per bin, of the form “At least L of these
K clauses must cover an example in order to classify
it as a positive.” Each of these theories could generate
their own recall-precision curves, by exploring all pos-
sible values for L on the tuneset, starting with L = K
and incrementally lowering the threshold to increase
recall. These 20 curves will overlap in their recall and
precision results, and we choose the theory which cre-
ated the highest points along this combined curve on
the tuneset, irrespective of the bin which generated the
points. We will end up with 20 recall-precision points,
one for each bin, that span the recall-precision curve.

A unique aspect of Gleaner is that each point in the
recall-precision curve could be generated by a separate
theory, instead of the usual setup to create a curve,
where one hypothesis is transformed into many by
ranking the examples and then finding different thresh-
olds of classification. This separate-theory method is
related to using the ROC convex hull created from sep-
arate classifiers (Fawcett, 2003). We believe using sep-
arate theories is a strength of our Gleaner approach,
such that each theory, and therefore each point on our
curves, is not hindered by the mistakes of previous
points; each theory is totally independent of the oth-
ers.

An end-user of Gleaner will be able to choose their pre-
ferred operating point from this recall-precision curve.
Our algorithm will then be used to generate testset
classifications using the closest bin to their desired re-
call results by using our found threshold L.

4. Results

There were two dimensions on which to vary our train-
ing methods, learning on data containing co-references
or on data without co-references, and including the
provided linguistic information (enriched) or using
only the basic data. Tables 3 and 4 show the results of
Gleaner on the testset data for all four combinations,
using the restriction that the same word cannot be
both agent and target in a relation4. A sample clause
learned by Aleph can be found in Table 5. This clause
has focused on the common property that agents are
before targets, agents are nouns with internal capital

4For our challenge-task submission, we used all 936 pos-
sible test examples. Using the non-identical restriction re-
sulted in a small increase in our precision results.

Table 3. Results of Gleaner, Aleph theory, and baseline
all-positive prediction on LLL challenge task without co-
reference.

Alg Enriched F1 Recall Precision

Gleaner - 41.7 79.6 28.3√
25.1 79.6 14.9

Aleph 1K - 50.0 62.9 40.6√
31.0 59.2 21.0

Aleph 25K - 30.7 44.4 23.5√
26.1 42.5 18.8

All Pos N/A 20.1 100.0 11.2

Table 4. Results of Gleaner, Aleph theory, and baseline
all-positive prediction on LLL challenge task with co-
reference.

Alg Enriched F1 Recall Precision

Gleaner - 17.7 79.3 10.0√
18.5 82.7 10.4

Aleph 1K - 31.6 51.7 22.7√
19.3 37.9 13.0

Aleph 25K - 19.9 20.6 19.3√
19.1 24.1 15.9

All Pos N/A 12.5 100.0 6.7

letters and are complements of nouns which comple-
ment verbs, while targets are in noun phrases without
negatively correlated words in the training set.

We chose our preferred operating point by choosing
the bin with the highest F1 measure on the tuning set;
these were bin [0.55, 0.60] on the basic dataset without
co-reference, [0.65, 0.70] on the enriched dataset with-
out co-reference and bin [0.90, 0.95] on the dataset
with co-reference. With the enriched data, similar
recall points can still be achieved, however there is
a marked decrease in precision for the without co-
reference dataset. We plan to explore the use of the
enriched data from Link Parser (Temperly et al., 1999)
in our future work on this and other information-
extraction datasets.

We also show a comparison of Gleaner to two other
algorithms. First, we examine the results of a single
Aleph theory learned for each training set combina-
tion. We restrict each clause learned to have a min-

66

Learning to Extract Genic Interactions Using Gleaner

Table 5. Sample Clause with 20% Recall and 94% Precision on Without Co-reference Training Set

agent target(A,T,S) :-
n(A),
complement of N N(G,A),
complement by V PASS N(G,),
word parent(A,F),
phrase contains some internal cap word(F, ,A),
word parent(T,E),
phrase contains no arg halfX word(E,arg2,),
isa np segment(E),
target arg1 before target arg2(A,T).

where the variable A is the agent, T is the target, S is the sentence,
and ‘ ’ indicates variables that only appear once in the clause.

Figure 3. Recall-Precision Curves for Gleaner and Aleph
on the dataset without co-reference.

imum precision of 75.0 and to cover a minimum of 5
positives in the training set. We also consider a maxi-
mum of both 1,000 and 25,000 clauses for each “best”
clause in a theory. With the basic data, we see Aleph
improves in precision, however recall is much lower
that our results with Gleaner. We also notice a large
drop in precision and recall between 1,000 clauses and
25,000 clauses, which we attribute to overfitting. Sec-
ond, we compare to the algorithm of calling every ex-
ample positive, which guarantees us 100% recall, and
notice that Gleaner has an increase in precision over
this baseline in both datasets.

Figure 3 shows recall-precision curves for Gleaner and
recall-precision points for the Aleph theories on the
dataset without co-reference, while Figure 4 shows
results on the dataset with co-reference. Gleaner is
able to span the whole recall-precision dimension, al-
though with less than stellar results on the without

Figure 4. Recall-Precision Curves for Gleaner and Aleph
on the dataset with co-reference.

co-reference dataset.. Gleaner seemed to suffer by not
distinguishing well between the agent and target; when
genic interaction(A,B) was predicted, most often we
also predicted genic interaction(B,A), keeping the pre-
cision lower than 50%. Another cause of our low re-
sults could be the fact that sentences with genes and
proteins but no relationships between them were not
included in the training sets, but made up almost half
of the testing set. This lack of negative sentences in the
training sets hampered our ability to distinguish be-
tween good and bad sentences when learning clauses.
Also, the size of the LLL challenge task was small
in comparison to our previous work (Goadrich et al.,
2004), creating the possibility of overfitting. Partic-
ularly affected were the enriched linguistic predicates
and the statistical predicates, which focused on irrel-
evant words (e.g. specific gene and protein words like
“sigma A” and “gerE”). Although collecting labeled

67

Learning to Extract Genic Interactions Using Gleaner

data for biomedical information extraction can be ex-
pensive, we believe the benefits are worth the cost.

5. Conclusions

This paper has explored two Inductive Logic Program-
ming approaches to biomedical information extrac-
tion: Aleph, which learns many high-precision clauses
that cover the training set, and Gleaner, which learns
clauses from a wide spectrum of recall points and com-
bines them to create broad thresholded theories. We
developed a large number of background knowledge
predicates which try to capture both the structure and
semantics of biomedical text, and we evaluated these
two algorithms on the Learning Language in Logic
2005 Challenge Task.

We believe there is much work remaining in the combi-
nation of ILP and biomedical information extraction.
The logical structure of sentence parses as well as the
biological semantic class information can be readily
included in an ILP approach. This genic-interaction
dataset was particularly interesting since neither the
agent entity nor the target entity was a closed set, and
there could be crossover between them. Also worth
noting was the difference between the training set and
testing set with respect to negative examples. We plan
to further explore the issues which arose from using
this dataset and perform cross-validation experiments
to test for statistical significance of our results and to
include negative sentences in the training set.

6. Acknowledgements

We gratefully acknowledge the funding from USA
NLM Grant 5T15LM007359-02, USA NLM Grant
1R01LM07050-01, USA DARPA Grant F30602-01-2-
0571, and USA Air Force Grant F30602-01-2-0571.
Thanks to Burr Settles for help with parsing and tag-
ging the sentences.

References

Blaschke, C., Hirschman, L., & Valencia, A. (2002).
Information Extraction in Molecular Biology. Brief-
ings in Bioinformatics, 3, 154–165.

Brill, E. (1995). Transformation-Based Error-Driven
Learning and Natural Language Processing: A Case
Study in Part of Speech Tagging. Computational
Linguistics.

Bunescu, R., Ge, R., Kate, R., Marcotte, E., Mooney,
R., Ramani, A., & Wong, Y. (2004). Comparative
Experiments on Learning Information Extractors for

Proteins and their Interactions. Journal of Artificial
Intelligence in Medicine, 139–155.

Eliassi-Rad, T., & Shavlik, J. (2001). A Theory-
Refinement Approach to Information Extraction.
Proceedings of the 18th International Conference on
Machine Learning.

Fawcett, T. (2003). ROC Graphs: Notes and Practical
Considerations for Researchers (Technical Report).
HP Labs HPL-2003-4.

Goadrich, M., Oliphant, L., & Shavlik, J. (2004).
Learning Ensembles of First-Order Clauses for
Recall-Precision Curves: A Case Study in Biomedi-
cal Information Extraction. Proceedings of the 14th
International Conference on Inductive Logic Pro-
gramming (ILP). Porto, Portugal.

Kim, J.-D., Ohta, T., Teteisi, Y., & Tsujii, J. (2003).
GENIA corpus - a semantically annotated corpus for
bio-textmining. Bioinformatics, 19.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. Proc. 18th In-
ternational Conf. on Machine Learning (pp. 282–
289). Morgan Kaufmann, San Francisco, CA.

Porter, M. (1980). An Algorithm for Suffix Stripping.
Program, 14, 130–137.

Ray, S., & Craven, M. (2001). Representing Sentence
Structure in Hidden Markov Models for Information
Extraction. Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI).

Sang, E. F. T. K. (2001). Transforming a Chunker
into a Parser. Linguistics in the Netherlands.

Shatkay, H., & Feldman, R. (2003). Mining the
Biomedical Literature in the Genomic Era: An
Overview. Journal of Computational Biology, 10,
821–55.

Srinivasan, A. (2003). The Aleph Manual Version 4.
http://web.comlab.ox.ac.uk/ oucl/ research/ areas/
machlearn/ Aleph/.

Temperly, D., Sleator, D., & Lafferty, J. (1999).
An introduction to the Link Grammar Parser.
http://www.link.cs.wisc.edu/link/.

Železný, F., Srinivasan, A., & Page, D. (2003). Lattice-
Search Runtime Distributions may be Heavy-Tailed.
Proceedings of the 12th International Conference on
Inductive Logic Programming 2002 (pp. 333–345).
Springer Verlag.

68

Genic Interaction Extraction with Semantic and Syntactic Chains

Sebastian Riedel S.R.Riedel@sms.ed.ac.uk

Ewan Klein ewan@inf.ed.ac.uk

Institute for Communicating and Collaborative Systems, School of Informatics, The University of Edinburgh,
Edinburgh EH8 9LW, Scotland UK

Abstract

This paper describes the system that we sub-
mitted to the “Learning Language in Logic”
Challenge of extracting directed genic inter-
actions from sentences in Medline abstracts.
The system uses Markov Logic, a framework
that combines log-linear models and First Or-
der Logic, to create a set of weighted clauses
which can classify pairs of gene named en-
tities as genic interactions. These clauses
are based on chains of syntactic and seman-
tic relations in the parse or Discourse Repre-
sentation Structure (drs) of a sentence, re-
spectively. Our submitted results achieved
52.6% F-Measure on the dataset without and
54.3% on the dataset with coreferences. Af-
ter adding explicit clauses which model non-
interaction we were able to improve these
numbers to 68.4% and 64.7%, respectively.

1. Introduction

This paper describes the system that we submitted to
the “Learning Language in Logic” (LLL) Challenge of
extracting directed genic interactions from sentences in
Medline abstracts. As an illustratation of the extrac-
tion task, given a sentence like (i), we wish to extract
information of the form in (ii):

(i) Localization of SpoIIE was shown to be dependent
on the essential cell division protein FtsZ.

(ii) genic interaction(FtsZ, SpoIIE)

The LLL Challenge organizers provided training and
test sets containing sentences with and without coref-
erential expressions. For all data sets, ‘enriched’ ver-

Appearing in Proceedings of the 4 th Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

sions were available which contained lemmas and syn-
tactic parses for each sentence.

Our initial goal was to explore whether relation ex-
traction could be effectively carried out over semantic
representations, rather than surface strings or parse
structures. In particular, we decided to take as our
starting point the logical forms produced by ccg2sem
(Bos, 2005), a tool whose input is a ccg (Steedman,
2001) dependency tree built by a wide coverage statis-
tical parser (Clark & Curran, 2004) and whose output
is a Discourse Representation Structure (drs) (Kamp
& Reyle, 1993). This approach was based on the hope
that target relations between entities would be easier
to recover once the whole sentence had been converted
into a set of semantic relations. Although we still
believe this approach has considerable potential, we
found that for the LLL Challenge dataset, it was less
successful than we had hoped, primarily due to the ef-
fect of parser errors and to problems in processing the
semantic output that ccg2sem yielded for coordinate
structures. However, it turned out that using syntac-
tic information from the enriched data sets improved
performance significantly.

We had a strong bias in terms of the clauses to be
learned: they had to connect both genes transitively.
With this requirement in mind and the observation
that our initial attempts to apply ilp systems (foil

and Aleph) did not yield such clauses, we decided in-
stead to generate a set of clauses based on chains of re-
lations between the two genes. Clause candidates that
were automatically extracted from the training corpus
were fed to a Markov Logic (Domingos & Richard-
son, 2004) system; this in turn learned probabilistic
weights that reflected how often the clause candidates
were actually observed in the training data.

69

Genic Interaction Extraction with Semantic and Syntactic Chains

ykud(x1)
transcribe(x2)
patient(x2,x1)
sigk(x3)
nn(x3,x5)
rna(x4)
polymerase(x5)
by(x2,x5)
...

x1,x2,x3,x4,x5,...

Figure 1. A simple drs in box representation

2. Data Preprocessing

2.1. Tokenization, Part-of-speech Tagging and
Parsing

In order for ccg2sem to create logical forms, the
training sentences had to be tokenized, part-of-speech
tagged and parsed into a ccg tree. Tokenization was
straightforward: the gene terms (retrieved from a list)
were mapped into single tokens even when containing
whitespace, hyphens or parentheses. part-of-speech
tagging and parsing were both handled by the ccg

parser(Clark & Curran, 2004).

2.2. DRS Construction

After parsing, the ccg tree was transformed by
ccg2sem into a Discourse Representation Structure
(drs), complete with resolved coreferences.

drss are defined as ordered pairs of a set of discourse
referents and a set of drs-conditions, where conditions
can be n-ary relations and equations over discourse ref-
erents (drs), together with implications, disjunctions
and negations of sub-drss. For a sentence like

ykuD was transcribed by SigK RNA polymerase
from T4 of sporulation

ccg2sem produced, among others, a discourse referent
x1 referring to the ykuD gene, x2 which refers to a
transcription event and x3, x4 and x5 which are asso-
ciated with SigK RNA polymerase. Figure 1 shows a
graphical representation of the drs the upper section
of the box contains the discourse referents, and the
main box contains the conditions.1

1Note that nn indicates an underspecified compound
noun relation.

x1

x2

x3 x5

patient

by

nn

ykud

transcribe

polymerasesigk

Figure 2. A semantic chain between two discourse referents

2.3. Chains

For every gene pair in a sentence, the shortest seman-
tic chain between the corresponding pair of Discourse
Referents (drs) was extracted. To find a dr given a
gene token we used the token-to-dr mapping recovered
from the drs file.

Given two drs a, b corresponding to gene terms, we
define a semantic chain between a and b, sema,b, as
a sequence of DRs dr1 = a, dr2, . . . , drn = b together
with a sequence of edges e1, e2, . . . , en−1, where each
edge ei = (reli, diri) consists of a relation reli (in the
set of relations produced by ccg2sem) between dri and
dri+1 and a direction diri ∈ {→,←} which indicates
whether reli(dri, dri+1) or reli(dri+1, dri) holds. Fig-
ure 2 illustrates a semantic chain extracted from the
drs in Figure 1. As can be seen, the circled nodes cor-
respond to drs, unary relations label the nodes, and
binary relations label the arcs between the nodes. In-
formally, Figure 2 says that there is a transcription
event x2, the patient of x2 is ykuD, the by agent of x2
is a polymerase x5, and SigK is in an underspecified
relation to x5.

Syntactic chains were calculated in the same fash-
ion, but based on the parse representations sup-
plied in the enriched LLL Challenge training data
rather than on the output of the ccg parser. Given
a phrase such as the essential cell division protein,
the set of parse relations would include the clause
relation(’mod att:N-ADJ’,13,10), where 13 and
10 are the word indices of protein and essential re-
spectively. More generally, then, syntactic relations
were of the form relation(reli, wi, wj), where reli is
one of a fixed set of syntactic relations assigned by
the LLL parser. We define a syntactic chain between
word indices i and j, syni,j , as a sequence of word in-
dices w1 = i, w2, . . . , wn = j and a sequence of edges
e1, e2, . . . , en−1, where each edge ei = (reli, diri) con-

70

Genic Interaction Extraction with Semantic and Syntactic Chains

sists of a syntactic relation reli between wi and wi+1

and a direction diri ∈ {→,←} which indicates whether
relation(reli, wi, wj) or relation(reli, wj , wi) holds.

3. Machine Learning

Initially we tried to apply Inductive Logic Program-
ming (ilp) directly to the conditions of our drss.
This yielded clauses which were very dependent on
the actual gene names due to the small size of the
training set. Moreover, it was not possible to extract
clauses which included the generalization that inter-
acting genes must have a connecting semantic chain.
This can be attributed to two reasons. First, since
the chains in question can be rather long, they would
induce correspondingly large clauses; however, the lat-
ter are filtered out by the ilp algorithms because they
failed to cover enough examples relative to their com-
plexity. Second, the chains can have varying lengths
and might match only in small subchains, which makes
it difficult for the ilp method to find generalizations.

In the light of this observation we decided to directly
extract a set of candidate clauses which capture certain
subparts of the semantic chains. Instead of discarding
clauses which don’t hold in all cases we used Markov
Logic2(Domingos & Richardson, 2004) to attach and
learn weights for them. In Markov Logic the weight
of a formula (or clause in our case) corresponds to the
difference in log-likelihood between a world where the
formula holds and a world where it doesn’t, all other
things being equal.

A Markov Logic Network L is a set of formula-weight
pairs (Fi, wi). Together with a set of constants it can
be mapped to a log-linear joint probability distribution

(1) pw (X = x) =
1

Z
exp




∑

f∈FeaturesL

wff (x)





over a sequence X = (X1,X2, . . .) of binary variables,
one for each possible ground predicate (with respect to
the available constants). The value of such a node is
1 if the ground predicate is true, 0 otherwise. The set
of feature functions FeaturesL is created by adding a
feature function f for each possible grounding of each
formula Fi in L. A function f returns 1 if its corre-
sponding ground formula is true given x, 0 otherwise.
wf is the weight wi of the original formula Fi defined
in L. Z is a normalisation factor.

2See (Riedel & Meza-Ruiz, 2005) for a publicly available
implementation.

3.1. Candidate Clause Generation

As mentioned above, we automatically extracted a set
of candidate clauses from the given data. All these
clauses were based on subchains within the shortest se-
mantic and syntactic chains of the gene pair to be clas-
sified. Every time we observed a particular subchain
we added a clause that entails genic interaction(A,B)
or ¬genic interaction(A,B) depending on the label of
the observed gene pair.

For instance, after seeing a (agent,←), (patient,→)
subchain in a genic interaction chain we generated:

genic interaction(A,B) : −

contains(semA,B , (agent,←), (patient,→))

This clause roughly3 reads “if gene term A is related to
some DR which is the agent of an event and something
related to gene term B is the patient of this event, then
there is a genic interaction between A and B”. Note
that ‘related’ here means reflexively and transitively
related with respect to the binary relations in the drs.

In addition, typed subchain clauses are extracted. A
typed clause requires certain DRs in the chain to be
members of a specified predicate:

genic interaction(A,B) : −

contains(semA,B , (agent,←), activate)

This clause reads “if something related to gene term
A activates something that is related to gene term B,
then genic interaction(A, B) holds” because activate is
the predicate of the dr followed by the agent relation.

In the case of syntactic chains, clauses look as follows:

genic interaction(A,B) : −

contains(synA,B , (subj,→), (comp of,→))

Typed syntactic clauses used words to type the rela-
tion members; an example is the following (negative)
clause:

¬genic interaction(A,B) : −

contains(synA,B , (comp of,←), activity)

3.2. Weight Estimation

To find the weights, we maximized the logarithm of
the conditional likelihood of the training data

(2)
∑

(xh,xo)∈T

log (pw (Xh = xh|Xo = xo))

3We say ‘roughly’ because one also has to bear in mind
that only shortest paths are extracted.

71

Genic Interaction Extraction with Semantic and Syntactic Chains

where Xh is a list of possible hidden variables and xh

are the corresponding values in a concrete observation.
In this case Xh contains all variables refering to pos-
sible grounded genic interaction atoms. Xo is the set
of observed variables and corresponds to all possible
instantiations of the contains predicates. T is the set
of all training observations (xh, xo). In our current
setting, each genic interaction atom only depends on
contains atoms, which are fully observed. This gives
rise to

pw (Xh = xh|Xo = xo) =(3)
∏

Gene pairs(a,b)

pw

(
Xg(a,b) = xg(a,b)|Xc(a,b) = xc(a,b)

)

where the variable Xg(a,b) corresponds to the ground
atom genic interaction(a, b), and Xc(a,b) is a list of all
variables corresponding to contains atoms that relate
to the syntactic and semantic chains between a and b.

With (3), the conditional in (2) simplifies to

(4)
∑

(xh,xo)∈T

∑

Gene pairs(a,b)

log
(
pw

(
xg(a,b)|xc(a,b)

))
.

where p(x|y) is an abbreviation for p(X = x|Y = y)

To calculate the conditional in (3), Bayes Rule yields

(5)

pw

(
xg(a,b)|xc(a,b)

)
=

pw

(
xg(a,b), xc(a,b)

)

pw

(
1, xc(a,b)

)
+ pw

(
0, xc(a,b)

)

where the joint probabilities can be calculated using
a version of (1) that only contains features of ground
clauses related to the gene pair (a, b). This is sound
due to the independence of genic interaction labels we
are assuming in our clauses.

Using the gradient of (4), we run several iterations of
L-BFGS (Liu & Nocedal, 1989), a gradient descent
implementation, until convergence.

3.3. Inference

To infer the truth value of an actual genic interac-
tion candidate pair, one could run an inference algo-
rithm such as Belief Propagation or Gibbs Sampling
in a Markov network equivalent to (1). However, as all
hidden atoms only depend on a set of fully observed
atoms this is not necessary; we simply calculate

(6) pg (a, b) = pw

(
xg(a,b)|xc(a,b)

)

for each possible gene pair (a, b) using (2). In the case
of the gene pair ykuD, SigK in our example in section

Table 1. Clause sets

No. Clause sets Neg. clauses

1 syn2-0, syn2-1 yes
2 sem2-0, sem2-1 yes
3 1, 2 yes
4 syn2-0, syn2-1 no
5 3, sem1-1l, sem1-1r no

2.2 xg(a,b) would correspond to a truth value for the
atom

genic interaction(ykuD, SigK)

and xc(a,b) would contain a sequence of truth values
for atoms such as

contains(semykuD,SigK , (patient,←), (by,→))

(true) or

contains(synykuD,SigK , (comp of,←), activity)

(false).

We classified a pair a, b as participating in a genic in-
teraction if pg(a, b) > 0.5. If both (a, b) and (b, a) are
classified as genic interactions we only accept the one
with the highest probability. However, in future ver-
sions this could be done more soundly using a clause
such as

¬genic interaction(A,B) : −

genic interaction(B,A)

on the assumption that genic interaction is always
asymmetric.

4. Results

We tested different sets of clauses as candidates for the
weight estimation. Table 1 enumerates the combina-
tions of clause sets we used during the experiments.
sem1-0, sem2-0 and syn2-0 refer to (untyped) clause
sets with semantic or syntactic chains of length one
and two, respectively. sem1-1l, sem1-1r, syn1-1l and
syn1-1r represent sets where either the left or right
node of all clauses is typed with a predicate or word,
respectively. sem2-1 and syn2-1 type the middle node
of subchains with length two.

4.1. Without Coreferences

Table 2 shows results for the test data without coref-
erences. Note that the submitted result was clause

72

Genic Interaction Extraction with Semantic and Syntactic Chains

Table 2. Results on the test data without coreferences

Clause set No. Precision Recall F-M

1 65.0 72.2 68.4
2 68.5 44.4 53.9
3 64.8 64.8 64.8
4 60.8 51.8 55.9
5 60.9 46.2 52.6

set 5, since this was the clause set that yielded the
best results on the cross-validated training set (65%
F-Measure). On the test data, it only achieved 52.6%
F-measure, as shown. Clause set 5 did not use nega-
tive clauses — this functionality was not implemented
by the submission date. It combined semantic and
syntactic chains which seemed to help only when no
negative clauses were added. Finally, it used chains of
length one — this only helped during cross-validation,
maybe due to the similarity in genic interaction pairs
in training and test folds when sentences were drawn
from the same abstract.

4.1.1. Syntactic vs. Semantic Chains

Results for the clause sets 1, 2 and 3 in Table 2
show that using syntactic chains alone (i.e., clause set
1) yielded a significantly higher F-Measure compared
with using semantic chains or a combination of seman-
tic and syntactic chains.

The main weakness of the semantic approach is its low
recall. It can be attributed to two factors. First, incor-
rect ccg parses were responsible for missing or incor-
rect semantic chains within the drss. Second, ccg2sem
generates multiple domain referents for indefinite ob-
jects of coordinated expressions.4 For instance, in the
drs for the sentence

Most cot genes, and the gerE gene, are transcribed
by sigmaK RNA polymerase.

there are two discourse referents for sigmaK RNA poly-
merase, due to the fact that the part-of-speech tagger
integrated into the ccg parser failed to label the term
as a proper name. Although it might be possible to
modify the chain extraction component to deal with
this, it would be preferable to change the output of
the tagger prior to syntactic analysis.

4Semantically, this is indeed the correct result.

Table 3. Results on the test data with coreferences using
the clause sets 1, 2 and 5 from Table 1

Clause set No. Precision Recall F-M

1 63.2 66.2 64.7
2 50.0 33.7 40.2
5 55.6 53.0 54.3

4.1.2. Negative clauses

Clause sets 1 and 4 contain the same positive clauses,
but clause set 1 benefits from the addition of nega-
tive clauses. As shown in Table 2, the performance of
clause set 1 is significantly superior to that of clause
set 4 in both recall and precision. Having a model
of what it means to have no interaction can improve
precision whenever positives clauses would “vote” for
a genic interaction with low confidence, while nega-
tive clauses “vote” against a genic interaction with
high confidence. Without negative clauses, this sce-
nario would result in a false positive. Negative clauses
can increase recall when they are highly confident that
a gene pair is “not a non-interaction” while positive
clauses are uncertain.

4.2. With Coreferences

As we mentioned briefly earlier, an attractive feature
of ccg2sem is its built-in coreference resolver. Thus, for
testing and training on data with coreferences5 we ex-
pected better results with semantic chains compared
to syntactic chains. However, even in this case syn-
tactic chains outperform semantic chains, as shown in
Table 3. This can be explained partly by the fact that
many coreferences were appositions which the parser
could extract. Furthermore, most sentences in the test
and training set lacked coreferences, and this also con-
tributed to syntactic chains performing better.

The submitted clause set was 5, since again this was
the best performing set under cross-validation on the
training data.

5. Conclusion

Perhaps the most striking observation is the dramatic
effect of adding negative clauses to the rule base. It
seems clear that clauses modeling non-interaction are
essential for good performance, increasing both recall
and precision as explained above.

5This corresponds to the “With and Without Corefer-
ences” data set of the LLL Challenge.

73

Genic Interaction Extraction with Semantic and Syntactic Chains

When comparing syntactic and semantic chains, syn-
tactic chains appear to be the clear winner. However,
this conclusion has to be tempered by the fact that
the syntactic chains were based on manually corrected
parses, whereas the semantic chains were based on
a completely automatic statistical parser (trained on
the Penn Treebank). Moreover, there is also potential
in exploiting semantic chains to incorporate domain
knowledge in future experiments.

It also turned out that we were unable to apply ilp

directly to the problem, due to the small size of the
training set and to the varying length and structure
of the chains we were looking for. Instead of carefully
biasing ilp towards the clauses we had in mind, we de-
cided to extract a set of chain-based clauses and learn
probabilistic weights. However, the two approaches
are in fact orthogonal — it would make perfect sense
to first generate a set of candidate rules using an ilp

system and then learn their weights using the Markov
Logic approach.

Acknowledgments

Many thanks to Malvina Nissim and Claire Grover for
their helpful input during the course of the project.

References

Bos, J. (2005). Towards wide-coverage semantic in-
terpretation. Proceedings of IWCS-6, Tilburg, The
Netherlands.

Clark, S., & Curran, J. R. (2004). Parsing the WSJ
using CCG and log-linear models. Proceedings of
ACL (pp. 103–110).

Domingos, P., & Richardson, M. (2004). Markov
Logic: A unifying framework for statistical re-
lational learning. Proceedings of the ICML-2004
Workshop on Statistical Relational Learning and its
Connections to Other Fields, Banff, Canada: IMLS.
(pp. 49–54).

Kamp, H., & Reyle, U. (1993). From discourse to
logic. Studies in Linguistics and Philosophy. Kluwer
Academic.

Liu, D. C., & Nocedal, J. (1989). On the limited
memory BFGS method for large scale optimization.
Math. Program., 45, 503–528.

Riedel, S., & Meza-Ruiz, I. (2005). Markov The
Beast - Markov Logic software platform url: http:
//homepages.inf.ed.ac.uk/s0349492/thebeast.

Steedman, M. (2001). The syntactic process. The MIT
Press.

74

Author Index

Adriaans, Pieter, 53

Blaťák, Jan, 59

Canisius, Sander, 3

Daelemans, Walter, 3

Goadrich, Mark, 62
Greenwood, Mark A., 46
Guo, Yikun, 46

Hakenberg, Jörg, 38
Harkema, Henk, 46

Katrenko, Sophia, 53
Kirsch, Harald, 38
Klein, Ewan, 69

Leser, Ulf, 38
Liakata, Maria, 11

Marshall, M. Scott, 53

Nédellec, Claire, 31

Oliphant, Louis, 62

Plake, Conrad, 38
Popeĺınský, Luboš, 59
Pulman, Stephen, 11

Rebholz-Schuhmann, Dietrich, 38
Riedel, Sebastian, 69
Roberts, Angus, 46
Roos, Marco, 53

Sato, Taisuke, 21
Shavlik, Jude, 62
Stevenson, Mark, 46

van den Bosch, Antal, 3

75

